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ISMA

1. Understanding the IMA

e

» Athree stage approach aims to make capital charges
progressively lower and more risk sensitive

1. Basic Indicator

2. Standardised Approach

3. Advanced Measurement Approaches
Internal measurement approach (IMA)
Loss distribution approach (LDA)
Scorecard approaches

» Aimed at flexibility, as opposed to ‘one size fits all’, but
qualifying criteria become increasing stringent

Floor for AMA is currently 75% of capital charge under
standardised approach, but could be lowered.
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B Quantitative Requirements for AMA

» The bank must be able to demonstrate that the risk measure used
for regulatory capital purposes reflects a holding period of one-
year and a confidence level of 99.9 percent.

* The AMA requires historical internal loss data and exposure
indicators in a form that is consistent with the business line/event
type categories specified

* The model must be based on a minimum historical observation
period of five years. However, during an initial transition period, a
three-year historical data window might be accepted for all
business lines and event types.

‘;h Unexpected Loss and Capital
Charge

CENTRE

In N(m s?) distribution, unexpected loss = 3s

Capital Charge = 3 x Unexpected Loss » 9s

T

For ‘green zone’
market VaR models

| Too high for OpRlisk?

Unexpected Loss

'
<
<

Expected Loss 99.9% percentile Loss
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i Calculating the Capital Charge

» For each business line/risk type
IMA ORR =gamma ~ expected loss
» Assumes unexpected loss is a multiple of expected loss
» The total operational risk capital charge is the sum of all charges
over business lines and risk types
» This assumes the worst possible case, of perfect correlation
between individual risks

* The bank will be permitted to recognize empirical correlations in
operational risk losses across business lines and event types,
provided that it can demonstrate that its systems for measuring
correlations are sound and implemented with integrity

o 2%l

1SMA Gamma

“In determining the specific figure for gamma that will be applied
across banks, the Committee plans to develop an industry wide
operational loss distribution in consultation with the industry, and
use the ratio of expected loss to a high percentile of the loss
distribution (e.g. 99%)”. Basel Committee, CP2

» The rules proposed in CP2.5, which allow banks to calibrate
their own gammas, do not require that gamma should be
independent of the size of their business.

» In fact we show that the method by which expected loss is
calculated in CP2.5 implies that it is based on the binomial
model, and the logical consequence of this is that gamma will be
inversely proportional to the square root of the total number of
loss events.

» This will vary over different LOBs and also over risk types
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W Internal Measurement Approach

Risk Types
Lineof
Business Internal External Damage Employment Business Business Process
- Fraud Fraud to Practices Practices Disruption Management
Physical
Assets
Corporate
Finance

Trading and
Sales

Retail N, p, L
Banking
Commercial
Banking

Payment and
Settlements

Asset
Management

Retail
Brokerage 7

&

1SmA Binomial Model

» For a particular LOB and a particular type of risk, denote the
probability of a loss event by p and the expected loss given
event by L

» Assume the exposure indicator N = the total number of events
that are susceptible to operational losses during one year

* Assume independence between loss events. Then, the
parameters N and p and the random variable L correspond to
those of a binomial distribution B(N, p) on the states (0, L).

» The total loss is the result of N independent 'Bernoulli’ trials
where in each trial the probability of losing an amount L is p and
the probability of losing O is (1 - p).

* Then the expected total loss during the year is NpL
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1SmA Binomial Model

* In the binomial model the expected loss is m= N p L and the
standard deviation of loss is
s ={ONp@-p)]}L»LANp]ifpis small
» Capital charge = expected loss x gamma » ks
Gamma » ks/ m=k L N p] / NpL
Gamma » k / Np]

* Note 1: Np is the expected number of loss events during the
time period: Banks do not need to obtain data for N and p
separately

* Note 2: The formula shows that gamma should be low for high
frequency risks and high for low frequency risks

&

N Examples

» Example 1: If 25,000 transactions are processed in a year by a
back office, the probability of a failed transaction is 0.04 and the
expected loss given that a transaction has failed is $1000, the
expected total loss over a year is $1 million.

* Example 2: If 50 investment banking deals have been done in
one year, the probability of an unauthorized or illegal deal is
0.005 and the expected loss if a deal is unauthorized or illegal is
$4 million, then the expected total loss will also be $1 million.

10

Copyright 2001, Carol Alexander




Advanced Risk Management, |FF, January
2002

&

ISMA
CENTRE

Examples

However the distribution of the losses will be very different, so
also will the gamma factors: assume k = 4 for both risk types

Example 1: Gamma » 4 /01000 » 4/31.6 » 0.13 and so, since
expected loss is 1m$, the capital charge is only $130,000.

Example 2: Gamma » 4 /00.25 = 8, leading to a capital
requirement of $8m.

Note that the gamma (and capital charge) is 63 times larger for
the corporate finance example than for the back office
transactions processing example.

11
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ISMA
CENTRE

Extending the Binomial IMA Model

The binomial IMA model can be extended to deal with random loss
amounts (Binomial Gammas, Operational Risk, April 2001).

It may also be extended to the use of alternative loss frequency
distributions (Rules and Models, Risk Magazine, January 2002).
...and it provides a simple formula for mitigation by insurance
(Rules and Models, Risk Magazine, January 2002).

Finally, the parameter estimates may be based on Bayesian
estimation (Taking Control of Operational Risk, Futures and
Options World, December 2001)
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s Loss Variability

* Letm be the expected loss, given that the event incurs a loss
+ Let s, 2 be the variance of this loss.

L: 2
zp< "0 e@zem
0 Var(Z) =p(1-p) m2 + ps;?2» p(m2+s.2?)

1-p

e Thus

gamma» k g1 + (s /m)?]/ GNp]
» This shows that loss variability will increase the gamma factors:
but much more so for low frequency high impact risks......

13

&

i Effect of Loss Variability

» For high frequency, low impact loss events, the uncertainty
about the severity of each loss is likely to be much smaller
(compared to the expected loss) so the effect of uncertainty in
loss severity is unlikely to increase capital charges significantly.

» But, returning to the corporate finance example, the operational
loss may be highly variable; the standard deviation of the loss
could be equal to its expected value.

» Consequently the gamma and the capital charge would increase
by a factor of (1 + (s,/m)?) = C2. That is, the gamma will
increase from 8 to about 11.3 (now about 100 times larger than
the transactions processing example) and the capital charge will
reach $11.3 million.

14
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X Alternative Loss Frequency Distributions

e

Poisson Model for Gamma

» Another loss frequency distribution that can be used with the
IMA is the Poisson, with parameter | which corresponds to the
expected number of loss events in the time horizon.

Gamma=k 1+ (s,/m)3]/Q
and the capital charge will be given by the formula

km O[(L+ (s,/m)d1 ]

15

&

X Alternative Loss Frequency Distributions

» A single parameter family probably offers insufficient scope to fit
loss frequency distributions for all the different risk types and
business lines encompassed by the bank's activities.

* In that case the bank may consider using a more flexible
distribution such as the gamma distribution, which has two
parameters a and b and the density function

f(x) = x2 lexp(- x/b)/b2Ga) x > 0.
» The mean and variance of the gamma distribution are ba and

b2a respectively. Therefore if the loss frequency is gamma
distributed,

gamma=k Q1+ (s,/m)%/ Ca
and the capital charge will be given by the formula
km O[(1 + (s,/m)?) b%a ]

16
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1SMA Insurance

“It is currently of the view that if recognition of
insurance is permitted, it should be limited to those
banks that use AMA.”

“If an explicit, formulaic treatment is developed, what
standards should be in place for qualifying insurance
companies and insurance products, and what is an
appropriate formula for recognition of insurance that
is risk-sensitive but not excessively complex?”

Basel Committee CP2.5

17
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1SMA Insurance

* Insurance reduces the loss amount when the event occurs (an
amount R is recovered) but introduces a premium C to be paid
even if the event does not occur

* In the binomial model with N Bernoulli trials, an amount L — R is
lost with probability p and C is lost with probability 1.

* The expected loss is now N[p(L — R) + C] » NpL since C » pR
+ The standard deviation is now (L — R) JNp] if p is small, so
gamma » k [1 —r]/ ONp]
where r = R/L is the recovery rate

* Thus insurance will decrease gamma by an amount which
depends on recovery rate.

18
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1smA What is k?

* ks the ratio of the unexpected loss to the standard
deviation.

» For example, in the standard normal distribution and
for the 99.9% confidence level that is recommended
in CP2.5 for the LDA, k = 3.10, as can be found from
standard normal tables.

» For the binomial distribution with N = 20 and p = 0.05
(so the expected number of loss events is 1) the
standard deviation is 0.9747 and the 99.9%
percentile is 5.6818, so

k = (5.6818 - 1)/0.9747 = 4.80.

19

‘;h Dependence Between k and
Freugency

CENTRE

» In general, the value of the multiplier k depends more on the
type of risk than the type of distribution that is assumed for loss
frequency.

» High frequency risks, such as those associated with
transactions processing, should have lower multipliers than low
frequency risks, such a fraud.

» For example, using the Poisson distribution with expected
number of loss events equal to 1, the standard deviation is 1
and the 99.9% percentile is 5.84, so

k=(5.84- 1)/1 =4.84;

» But for higher frequency risks where the expected number of
loss events is, say, 20, the Poisson distribution has standard
deviation 20 and 99.9% percentile 35.714, so

k =(35.714 - 20)/ (20 = 3.51.
20

Copyright 2001, Carol Alexander




Advanced Risk Management, |FF, January
2002

Dependence Between k and
Expected Loss

1SMA
CENTRE

» The calculation of k should take expected loss into account, as
we did above.

» That is, unexpected loss is defined to be the difference between
the upper percentile loss and the expected loss.

* Normally, accountants should make special provisions in the
balance sheet to cover expected losses, so they do not need to
be taken into risk capital charges.

» But some banks do not take unexpected loss to be the
difference between the upper percentile and the expected loss,
and this will increase capital charges for low impact high
frequency risks in particular.

21

i Regulators Approach to k

» Regulators might use their approval process to
introduce a 'fudge factor' to the multiplier, as they
have done with internal models for market risk.

» They may wish to set the multiplier by calibrating the
operational risk capital obtained from this "bottom-up"
IMA approach to that determined from their "top-
down" approach.

* This is what they are attempting to do with the
multipliers (alpha and beta) for the Basic Indicator
method and the Standardized Approach to
operational risk capital measurement.
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s Summary of IMA

YT

Loss Distribution

. . . 2
Binomial (or Poisson or Gamma) m and s%

No. Loss Events Per Year

Loss Given Event 23
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15mA Conclusions of the IMA Model

e

» For each line of business and risk type:
capital charge =k~ standard deviation = gamma "’ expected loss
o)
gamma =k ~ standard deviation / expected loss
» Capital charges should increase like the square root of the size of
the business
» Capital charges should be inversely proportional to the frequency
of events:
— High frequency events should have relatively low gammas
— Low frequency events should have relatively high gammas
e Minimum data requirements:
— the expected number of loss events during the year
— the expected loss given event

24
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2. Other Advanced Measurement
Approaches

* We have seen that low frequency high impact risks will have the
largest effect on the bank's total capital charge.

» But for these risks, data are very difficult to obtain: by definition,
internal data are likely to be sparse and unreliable.

» Even for high frequency risks where there are normally plenty of
data available there will be problems following a merger,
acquisition or sale of assets.

» Operational processes would change.

» Therefore, when a bank's operations undergo a significant
change in size, it is not sufficient to simply re-scale the capital
charge by the square root of the size of its current operations.

25

1SmA Data Considerations

* When internal systems, processes and people are likely to have
changed considerably the historic loss event data would no
longer have the same relevance today

» The bank will have the option to use 'soft' data, in the form of
opinions from industry experts.

» For low frequency risks, where internal data hardly exist, the
bank may use ‘soft’ data from an external consortium, which is
available, e.g. www.moreexchange.org.

* In both cases the ‘soft’ data are not necessarily as relevant as
the bank would wish - there is trade-off between relevance and
availability of data.

» To account for this, estimation of parameters should be based
on Bayesian methods.

26
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15MA CP2.5 on External Data

In CP2.5 there is no mention of the use of expert opinions, but it is
recognized that banks may supplement their internal loss data with
the external industry loss data

R the sharing of loss data, based on consistent definitions and
metrics, is hecessary to arrive at a comprehensive assessment of
operational risk. For certain event types, banks may need to
supplement their internal loss data with external, industry loss data”

“The bank must establish procedures for the use of external data as
a supplement to its internal loss data.”

Basel Committee CP2.5

27
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i Bayesian Methods

* N may be the subject of an internal management target for
the year, but how can p and L be forecast when there is
very little ‘hard’ data?

* How can external (‘soft’) data be used in conjunction with
internal (‘hard’) data?

» Classical methods (e.g. maximum likelihood estimation)
would treat all data as the same

» Bayesian methods may be used to combine the two data
sources in the proper fashion

28
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N Bayes Rule

The Reverend Thomas
Bayes was born in London
(1702) and died in Kent
(1761).

His Essay Towards
Solving a Problem in the
Doctrine of Chances,
published posthumously in
1763, laid the foundations
for modern statistical
inference.

29
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i Classical vs Bayesian Methods

Classical Bayesian

Op Risk Op Ri_sk
applications applications
include EVT include BBNs

Assume that at any point in What is the probability of
time there is a ‘true’ value the model parameter
for a model parameter. given the data?
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N Bayes’ Rule

e

» For two events X and Y, their joint probability is the
product of the conditional probability and the
unconditional probability:

Prob(X and Y) = prob(X¥2r) prob(Y)
* Or, by symmetry:
Prob(X and Y) = prob(Y¥X) prob(X)

prob(X¥2) = [ prob(Y¥xX) / prob(Y)] prob(X)

31

&

i Example of Bayes’ Rule

e

* You are in charge of client services, and your team in
the UK has not been very reliable.

* You believe that one quarter of the time they provide
an unsatisfactory service, and that when this occurs
the probability of losing the client rises from 20% to
65%.

» Ifaclientin the UK is lost, what is the probability that
they have received unsatisfactory service from the
UK team?

32
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i Example of Bayes’ Rule

» Let X be the event ‘unsatisfactory service’ and Y be the event
‘lose the client'.
* Your prior belief is that prob(X) = 0.25.
* You also know that prob(Y¥X) = 0.65.
* Now Bayes’ Rule can be used to find prob(X¥%) as follows:
» First calculate the unconditional probability of losing the client:
prob(Y) = prob(Y and X) + prob(Y and not X)
= prob(Y¥X) prob(X) + prob (Y¥not X) prob (not X)
=0.65*0.25+0.2*0.75 = 0.3125.
» Bayes’ Rule gives the posterior probability of unsatisfactory
service given that a client has been lost as:
prob(X%2Y) = prob(Y¥X) prob(X)/prob(Y)
=0.65*0.25/0.3125 =0.52

&

i Interpretation of Bayes’ Rule

e

prob(parameters¥/gdata) = prob(dataparameters)*prob(parameters) / prob(data)

Posterior m Sample . Prior
Density Likelihood Density

Fas (@7X) 1 Ty (XYE) * T4(0)

This is how Bayesian models allow prior beliefs about the
value of a parameter, which may be very subjective, to
influence parameter estimates.
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‘h Posterior Sample - Prior
LEnTaE Density l"l Likelihood Density
el
Posterior Likelihood

The posterior is a
mixture of prior
beliefs and sample

information.

Prior

Parameter
No prior information

(uniform prior) b
posterior ° likelihood

No sample information
(uniform likelihood) b
posterior © prior

&

15MA The Effect of Prior Beliefs

e

If prior beliefs are expressed with a
great deal of certainty, Bayesian
estimates will be close to prior
expectations and they will have
small standard errors

Posterior

Prior

Likelihood Likelihood
Posterior

)

Uncertain Beliefs parameter Confident Beliefs =~ "™
36
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i Bayesian Estimation
el
Internal data
External data in form as current
of Prior density Likelihood
l function | Loss function |
Posterior — | Expected loss |
density for L
loss
probability Choose the
parameter to
minimize expected
loss
37
i Bayesian Estimators
el
Standard loss functions: Optimal estimator:

Zero-One Mode of posterior

Absolute — Median of posterior

Quadratic Mean of posterior

Maximum likelihood estimation (MLE) is a crude form
of Bayesian estimation. It is particularly odd, when viewed
from a Bayesian perspective, for estimating a probability
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‘;h Example:
Using Bayesian Estimation with the IMA

CENTRE

e

Loss Given Event

» If both 'hard' internal data and 'soft' data are available on the
distribution of losses, then Bayesian methods can be used to
estimate m and s, .

» Suppose that in the 'hard’ internal data the expected loss given
a loss event is 5m$ and the standard deviation of this loss is
2m$;

» Suppose that the 'soft' data, being obtained from an external
consortium, shows an expected loss of 8m$ and a loss standard
deviation of 3m$.

» Assuming normality of loss amounts, the prior density that is
based on external data is N(8, 9) and the sample likelihood that
is based on internal data is N(5, 4).

39

‘;h Example:
Using Bayesian Estimation with the IMA

CENTRE

» The posterior density for L will also be normal, with mean m that
is a weighted average of the prior expectation and the internal
sample mean.

» The weights will be the reciprocals of the variances of the
respective distributions.

» In fact the Bayesian estimate for the expected loss will be
i m =[(5/4) + (8/9)]/[(1/4) + (1/9)] = 5.92m$
* The Bayesian estimate of the loss variance will be
[4x9)/[(4 + 9)],
+ Thus the standard deviation of the posterioris s, = 1.66m$.
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ISMA
CENTRE

e

Example:
Using Bayesian Estimation with the IMA

Loss Frequency

Consider using a target or projected value for N - could be quite
different from its historical value.

Bayesian estimation of a probability are often based on beta
densities of the form

f(o) p p*(1- p)° O<p<1l.
Bayesian estimates for p can use beta prior densities that are
based on external data, or subjective opinions from industry
experts, or 'soft' internal data.
Sample likelihood: beta density based on ‘*hard’ data b
posterior also a beta density
Assume quadratic loss function b Bayesian estimate of p =
mean of the posterior density = (a + 1)/(a + b + 2) witha and b
being the parameters of the posterior density.

41

ISMA
CENTRE

Example:
Using Bayesian Estimation with the IMA

Example: internal data indicate that 2 out of 100 new deals
have incurred a loss due to unauthorized or fraudulent activity.

sample likelihood p p?(1- p)%

In an external database there were 10 unauthorized or
fraudulent deals in the 1000 deals recorded

prior density p pto(1- p)®°
Thus
posterior g p?(1- p)oss
With quadratic loss, Bayesian estimate of p = 13/1102 = 0.0118.

Note: great potential to massage operational risk capital charge
calculations using targets for N and Bayesian estimates for p, m
ands,.

L

42
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General Models of Loss and
Frequency Distributions

/j Simulation
l Loss Distribution l

Fat-tailed Density
(e.g. EVT)

Binomial (or Poisson or Gamma)

No. Loss Events Per Year Loss Given Event 43

&

ISMA
CENTRE

e

Low Frequency Risks

U XS Loss Distribution
Poisson Normal GPD
Costs?
‘ | | |
No. Loss Events Per Year U XS Loss GivenAEvent
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i Example: POT Model

e

Peaks Over Threshold (POT) Model:

» Magnitude of excess loss over predefined threshold is modelled
by a Generalized Pareto Distribution

» Frequency of excess loss over predefined threshold is modelled
by a Poisson process

Figure 10.2b: Peaks over Threshold

&

154 GPD

» The distribution function G, of excess losses Y = max (X - U, 0)
over a high and pre-defined threshold U has a simple relation to
the distribution F(x) of X, the underlying loss.

* For most choices of underlying distribution F(x) the distribution
G, (y) will belong to the class of generalized Pareto
distributions (GPD):

l-exp(y/b) if x=0
G, ()=
1-(1+xy/b)y¥ ifx10

O'Brien et al. (1999), Ceske and Hernandez (1999), Cruz (1999), Medova (2000),
Dempster et al. (2001) and King (2001) have explored the use of EVT for the
measurement of low frequency high impact operational risks.

46
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1EnA Effect of b and x
d
Generalized Pareto Density ( x=0) Generalized Pareto Density ( Effect of x)
01
009
008
007
006
005
004
003
002
0oL
0
0 0 0
‘— GPD (Beta=1) — GPD(Beta=2) — GPD (Beta=5) ‘ ‘ —GPD(Bela= 1, Xi=09)— GPD Bela=1 Xi- 0)‘

The parameters parameters b and x determine the scale and shape of th‘% GPD

i Case Study

d

XS Loss im%)|  Year | X5 Loss (mi) Year
714 1 22.30 9
89.79 2 2.00 9
;g-gg g 1.28 9 Historical data on loss
54 53 B gg? g (over 1m$) due to
33175 7 9.94 ] external events.
23296 7 22.M =)
43.36 7 17.36 =]
=T 5 s z Re_corded over a
24.36 g 15.41 10 period of 12 years
2.39 =] 19.23 10
150 : 18.83 10 Total capitalization of

< B0.92 10 .

EX) g o 5 banks reporting
190.74 ] g0 | 11| losses was 50bn$
6381 g 1.94 11
288 87 a 10.77 11
83.61 9 2.49 12
49 78 =} 8.81 12

Copyright 2001, Carol Alexander




Advanced Risk Management, |FF, January

2002
iea Empirical Loss Frequency
d
Frequency
4
Expected no.
: loss events per
) year = 2.4545
P Model loss
1 frequency with
Poisson density
o =8 =224 H - Jl B with | » 2.45
0 1 2 3 4 5 6 7 8 9 10 11 12
No. Events per Year
49
s Poisson Loss Frequency
d
‘I Poisson O Empirical ‘
0.4
0.3
0.2 -
0.1 -
. |
0O 1 2 3 4 5 6 7 8 9 10 11 12
No. Events per Year

50
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[ Excess Loss Distribution
d
Empirical XS Loss Density
0.25 )
Three events in
0.2 excess of 200m$
0.15 Take these actual
o1 _ amounts into
' I account for the
0.05 o ™ calculation of
O L L L L L L \I\I\I\I\I\ rrrrrrrrrrrrrrrrrrrrrr1rr1r ExpeCted XS LOSS
0 20 40 60 80 100 120 140 160 180 200 and

Stdev of XS Loss
51

&

1smA Results: IMA

» With gamma loss frequency, the IMA capital charge is:
km O[(L+(s,/mP1 ]
* Very approximately:
i m =50m$, s =100m$, | =2.45
* Thatis:
100 k €2.45 » 150 k m$
» Or, with k » 4 [???], IMA capital charge » 600m$
» This charge corresponds to a total capitalization of 50bn$
» Suppose your bank has a capitalization of 5bn$
» Then the IMA charge will be approximately 60m$

52
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Results: Simulation

J

Rand Foisson Draw | Expected Loss (99.9 Percentile Capital Charge
0GE2462  2.B8R9923962 142.82 1193.351366 105053
0B54338 2755214155 136.16 1137 724943 1001 57
0 46074 1.99166152 98.43 89224271733 724.00
0.143747  0.945053903 46.70 390.2501636 34355
0946555 53787853046 26581 2221.090986 195528
0.331269  1.562953003 7724 £45.3983305 563.16
0601285 2522015166 124 B4 1041 428369 916.79
04209 18586232354 9322 778.8915513 B35 68
026015 1.335120032 B5.98 551.3180744 485 34
014729 0957772954 47 .33 395.4931785 34817
0749638 3254813237 160.85 1344 026996 1183.18
0. 406355 1.80510547 89.40 747 0433519 657 B4
0932754 5080855772 251.09 20938064258 1846 97
53

Results: Simulation

J
Rand Foisson Draw | Expected Loss (99.9 Percentile Capital Charge

0.148154  0.960855141 56.47 4151144267 358 64
062101 2610640877 153.44 1127 863624 974.42
0863338 4126004565 242,51 1782532493 1540.03
0.053524 0.59543536 35.00 257 2450314 2005
0977436 5463399079 380.13 2794 513826 241433
0609935 2 5586E5992 150.39 1105.417785 95503
096398  B.071277312 356.84 2622 947066 226611
0559519 2353484832 138.33 1016765982 878.44
0.245314 1.290529781 75.85 557 5418695 481 69
0.258837  1.330897703 78.22 5749818443 49676
0.254341  1.316423095 7737 568.7284434 491 36
0093173 0.751282645 44 16 324 5776367 280.42
0.265299 1.3316E2604 79.44 5B83.9528126 504.51
54
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i Comparison of Results

« AMA capital charge » 400m$

» This charge corresponds to a total capitalization of 50bn$
» Suppose your bank has a capitalization of 5bn$

» Then the IMA charge will be approximately 40m$

» Source of error ...... k?

i Where do we go from here?

Subjective
Assessments

(e.g. model structure &
parameters)

Back Testing

(e.g. goodness of
fit to historic data)

Distribution

RRRREN

Scenario Analysis
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Aggregation

- Impact ®

Loss Distribution

B 3. Management of Operational Risks

» Bayesian belief networks have many applications to modelling
high frequency low impact operational risks such as the human
risks where our focus should be on improved risk management
and control procedures, rather than capital charges.

The basic structure of a Bayesian network is a directed acyclic graph

Nodes represent
random variables

Edges represent causal links
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R Bayesian Belief Networks (BBNS)

e

Advantages:

» BBNs describe the factors that are thought to influence
operational risk, thus providing explicit incentives for behavioural
modifications;

* They provide a framework for scenario analysis: to measure
maximum operational loss, and to integrate operational risk with
market and credit risk;

* Augmenting a BBN with decision nodes and utilities improves
transparency for management decisions. Thus decisions may
be based on ‘what if?’ scenarios

Limitations:

* No unique structure; a BBN is a picture of the mind of the
modeller

» Therefore BBNs require much clarity in their construction and
rigorous back testing 59

&

15mA Node Probabilities

e

Prob(good) = 0.75
Prob(bad) = 0.25

Prob(good) = 0.5
Prob(bad) = 0.5

Prob(lose) = 0.3125
Prob(win) = 0.6875

\J \J
Prob(lose) = prob(lose | T=good and M=good) prob(T=good and M=good)

+ prob(lose | T=good and M=bad) prob(T=good and M=bad)
+ prob(lose | T=bad and M=good) prob(T=bad and M=good)
+ prob(lose | T=bad and M=bad) prob(T=bad and M=bad)
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15MA Discrete and Continuous Nodes

il fin [l Vimm Crtieny Weies Delp
il || sz o5l § | SImITBE] 2
e ] I e o o e i

Faode itk |
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8 Describing the Network

e

Nodes, edges, and
probabilities are

added to model the F oy i % A =
influence of causal Tl a
factors for each P
node oE T i
The Bayesian o T af
network is B e
completed when all Pl
initial nodes can be gl e b %
assigned e
probabilities - g

62
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Example: Settlement Loss

ISMA
CENTRE
d
. L..-Fr:uul- ..:I [_._- .q;u 1
Operational (as o Ty T
opposed to credit) oy Y
settlement loss is o e
“the interest lost S G
and the fines i A .
i — .
|mpos§d as aresult e Phene e
of incorrect —r —
settlement” _,
4 &
Lo ]
" [@
1EMA Initial Probabilities
Delay Loss
BOLO FX B G565 hane - 9022 O
2000 Seasily I 518 1day : 311 0-1.000
& & 1 1.77 1.000-2 000
| 18 Idays | 150 20002880
Country | 1.84 Jedays | 1.40 30004000
[ ] 4700 Europe | 088 ddays | 131 4.000-5.000
B 5280 Asid | 172 =4ty 069 5000-10,000
Product Notional
[ | 30,00 Underhyirg ] 198 <10 Expected Loss = 239.3%
_ v 99% Tail Loss = 6,750$
i 1036 30-3
Trading | 1784 204 (per transaction)
| 17.00 OTC [ | W 405
Bl 500 Eecharge [ | 2168 »50
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‘h Scenario Analysis:

ISMA . .
Maximum Operational Loss

CENTRE

d
Assat Delay Loss
[ EEEG [ ] 5000 Mane [ ] ga70 O
- Secuily B 30.00 1day 1 9.50 0-1.000
i 1000 2 days I G0@ 1.000-2000
1 881 0003000
ey | R [ 539 30004000
e | 100 4 days i 565 4,000-5.000
0000 sis | 8.00 =4 days | 312 5000-10,000
Product Neticnal Expected Loss = 957.7$
+ Linderhing I 10,00 =10 )
B 10000 Deiivale I 500 100 99% Tail Loss = 8,400%
I ke (per transaction)
Trading m 2600 3040
[ R [ | .00 4050
- Exchango B 2500 #50
65
N Example: Number of Falls

T Hsgin LEce 503 - [ g ograes S e g nk B | BEUap i L eIl lem e s rang-aotio s Droc oss ey k]
ki fic :_,lt _n_ Hetmmrk Jakk Opiises Wielem  Hrlp

F et S T
& s ) S T ]  moawrs ) ¢ wmgaon 3
_!n}-t.e —— Y #
Crant D ~(HiEre D e
-1 1 &
E] faiuke oF o
66
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Multivariate Distributon

wrt |
0 e
T M
166300

FER--TIN
TATGE B

45 i
IMETED B

Copyright 2001, Carol Alexander




Advanced Risk Management, |FF, January
2002

&

[ BBNs for Human Risks

e

Human risk has been defined as the risk of inadequate
staffing for required activities

* Measures of human adequacy:
» Balanced Scorecard (Kaplan & Norton)
» Key Performance Indicators

» ‘Causal’ factors or ‘Attributes’:
» Lack of training
» Poor recruitment processes
» Loss of key employees
» Poor management
>

Working culture
69

&

1SmA BSC Performance Indicators

Financial

» % income paid in fines or interest penalties
Customer

» % customers satisfied with quality and timeliness
Internal processes

» % employees satisfied with work environment,
professionalism, culture, empowerment and values

Learning and growth
» % employees meeting a qualification standard

70

Copyright 2001, Carol Alexander




Advanced Risk Management, |FF, January

2002

&

ISMA
CENTRE

Key Performance Indicators

Function

Quantity Quality
Back Office Number of transactions processed Proportion of internal errors in
per day transactions processing
Middle Office Timeliness of reports

Delay in systems implementation;
IT response time

Proportion of errors in reports

Systems downtime

Front Office

Propriety traders: 'Information ratio’

Sales: Number of contacts

Proportion of ticketing errors;
Time stamp delays

Credit quality of contacts;

Customer complaints

71
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Example:
Number of Transactions Processed

ISMA
CENTRE
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1EnA Bayesian Decision Networks

)
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i Summary and Conclusions

=0
» Bayesian networks are useful in scenario analysis over the
attributes of operational risks:

— 'maximum operational loss' scenarios can be identified to help the
operational risk manager focus on the important factors that
influence operational risk.

— Scenario analysis over market and credit risk factors is useful for
the integration of operational risk measures with market and credit
risk measures

* Management of operational risks may be facilitated by the use
of a Bayesian decision network, to increase transparency of
senior management decisions: they allow the decision maker to
base choices on 'what if?' scenarios.

Note: Amongst others, Wilson (1999), Alexander (2000, 2001) and King (2001)
have advocated the use of BBNs for modelling high frequency low impact
operational risks.
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e Useful Links: Performance Measures

» hrba.org (Human Resources Benchmarking Association) and
fsbba.org (Financial Services and Banking Benchmarking
Association)

» afit.af.mil and pr.doe.gov/bsc001.htm (Balance Scorecard
meta-resource pages)

» bscol.com (Balance Scorecard Collaborative - Kaplan and
Norton) and pr.doe.gov/pmmfinal.pdf (Guide to Balance
Scorecard Methodology)

» mentorme.com/html/D-Keyperfind.html and totalmetrics.com/tr-
kpa.htm (Monitoring KPIs)

» kpisystems.com/case_studies/banking/bi_kpi_ops_values.htm
(some KPIs for banking operations)
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B Useful Links: Bayesian Networks

e

» http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html (list of free Bayesian network
software)

» dia.uned.es/~fjdiez/bayes (meta-resource page for Bayesian networks)

» research.microsoft.com/research/dtg/msbn/default.htm (MSBN a free non-
commercial Excel compatible BBN)

» hugin.dk (leading commercial BBN with free demo version Hugin Light)

» lumina.com (makers of Analytica, leading software package for quantitative
business models)

» dcs.gmw.ac.uk/research/radar (Risk Assessment and Decision Analysis
Research, QMW College London and their consultancy agena.co.uk specializing
in risk management of computer-based systems)

» genoauk.com (Operational risk consultancy firm)
» algorithmics.com (Watchdog Bayesian network product)

» eoy.co.uk (Ermst and Young Bayesian network product)
76
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B Useful Links: Bayesian Networks

e

» http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html (list of free Bayesian network
software)

» dia.uned.es/~fjdiez/bayes (meta-resource page for Bayesian networks)

» research.microsoft.com/research/dtg/msbn/default.htm (MSBN a free non-
commercial Excel compatible BBN)

» hugin.dk (leading commercial BBN with free demo version Hugin Light)

» lumina.com (makers of Analytica, leading software package for quantitative
business models)

» dcs.gmw.ac.uk/research/radar (Risk Assessment and Decision Analysis
Research, QMW College London and their consultancy agena.co.uk specializing
in risk management of computer-based systems)

» genoauk.com (Operational risk consultancy firm)
» algorithmics.com (Watchdog Bayesian network product)

» eoy.co.uk (Ermst and Young Bayesian network product)
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