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1. Introducing the Advanced 
Measurement Approaches (AMA)

These include:
Internal Measurement Approach (IMA)
Loss Distribution Approach (LDA)
Scorecard Approaches (for risks with no loss data)

Carrots:
Insurance (mitigation of charges when events are 
insured is only permitted under AMA)
Reduction in capital charge (but a floor is currently set 
at 75% of the total charge under the standardized 
approach)



Operational Risk, Bucharest, April 2002

Copyright 2002, Carol Alexander

3

Quantitative Requirements for AMA

• The AMA requires historical loss data in a form that is 
consistent with the business line/event type categories specified
on the next slide.

• The model must be based on a minimum historical observation 
period of five years. However, during an initial transition period, 
a three-year historical data window might be accepted for all 
business lines and event types.

• The bank must be able to demonstrate that the risk measure 
used for regulatory capital purposes reflects a holding period of 
one-year and a confidence level of 99.9 percent.
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Unexpected Loss and Capital 
Charge

Operational Risk Capital 
Requirement will be related to the 

unexpected loss

The AMA estimate the unexpected 
loss for each risk type and line of 

business, then aggregate to obtain a 
total capital charge

Annual 
Loss

Expected Loss 99.9th percentile

Unexpected Loss
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Line of 
Business

↓

Risk Types

Internal 
Fraud

External 
Fraud

Damage 
to 

Physical 
Assets

Employment 
Practices

Business 
Practices

Business 
Disruption

Process 
Management

Corporate 
Finance

Trading and 
Sales

Retail 
Banking

Commercial 
Banking

Payment and 
Settlements

Asset 
Management

Retail 
Brokerage

Data: Loss Severity and Frequency

Agency & 
Custody
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OP-Vantage

• Historical data points from past 10+ years 
• More than 7,000 loss events greater than US$1 million, 

totalling US$272 Billion of losses
• Events mapped to multiple hierarchies, including Basel's 

recent QIS risk categories 
• Semi-annual updates (average 500+ events above US$1 

million per update) 
• Strict standards for inclusion and categorization. Excludes 

events such as rumours, estimates of lost income, pending 
litigations and unsettled disputes 

• Summary descriptions of loss events 
• Loss data gathered from a multitude of global sources 
• Available as a standalone database or within the OpVar®

software suite 
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Losses by Risk Type

Clients, Products and Business Practices: Failure to meet 
obligations to clients; faulty design or nature of product

EG. Bankers Trust incurred huge legal losses (several hundreds of 
million dollars) by selling inappropriate exotic products
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Losses by Line of Business
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2. The Internal Measurement 
Approach (IMA)

• A simple form of LDA, based on some strong distributional 
assumptions

• For each business line/risk type
IMA ORR = gamma × expected loss

• Assumes unexpected loss is a multiple of expected loss
• The total operational risk capital charge is the sum of all 

charges over business lines and risk types
• This assumes the worst possible case, of perfect correlation 

between individual risks
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Binomial Model

• For a particular LOB and a particular type of risk, denote the 
probability of a loss event by p and the expected loss given 
event by L 

• Assume the exposure indicator N = the total number of 
events that are susceptible to operational losses during one 
year

• Assume independence between loss events. Then, the 
parameters N and p and the random variable L correspond to 
those of a binomial distribution B(N, p) on the states (0, L).

• The total loss is the result of N independent 'Bernoulli' trials
where in each trial the probability of losing an amount L is p 
and the probability of losing 0 is (1 − p). 

12

What is Gamma?

• In the binomial model the expected loss is µ = N p L and the 
standard deviation of loss is

σ = {√[N p (1 – p)] } L ≈ L √[N p] if p is small
• Capital charge = unexpected loss = gamma x expected loss
• Assume unexpected loss ≈ kσ where k is a constant.. Then

Gamma ≈ kσ/ µ = k L √[N p] / NpL
Gamma ≈ k / √[Np]

• Note 1: Gamma is NOT a constant, independent of risk type. 
• Note 2: Np is the expected number of loss events in one year: 

Banks do NOT need to obtain data for N and p separately
• Note 3: Gamma will be low for high frequency risks and high for 

low frequency risks
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Examples

• Example 1: If 25,000 transactions are processed in a year by 
a back office, the probability of a failed transaction is 0.04 
and the expected loss given that a transaction has failed is 
$1000, the expected total loss over a year is $1 million.  

• Example 2: If 50 investment banking deals have been done 
in one year, the probability of an unauthorized or illegal deal 
is 0.005 and the expected loss if a deal is unauthorized or 
illegal is $4 million, then the expected total loss will also be
$1 million.  
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Examples

• However the distribution of the losses will be very different, 
so also will the gamma factors: assume k = 4 for both risk 
types

• Example 1: Gamma ≈ 4 /√1000 ≈ 4/31.6 ≈ 0.13 and so, 
since expected loss is 1m$, the capital charge is only 
$130,000. 

• Example 2: Gamma ≈ 4 /√0.25 = 8, leading to a capital 
requirement of $8m. 

• Note that the gamma (and capital charge) is 63 times larger
for the corporate finance example than for the back office 
transactions processing example. 
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Extending the Binomial IMA Model

• The binomial IMA model can be extended to deal with random 
loss amounts (Binomial Gammas, Operational Risk, April 2001).

• It may also be extended to the use of alternative loss frequency
distributions (Rules and Models, Risk Magazine, January 2002).

• …and it provides a simple formula for mitigation by insurance 
(Rules and Models, Risk Magazine, January 2002).

• Finally, the parameter estimates may be based on Bayesian 
estimation (Taking Control of Operational Risk, Futures and 
Options World, December 2001)
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Including Insurance in the IMA

• Insurance reduces the loss amount when the event occurs 
(an amount R is recovered) but introduces a premium C to be 
paid even if the event does not occur

• In the binomial model with N Bernoulli trials, an amount L – R 
is lost with probability p and C is lost with probability 1.

• The expected loss is now N[p(L – R) + C] ≈ NpL since C ≈ pR
• The standard deviation is now (L – R) √[Np] if p is small, so

gamma ≈ k [1 – r]/ √[Np]
where r = R/L is the recovery rate

• Thus insurance will decrease gamma by an amount which 
depends on recovery rate.
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Loss Variability

• Let µL be the expected loss severity
• Let σL

2 be the variance of the loss severity.

• Thus
gamma ≈ k √[1 + (σL/µL)2 ]/ √[Np]

• This shows that loss variability will increase the gamma 
factors: but much more so for low frequency high impact 
risks……

0

L : (µL σL
2)

Z
p

1-p

E(Z) = p µL

Var(Z) = p(1-p) µL
2 +  p σL

2 ≈ p( µL
2 + σL

2)
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Alternative Loss Frequency Distributions

Poisson Model for Gamma
• Another loss frequency distribution that can be used with the 

IMA is the Poisson, with parameter λ which corresponds to 
the expected number of loss events in the time horizon.

Gamma = k [1 – r] √[1 + (σL/µL)2] / √λ

• The IMA ORR (i.e. the capital charge) will be given by the 
formula

k µL [1 – r] √ [(1 + (σL/µL)2) λ ] 
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Summary of IMA

No. Loss Events Per Year

Frequency

Loss Given Event

Severity

Loss Distribution

Analytic Formula
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Example

Historical data on loss 
(over 1m$) due to 

Internal Fraud.

Recorded over a 
period of 12 years

Total capitalization of 
banks reporting 

losses was 250bn$
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Empirical Loss Frequency

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12

No. Events per Year

Frequency 

Expected no. 
loss events per 
year = 2.4545

⇒ Model loss 
frequency with 
Poisson density 

with λ ≈ 2.45
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Poisson Loss Frequency
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Loss Severity Distribution

Three events in 
excess of 200m$

Expected Loss = 
50m$

and

Stdev = 100m$

Empirical XS Loss Density
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IMA Capital Charge

• The IMA capital charge is:
k µL √ [(1 + (σL/µL)2) λ ] 

• We have:
µL = 50m$, σL = 100m$, λ = 2.45

• That is, capital charge is:
50 k √(5x2.45) = 175 k m$

• Or, with k = 3 [???], IMA capital charge = 525m$
• This charge corresponds to a total capitalization of 250bn$
• Suppose your bank has a capitalization of 10bn$
• Then the IMA charge will be 525/sqrt(25) = 105m$
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Comments on the IMA: What is k?

• k is the ratio of the unexpected loss to the standard deviation.
• For example, in the standard normal distribution and for the 

99.9% confidence level that is recommended in CP2.5 for the 
LDA, k = 3.10, as can be found from standard normal tables. 

• For the binomial distribution with N = 20 and p = 0.05 (so the 
expected number of loss events is 1) the standard deviation 
is 0.9747 and the 99.9% percentile is 5.6818, so 

k = (5.6818 − 1)/0.9747 = 4.80. 
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Dependence Between k and 
Frequency

• In general, the value of the multiplier k depends more on the type of 
risk than the type of distribution that is assumed for loss frequency. 

• High frequency risks, such as those associated with transactions
processing, should have lower multipliers than low frequency risks, 
such a fraud.

• For example, using the Poisson distribution with expected number of 
loss events equal to 1, the standard deviation is 1 and the 99.9% 
percentile is 5.84, so 

k = (5.84 − 1)/1 = 4.84; 
• But for higher frequency risks where the expected number of loss

events is, say, 20, the Poisson distribution has standard deviation 
√20 and 99.9% percentile 35.714, so 

k = (35.714 − 20)/ √20 = 3.51.



Operational Risk, Bucharest, April 2002

Copyright 2002, Carol Alexander

27

Regulators Approach to k

• Regulators might use their approval process to introduce a 
'fudge factor' to the multiplier, as they have done with internal 
models for market risk. 

• They may wish to set the multiplier by calibrating the 
operational risk capital obtained from this "bottom-up" IMA 
approach to that determined from their "top-down" approach. 

• This is what they are attempting to do with the multipliers 
(alpha and beta) for the Basic Indicator method and the 
Standardized Approach to operational risk capital 
measurement. 
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Conclusions of the IMA Model

• For each line of business and risk type:
capital charge = k µL [1 – r] √ [(1 + (σL/µL)2) λ ] 

• Minimum data requirements: 
– the expected loss frequency λ
– the expected loss severity µL

• Capital charges should increase as the square root of the expected 
loss frequency but linearly with expected loss severity

• Capital charges will be 
– high for low frequency high impact risks, and 
– low for high frequency low impact risks.
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3. Loss Distribution Approach (LDA)

No. Loss Events Per Year

Frequency Distribution:

Binomial (or Poisson or Gamma)

Loss Given Event

Severity Distribution:

Fat-tailed Density

Total Loss

Simulation of Total Loss Distribution
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Advantages of the LDA

Subjective 
Assessments

(e.g. model structure &
parameters)

Back Testing 
(e.g. goodness of 
fit to historic data)

Scenario Analysis

Loss 

Distribution
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Case Study

Historical data on loss (over 1m$) due to 
all types of operational risks.

Recorded over a period of 10 years

Loss stated in current value

Total capitalization of banks reporting 
losses was 150bn$

Year Loss (m$)
1 38.19
1 10.01
1 21.09
1 2.39
1 1.86
1 26.86
1 34.84
1 37.30
1 4.29
1 43.52
1 1.87
1 5.24
1 22.32
1 19.19
1 20.37
1 12.44
1 21.97
1 4.36
1 28.66
1 6.30
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Loss Frequency Distribution

Expected no. loss events 
per year λ = 93.6

Year No. Events Probability
1 75 0.1
2 70 0.1
3 76 0.1
4 71 0.1
5 98 0.1
6 76 0.1
7 100 0.1
8 137 0.1
9 136 0.1

10 97 0.1



Operational Risk, Bucharest, April 2002

Copyright 2002, Carol Alexander

33

Loss Severity Distribution

Loss Frequency
10 518
20 135
30 54
40 32
50 26
60 24
70 10
80 21
90 12

100 11
110 3
120 6
130 3
140 8
150 3
160 6
170 4
180 2

Average Loss µL = 50m$

Standard Deviation σL = 159m$

…
…

…
…
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Loss Severity Distribution

Severity Distribution: All Losses over 1m$

0

100

200

300

400

500

600

10 110 210 310 410 510 610 710 810 910 More

8 out of 950 
loss events 
were losses 
over 1bn$. 
Exclude 
these?
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IMA Model

IMA Model: k     = 2
E[No. Loss Events/Year] 93.60
Mean Loss Severity: 50
StDev Loss Severity: 159
Total OpVaR (m$): 3237
Per Bank OpVaR (m$) 836
Total Cap (bn$) 150
Unit Cap (bn$) 10

Capital charge (with k = 2) is  8.36% of the banks capitalization

= 3237/sqrt(15)
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LDA Model

Simulation:
• Take a random draw on the frequency distribution for the 

number of loss events
• For the ith simulation, suppose this number is ni
• Then take ni random draws from the loss severity distribution 

and sum them to get a total loss for the year
• Repeat for i = 1000 simulations
• This gives a simulated total loss distribution based on Σni

different loss amounts
• Calculate the capital charge as the difference between the 

99.9th percentile and the expected loss of this distribution
• Investigate robustness of the model by repeating this several 

times
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Empirical Simulation

LDA Model: Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
Expected Total Loss: 3721 3685 3774 3552 3653
99.9 Percentile Loss: 6195 7323 7642 6898 7690
Total OpVaR (m$): 2473 3638 3868 3346 4037
Per Bank OpVaR (m$) 639 939 999 864 1042
Total Cap (bn$) 150
Unit Cap (bn$) 10

LDA Model: Sim 1 Sim 2 Sim 3 Sim 4 Sim 5
Expected Total Loss: 5559 5801 5345 5738 5752
99.9 Percentile Loss: 14411 12981 12215 12247 13606
Total OpVaR (m$): 8852 7180 6870 6509 7853
Per Bank OpVaR (m$) 2286 1854 1774 1681 2028
Total Cap (bn$) 150
Unit Cap (bn$) 10

With the 8 large losses:

Without the 8 large losses:
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4. Data Considerations

• We have seen that low frequency high impact risks will have 
the largest effect on the bank's total capital charge, but for 
these risks, data are very difficult to obtain: by definition, 
internal data are likely to be sparse and unreliable

• Even for high frequency risks there are data problems: Using 
historical loss data over a 5 year period will be problematic 
following a merger, acquisition or sale of assets: operational 
processes would change. 

• Therefore, when a bank's operations undergo a significant 
change in size, it is not sufficient to simply re-scale the 
capital charge by the square root of the size of its current 
operations. 
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‘Hard’ and ‘Soft’ Data

• When historic loss event data is either not relevant or not 
available the bank may consider using 'soft' data, in the form 
of 
– opinions from industry experts. 
– data from an external consortium

• How can this type of data be used in conjunction with current 
internal (‘hard’) data? 

• Classical methods (e.g. maximum likelihood estimation) treat 
all data as the same

• Bayesian methods may be used to combine the two data 
sources in the proper fashion
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Bayes Rule

The Reverend Thomas 
Bayes was born in 
London (1702) and died in 
Kent (1761). 

His Essay Towards 
Solving a Problem in the 
Doctrine of Chances,
published posthumously 
in 1763, laid the 
foundations for modern 
statistical inference.
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Classical Bayesian

Assume that at any point in 
time there is a ‘true’ value 

for a model parameter.

What is the probability of 
the model parameter 

given the data?

Classical vs Bayesian Methods
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Bayes’ Rule

• For two events X and Y, their joint probability is the product 
of the conditional probability and the unconditional 
probability:

Prob(X and Y) = prob(XY) prob(Y)
• Or, by symmetry:

Prob(X and Y) = prob(YX) prob(X)

prob(XY) = [ prob(YX) / prob(Y)] prob(X) 
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Interpretation of Bayes’ Rule

Posterior 
Density

∝ Sample 
Likelihood

Prior 
Density*

f θX (θX) ∝ f Xθ (Xθ)   *  f θ(θ)

This is how Bayesian models allow prior beliefs about the 
value of a parameter, which may be very subjective, to 

influence parameter estimates. 

prob(parametersdata) = prob(dataparameters)*prob(parameters) / prob(data)
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The posterior is a 
mixture of prior 

beliefs and sample 
information.

Prior

LikelihoodPosterior

Parameter

No prior information
(uniform prior) ⇒

posterior ≡ likelihood

No sample information
(uniform likelihood) ⇒

posterior ≡ prior

Posterior 
Density ∝ Sample 

Likelihood
Prior 

Density*
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The Effect of Prior Beliefs

Prior

Likelihood
Posterior

Parameter

Prior

Likelihood

Posterior

Parameter

If prior beliefs are expressed with a 
great deal of certainty, Bayesian 
estimates will be close to prior 
expectations and they will have 

small standard errors

Uncertain Beliefs Confident Beliefs
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Bayesian Estimation

External data in form 
of Prior density

Internal data 
as current 

Likelihood 
function Utility function

Posterior 
density

Expected Utility

Choose the 
parameter to 

maximize expected 
utility
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Bayesian Estimators

Standard Utility functions:

Zero- One

Absolute

Quadratic

Optimal estimator:

Mode of posterior

Median of posterior

Mean of posterior

Maximum likelihood estimation (MLE) is a crude form 
of Bayesian estimation. 
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Example: 
Using Bayesian Estimation with the IMA

Loss Severity
• If both 'hard' internal data and 'soft' data are available on the 

distribution of losses, then Bayesian methods can be used to 
estimate µL and σL. 

• Suppose that in the 'hard' internal data the expected loss 
severity is 5m$ and the standard deviation is 2m$; 

• Suppose that the 'soft' data, being obtained from an external 
consortium, shows an expected loss severity of 8m$ and a 
loss standard deviation of 3m$. 

• Assuming normality of loss amounts, the prior density that is 
based on external data is N(8, 9) and the sample likelihood 
that is based on internal data is N(5, 4). 
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Example: 
Using Bayesian Estimation with the IMA

• The posterior density for L will also be normal, with mean µL
that is a weighted average of the prior expectation and the 
internal sample mean. 

• The weights will be the reciprocals of the variances of the 
respective distributions. 

• In fact the Bayesian estimate for the expected loss will be 
µL = [(5/4) + (8/9)]/[(1/4) + (1/9)] = 5.92m$

• The Bayesian estimate of the loss variance will be
[4x9]/[(4 + 9)], 

giving the standard deviation of the posterior: σL = 1.66m$.
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Example: 
Using Bayesian Estimation with the IMA

Loss Frequency
• Consider using a target or projected value for N − this could 

be quite different from its historical value. 
• Bayesian estimation of a probability are often based on beta 

densities of the form
f(p) ∝ pa( 1 − p)b 0 < p < 1.

• Bayesian estimates for p can use beta prior densities that are 
based on external data, or subjective opinions from industry 
experts, or 'soft' internal data.

• Sample likelihood: beta density based on ‘hard’ data ⇒
posterior also a beta density

• Assume quadratic loss function ⇒ Bayesian estimate of p = 
mean of the posterior density = (a + 1)/(a + b + 2) with a and 
b being the parameters of the posterior density. 
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Example: 
Using Bayesian Estimation with the IMA

• Example: internal data indicate that 2 out of 100 new deals have 
incurred a loss due to unauthorized or fraudulent activity.

sample likelihood  ∝ p2( 1 − p)98

• In an external database  there were 10 unauthorized or 
fraudulent deals in the 1000 deals recorded

prior density ∝ p10( 1 − p)990

• Thus
posterior ∝ p12( 1 − p)1088

• With quadratic loss, Bayesian estimate of p = 13/1102 = 0.0118. 
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Example: Summary

k=2 Internal External Combined (Bayesian)
Number Events 100 1000 1100

Probability of Event 0.02 0.01 0.0118
Expected Loss 5 8 5.92
Std Dev Loss 2 3 1.66

Capital Charge 15.23 17.09 13.36

Remark: There is great potential to massage operational 
risk capital charge calculations using targets for N and 

Bayesian estimates for p, µL and σL. 
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5. Management of Operational Risks

• Bayesian belief networks have many applications to 
modelling high frequency low impact operational risks such 
as the human risks where our focus should be on improved 
risk management and control procedures, rather than capital 
charges.

The basic structure of a Bayesian network is a directed acyclic graph

Team

Contract

Nodes represent 
random variables  

Edges represent causal links

The basic structure of a Bayesian network is a directed acyclic graph

Team

Contract

Nodes represent 
random variables  

Edges represent causal links
Team

Contract

Nodes represent 
random variables  

Edges represent causal links
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Example of Bayes’ Rule

• You are in charge of client services, and your team in the UK 
has not been very reliable.

• You believe that one quarter of the time they provide an  
unsatisfactory service, and that when this occurs the 
probability of losing the client rises from 20% to 65%.

• If a client in the UK is lost, what is the probability that they
have received unsatisfactory service from the UK team?
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Example of Bayes’ Rule

• Let X be the event ‘unsatisfactory service’ and Y be the event ‘lose 
the client’. 

• Your prior belief is that prob(X) = 0.25. 
• You also know that prob(YX) = 0.65. 
• Now Bayes’ Rule can be used to find prob(XY) as follows: 
• First calculate the unconditional probability of losing the client: 

prob(Y) = prob(Y and X) + prob(Y and not X)
= prob(YX) prob(X) + prob (Ynot X) prob (not X)  

= 0.65 * 0.25 + 0.2 * 0.75 = 0.3125.
• Bayes’ Rule gives the posterior probability of unsatisfactory service 

given that a client has been lost as: 
prob(XY) = prob(YX) prob(X)/prob(Y)  

= 0.65 * 0.25 / 0.3125 = 0.52
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Node Probabilities 

Team
Prob(good) = 0.75

Prob(bad) = 0.25

Prob(good) = 0.5

Prob(bad) = 0.5

Prob(lose) = prob(lose | T=good and M=good) prob(T=good and M=good)

+  prob(lose | T=good and M=bad) prob(T=good and M=bad)

+  prob(lose | T=bad and M=good) prob(T=bad and M=good)

+  prob(lose | T=bad and M=bad) prob(T=bad and M=bad)

Prob(lose) = 0.3125

Prob(win) = 0.6875

Market

Contract
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Discrete and Continuous Nodes
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Describing the Network

Nodes, edges, and 
probabilities are 

added to model the 
influence of causal 

factors for each 
node 

The Bayesian 
network is 

completed when all 
initial nodes can be 

assigned 
probabilities
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Example: Settlement Loss

Operational (as 
opposed to credit) 
settlement loss is 
“the interest lost 

and the fines 
imposed as a result 

of incorrect 
settlement”

60

Initial Probabilities

Expected Loss = 239.3$

99% Tail Loss = 6,750$ 

(per transaction)
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Scenario Analysis:
Maximum Operational Loss

Expected Loss = 957.7$

99% Tail Loss = 8,400$ 

(per transaction)
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Example: Number of Fails
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Multivariate Distributon

64

BBNs for Human Risks

Human risk has been defined as the risk of inadequate staffing 
for required activities 

• Measures of human adequacy:
Balanced Scorecard (Kaplan & Norton)
Key Performance Indicators

• ‘Causal’ factors or ‘Attributes’:
Lack of training 
Poor recruitment processes
Loss of key employees
Poor management 
Working culture



Operational Risk, Bucharest, April 2002

Copyright 2002, Carol Alexander

65

Key Performance Indicators

Function Quantity Quality

Back Office Number of transactions processed
per day

Proportion of internal errors in
transactions processing

Middle Office Timeliness of reports

Delay in systems implementation;
IT response time

Proportion of errors in reports

Systems downtime

Front Office Propriety traders: 'Information ratio'

Sales: Number of contacts

Proportion of ticketing errors;
Time stamp delays

Credit quality of contacts;
Customer complaints
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Example: 
Number of Transactions Processed
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Bayesian Decision Networks

68

Summary of BBNs

Advantages:
• BBNs describe the factors that are thought to influence operational 

risk, thus providing explicit incentives for behavioural modifications;
• They provide a framework for scenario analysis: to measure 

maximum operational loss, and to integrate operational risk with
market and credit risk;

• Augmenting a BBN with decision nodes and utilities improves 
transparency for management decisions. Thus decisions may be 
based on ‘what if?’ scenarios

Limitations:
• No unique structure; a BBN is a picture of the mind of the modeller
• Therefore BBNs require much clarity in their construction and 

rigorous back testing

Note: Amongst others,  Wilson (1999), Alexander (2000, 2001) and King (2001) have 
advocated the use of BBNs for modelling high frequency low impact operational risks.
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Useful Links: Performance Measures

hrba.org (Human Resources Benchmarking Association) and 
fsbba.org (Financial Services and Banking Benchmarking 
Association)
afit.af.mil and pr.doe.gov/bsc001.htm (Balance Scorecard 
meta-resource pages)
bscol.com (Balance Scorecard Collaborative - Kaplan and 
Norton) and pr.doe.gov/pmmfinal.pdf (Guide to Balance 
Scorecard Methodology)
mentorme.com/html/D-Keyperfind.html and totalmetrics.com/tr-
kpa.htm (Monitoring KPIs)
kpisystems.com/case_studies/banking/bi_kpi_ops_values.htm
(some KPIs for banking operations)
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Useful Links: Bayesian Networks

http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html (list of free Bayesian network 
software)
dia.uned.es/~fjdiez/bayes (meta-resource page for Bayesian networks)
research.microsoft.com/research/dtg/msbn/default.htm (MSBN a free non-
commercial Excel compatible BBN)
hugin.dk (leading commercial BBN with free demo version Hugin Light)
lumina.com (makers of Analytica, leading software package for quantitative 
business models) 
dcs.qmw.ac.uk/research/radar (Risk Assessment and Decision Analysis 
Research, QMW College London and their consultancy agena.co.uk specializing 
in risk management of computer-based systems)
genoauk.com (Operational risk consultancy firm)
algorithmics.com (Watchdog Bayesian network product)
eoy.co.uk (Ermst and Young Bayesian network product)
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Useful Links: Bayesian Networks

http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html (list of free Bayesian network 
software)
dia.uned.es/~fjdiez/bayes (meta-resource page for Bayesian networks)
research.microsoft.com/research/dtg/msbn/default.htm (MSBN a free non-
commercial Excel compatible BBN)
hugin.dk (leading commercial BBN with free demo version Hugin Light)
lumina.com (makers of Analytica, leading software package for quantitative 
business models) 
dcs.qmw.ac.uk/research/radar (Risk Assessment and Decision Analysis 
Research, QMW College London and their consultancy agena.co.uk specializing 
in risk management of computer-based systems)
genoauk.com (Operational risk consultancy firm)
algorithmics.com (Watchdog Bayesian network product)
eoy.co.uk (Ermst and Young Bayesian network product)


