
Alternative Neural Network Approach for

Option Pricing and Hedging

Andrew Carverhill

School of Business, The University of Hong Kong, Pokfulam Road, Hong Kong

Terry H.F. Cheuk

School of Business, The University of Hong Kong, Pokfulam Road, Hong Kong

Abstract

Since its introduction in 1973, the Black-Scholes model has found increasingly more
resistance in application. In order to use Black-Scholes to price any option, one needs
to know the implied volatility surface. The existence of such surface is an evidence
of misspecification of the model. In this case, the problem is with the assumption of
a geometric Brownian motion for the stock price process. There is strong empirical
evidence that stocks do not follow such process. However, no agreement has been
reached on what is the best distribution to use.

Neural Network approaches the problem very differently. Essentially, a Neural
Network is a non-parametric estimation technique. It does not make any distribu-
tional assumption regarding the underlying variable. Instead, it puts up a formula
with a set of unknown parameters and let the optimization routine search for the
parameters best fitted to the desired results. Hutchinson-Lo-Poggio (1994) showed
that it is indeed possible to use a Neural Network to price S&P futures options. In
this paper, we will continue with this line of research. Specifically, we will examine
the best way to set up and train a Neural Network for option pricing and hedging.
We will also investigate if a Neural Network could produce better hedging param-
eters than the standard option pricing model. We use S&P futures options data
covering the period 1990–2000.

Key words: Derivatives, Options, Hedging, Neural Network, Non-Parametric
Estimation

Email addresses: carverhill@business.hku.hk (Andrew Carverhill),
terrycheuk@business.hku.hk (Terry H.F. Cheuk).

Preliminary version: December 2003



1 Introduction

Neural Network has proved to be useful in a large variety of financial appli-
cations. For instance, Altman-Marco-Varetto (1994) discussed an experiment
by a large Italian commercial bank using Neural Network to assign credit rat-
ings to their corporate customers, while Trippi-Turban (1996) described other
financial applications of Neural Networks. There is also interest in applying
this technique to derivative pricing and hedging. Hutchinson-Lo-Poggio (1994)
showed Neural Networks can be used to reproduce S&P futures options prices
and confirm it can produce better hedge than Black-Scholes, Garcia-Gençay
(2000) exploited the homogeneity property of option models to improve the
performance of Neural Networks, while Meissner-Kawano (2001) found replac-
ing the implied volatility with GARCH volatility estimate improves the pricing
performance of Neural Networks.

Since its introduction in 1973, the Black-Scholes model has found increasingly
more resistance in application. In order to use Black-Scholes to price any op-
tion, one needs to know what implied volatility to use. Unfortunately, the
implied volatility is not unique per stock as assumed by the model, but it is a
function of option expiry and moneyness. That is, there is an implied volatility
surface per stock. The existence of such surface is an evidence of misspecifi-
cation of the model. In this case, the problem is with the assumption of a
geometric Brownian motion for the stock price process. There is strong empir-
ical evidence that stocks do not follow such process. However, no agreement
has been reached on what is the best distribution to use.

Neural Network approaches the option pricing and hedging problem very dif-
ferently. It does not make any assumption regarding the stochastic process
governing the underlying stock movements. Instead, it puts up a framework
with a set of unknown parameters and let the optimization routine search for
the parameters best fitted to the desired results. This process is often called
“learning” or “training”. In this paper, we will examine the best way to set
up and train a Neural Network for option pricing and hedging. A draw back
of such approach is that the resulting framework is hard to interpret, and
therefore Neural Network is often criticized as a black box method.

In reality, a Neural Network approach is not different than any other non-
parametric approach to statistical data modeling. 1 In both cases, you are
trying to limit the number of assumptions you made to the absolute mini-
mum. Then you apply an optimization procedure to find the best parameters
to reproduce the results. Hutchinson-Lo-Poggio (1994) examined three types
of Neural Networks for option pricing and hedging, including a Multilayer

1 See Ripley (1996) for a general discussion of Neural Networks and its relationship
to the mainstream non-parametric estimation methods.

2



Perceptron. They trained their Networks with option prices, while the hedge
parameters were derived from the resulting Neural Network pricing formula
by taking partial derivatives. 2

Our paper is an extension of the line of research followed by Hutchinson-Lo-
Poggio (1994). We will show in this paper that training a Neural Network to
observed option prices and subsequently deriving the hedge ratios from the
resulting pricing equation is not the best strategy. Instead, it is better to train
a Network with observed option price “changes”.

The rest of the paper is organized as follows. In section 2, we provide a brief
review of Neural Network and optimization method, and develop a Neural
Network of option price, similar to the one examined in Hutchinson-Lo-Poggio
(1994). An alternative Neural Network based on option price “changes” is
proposed in section 3, which produces the desired hedge parameters directly
without going through an option pricing formula. We will put these two Neural
Networks to a test using S&P futures options data for the period January 1990
to December 2000. Results are discussed in section 4. Section 5 contains the
conclusion.

2 Neural Network of price

As Multilayer Perceptron is by far the most popular type of Neural Network,
we will limit ourselves to such type of Network in this paper. However, results
from this research is not unique to this particular type of Network. It should
also apply for other Networks.

Neural Network and other types of Neural Networks can be seen as methods
for non-linear multiple regression analysis. A number of inputs are fed into the
system and one output is produced. A Neural Network could produce more
than one output, just like a system of simultaneous regression equations could.
There are various ways to set up a Neural Network. Our discussion is centered
on one-hidden-layer Multilayer Perceptron (MLP), as it is by far the most
applied in practice and in research. MLP is also known as Backpropagation
Network. Actually this name is linked to the optimization technique used in
the very first Neural Network. Backpropagation is basically a gradient decent
method. But one is free to choose another optimization technique in a MLP.
Hornik-Stinchcombe-White (1989) showed that that a one-hidden-layer MLP
could approximate a large class of linear and nonlinear functions with arbitrary
precision. Therefore, our set up does not constitute a restriction.

2 Choi-Marcozzi (2001), Garcia-Gençay (2000), and Meissner-Kawano (2001) also
trained their Neural Networks with option prices.

3



Input nodes Hidden nodes Output node

x
1

x
3

x
2

x
4

H
1
 

H
2
 

H
3
 

O

Fig. 1. Multilayer Perceptron of price

Figure 1 describes the MLP model with the option price as output. There are
four inputs. They are strike/price, interest rate, implied volatility, and expiry.
Note, we do not use both the strike and the underlying price as inputs, but
use the ratio strike/price instead. As option price is homogenous of degree
one with respect to the underlying asset price and the strike, we can scale the
model by the price and save one input parameter. This improves estimation
performance. We have tried different number of hidden nodes in our research.
From our experience, three hidden nodes are performing quite well already.
More hidden nodes will slow down the optimization without significant error
reduction. In this Network, there is only one output node, which is the option
price.

Input nodes do not perform any processing. All the inputs will be fed into the
hidden nodes, which are processed by the so-called sigmoid function f(x):

f(x) =
1

1 + exp(g(x))
(1)

with

g(x) =
n∑

i=1

wixi + w0 (2)

Here, x is the vector of xi, with xi denoting the input variables, while wi

the weights. The sigmoid function in the hidden nodes and the output node

4



are the same. This sigmoid function is standard in Neural Network models,
although alternative sigmoid functions are occasionally being used. 3 For the
hidden nodes, we have n = 4, as there are four inputs coming from the input
nodes. The sigmoid function at the output node has three inputs only, that is
n = 3, as there are three hidden nodes feeding into the output node.

Training a Neural Network is to minimize the regression error, by choosing a
set of weights in the hidden nodes and the output node. We define the regres-
sion error as the sum of squared error between model option prices produced
by the Network and the observed option prices. Historically, Multilayer Per-
ceptron are solved using gradient decent as this is the optimization being used
in the very first Neural Network. Many of today’s Neural Network systems
are still using this method. We decided to use a more advanced optimiza-
tion technique called Levenberg-Marquardt, which is developed by Marquardt
(1963). This method is similar to gradient decent when it is far away from
the optimum, but it utilizes the inverse of the Hessian whenever the opti-
mizer came near to the optimum, which results in a faster convergence. 4 A
Neural Network has many parameters, so that the Hessian matrix does not
necessarily has the full rang. In our implementation we used Singular Value
Decomposition (SVD) to invert the Hessian matrix. SVD is known to work
with ill-conditioned matrices. 5 Once the model has been trained with actual
option prices, hedge parameters can be derived from the sigmoid function at
the output node, by taking the partial derivatives, as the output node is the
Neural Network option pricing equation.

The formulas of this Network and the derivation of delta and vega are given
below.

We number all the weights in all the hidden and output nodes consecutively, so
that it fit into a vector, it will facilitate the implementation of the optimization
routine. We now only need to optimize over one vector, in stead of many
different vectors or variables. p0− p4 are the weights in the first hidden node,
H1, p5−p9 belongs to second hidden node, H2, p10−p14 belongs to the third
hidden node, H3, and p15− p18 are from the output node, O. x1− x4 are the
four inputs strike/futures, interest rate, implied volatility, and expiry.

The value of H1 to H3 is given by the sigmoid function:

H1 =1/(1 + A) (3)

H2 =1/(1 + B) (4)

3 A sigmoid function increases monotonically from 0 to 1, over entire real line.
4 The Hessian is the matrix of second order partial derivatives.
5 See Press et al. (2002) for an implementation of Levenberg-Marquardt and Sin-
gular Value Decomposition.

5



H3 =1/(1 + C) (5)

with,

A =exp(−p0 − p1 x1 − p2 x2 − p3 x3 − p4 x4) (6)

B =exp(−p5 − p6 x1 − p7 x2 − p8 x3 − p9 x4) (7)

C =exp(−p10 − p11 x1 − p12 x2 − p13 x3 − p14 x4) (8)

(9)

The value of output node O s given by the sigmoid function applied on the
values at from H1, H2, and H3:

O = 1/(1 + D) (10)

with,

D = exp (−p15 − p16 H1 − p17 H2 − p18 H3) (11)

The option price P̂ is given by the output node O:

P̂ = OX (12)

with X the strike.

Taking the partial derivative of the model option price function with respect
to the futures price, we have equation for delta:

D̂ =
D

(
A p1 p16

(1+A)2
+ B p6 p17

(1+B)2
+ C p11 p18

(1+C)2

)

(1 + D)2 (13)

with F being the futures price.

Similarly, taking the partial derivative with respect to implied volatility gives
the equation for vega:

V̂ =
D X

(
A p3 p16

(1+A)2
+ B p8 p17

(1+B)2
+ C p13 p18

(1+C)2

)

(1 + D)2 (14)

There are 19 parameters for this model, p0 − p18.

6



Input nodes Hidden nodes Output nodes

x
1
 

x
2

x
3
 

x
4

H
1
 

H
2
 

H
3
 

O
1
 

O
2
 

Fig. 2. Multilayer Perceptron of delta/vega

3 Neural Network of delta and vega

Although it is possible to derive the hedge parameters analytically from the
sigmoid function at the output node from the previous setup, there is no
guarantee that the resulting hedge ratios are reasonable. In stead of having
one output node for the price, we are proposing to have two nodes, one for the
delta and one for the vega. Delta and vega are the most important hedge ratios
for options. In practice, traders are monitoring these two hedging parameters
for their option books closely.

Figure 2 described the new setup for the Neural Network. Everything is the
same as in the previous case, except there are now two output nodes (delta
and vega), in stead of one (price). The training of this Network is a bit more
involved as we can not minimize the model delta and vega with the observed
delta and vega — hedge parameters are not observable. However, as hedge
ratios predict price changes, they can be derived from option price movements.

∆Pt = D̂t ∆St + V̂t ∆IVt + εt (15)

where ∆Pt = Pt+1 − Pt is the change in option price, ∆St = St+1 − St is
the futures price change, and ∆IVt = IVt+1 − IVt is the change in implied
volatility for the at-the-money option, at time t. Implied volatility are can
be calculated using Black-Scholes model for European Options or Cox-Ross-
Rubinstein (1979) model for American options. D̂t and V̂t are the delta and

7



vega hedge parameter estimated using data available at time t. εt is residual
term, which captures all the factors not included in the model. The model is
always using information observable at any point in time to forecast the price
movement in the next period.

The formulas for the Neural Network of delta and vega is presented below.

Again, we number all the weights consecutively, so that it fit into a vector,
which facilitates the implementation of the optimization routine. p0 − p4 are
the weights in the first hidden node, H1, p5 − p9 belongs to second hidden
node, H2, p10 − p14 belongs to the third hidden node, H3, while p15 − p18
are from first output node, O1, and p19 − p22 from second output node, O2.
x1−x4 are the four inputs strike/futures, interest rate, implied volatility, and
expiry.

The value of H1 to H3 is the same as in the previous model:

H1 =1/(1 + A) (16)

H2 =1/(1 + B) (17)

H3 =1/(1 + C) (18)

with,

A =exp(−p0 − p1 x1 − p2 x2 − p3 x3 − p4 x4) (19)

B =exp(−p5 − p6 x1 − p7 x2 − p8 x3 − p9 x4) (20)

C =exp(−p10 − p11 x1 − p12 x2 − p13 x3 − p14 x4) (21)

(22)

There are two output nodes. The value of output nodes O1 and O2 are given
by the sigmoid function applied on the values at from H1, H2, and H3:

O1 =S/(1 + D) (23)

O2 =X/(1 + E) (24)

with,

D = exp (−p15 − p16 H1 − p17 H2 − p18 H3) (25)

E = exp (−p19 − p20 H1 − p21 H2 − p22 H3) (26)

O1 is the delta, while O2 is the vega:

8



D̂ = O1 (27)

V̂ = O2 (28)

S is the sign for the delta function, it is 1 for a call, and −1 for a put. X is the
strike level. It is added here for the scaling. As the model uses futures/strike
as an input, the resulting vega need to be re-scaled back to the strike level.
There are 23 parameters, p0 − p22. That is, four more parameters than the
previous model, as there are two output functions.

4 Applied to S&P futures options data

We use the CME futures and associated options on the S&P500 index. These
futures contracts trade on a cycle with maturities in March, June, September
and December, and each contract matures on the third Friday of the month.
Each futures contract is associated with an option, which matures on the same
day as the future, and two “serial” options, which mature one and two months
earlier than the futures contract. We will restrict our attention to the non-
serial options, for simplicity, and because these options are much more heavily
traded, and at longer maturities, than the serial options. The options are paid
for when they are purchased, and the position is marked to market daily. On
exercise, the final mark-to-market is performed and the underlying futures
contract is delivered. The delivered futures has no value on delivery as it is
also marked to the market. That is, its strike equals the futures settlement
price. To value these options, one should replace the dividend yield by the
interest rate. Both puts and calls are sometimes optimally exercised early.

Our data is purchased from the Futures Industry Institute, in Washington, DC.
It covers an eleven year period of daily data from January 1990 to December
2000. Daily data are known to exhibit the day-of-the-week effect. Monthly data
might be a better choice, but then there are only 132 months in eleven years.
Also, one month is much too long a period for any option hedging program.
Although the day-of-week effect on futures prices might be small, the effect on
options could be very large, as near-the-money options are very sensitive to
changes in the underlying futures price. And near-the-money options are the
most actively traded ones. To balance between seasonality effects and power
of the test, we decided to use only the weekly data. There are 573 weeks in
the period covered. We will work with settlement prices, which are based on
the option prices during the closing period of the day’s trading. These prices
are likely to be very reliable, because the daily margining is based on them,
and so they are scrutinized closely by the market participants.

We also need US dollar interest rates. We use BBA-LIBOR data for matu-

9



rity one week, one month and three months. We use settlement prices of the
Eurodollar futures for interest rate maturing longer than three months. Eu-
rodollar futures are also on a maturity cycle of March, June, September, and
December. Eurodollar contracts is the most actively exchange traded prod-
uct, with contracts trading up to an expiry of 10 years. BBA-LIBOR data
are sourced from Datastream, while Eurodollar futures data are from Futures
Industries Institures. With these data, a interest rate curve is constructed
each day, then the rate for the required maturity is interpolated. Convexity
correction for the Eurodollar data is ignored. This is not a restriction, as we
are examining the two nearest to maturity option contracts, which could be at
most six months away. Any convexity adjustment will be too small to have an
effect. During the interest rate curve construction, care is taken with regard
to the relevant day count convention.

We are estimating the model with the two option series simultaneously – The
nearest to maturity option series, and the next nearest. Each of these series
could have a different implied vol. As calls and puts do not necessarily have the
same dynamics, we will construct one model for the calls and one for the puts.
In total, we will estimate four set of parameters, for the nearest maturing call,
nearest maturing put, the next-nearest maturing call, and the next-nearest
maturing put. Results of these estimation will be used at the end of this
section to construct a hedged portfolio to compare with that constructed using
standard option pricing formula.

In the optimization for the parameters, we do not only take the current option
prices (or price changes) into consideration. We use the full history of weekly
data, exponentially weighted. The weight λ is chosen to reflect a half-time of
thirteen weeks, or three months. That is, λ13 = 1/2, or λ = 0.9481. Therefore,
recent data has a larger impact that older data, and data from thirteen weeks
ago has half the impact as this week’s data. The model is estimated using
data for the period January 1990 to December 2000, while the hedge return is
calculated over 1991 - 2000. So that, the estimation would at least cover one
full year of weekly data.

The objective function for the Neural Network of option price is:

min
wi

∑
s,m,k

λt−s
(
Ps(m, k) − P̂s

)2
(29)

Current time is t, which is an index for the week. Ps(m, k) is the observed
option price with maturity m, and moneyness k, at time s. The minimization
is performed over all the weights, wi, in all the hidden and output nodes. P̂s

is the model option price, which is a function of all the weights in the hidden
and output nodes and the xi value in the four input nodes.

10



1000 1200 1400 1600 1800
0

50

100

150

200

250

300
Call Near

strike

pr
ic

e

1000 1200 1400 1600 1800
0

50

100

150

200

250

300
Put Near

strike

pr
ic

e

1200 1400 1600 1800
0

50

100

150

200

250

300
Call Far

strike

pr
ic

e

1200 1300 1400 1500 1600 1700
0

50

100

150

200

250
Put Far

strike

pr
ic

e

Fig. 3. Multilayer Perceptron of price - observed option prices (+) versus model
option prices (o). “Put Near” is the nearest to maturity put option, while “Put
Far” is the next nearest to maturity put option. Similar for calls.

As delta and vega are not observable, the objective function for the Neural
Network of delta and vega is more involved:

min
wi

∑
s,m,k

λt−s
(
∆Ps(m, k) − D̂s ∆Fs(m) − V̂s ∆IVs(m)

)2
(30)

Current time is t, which is an index for the week. ∆Ps(m, k) = Ps+1(m, k) −
Ps(m, k) is the option price change with maturity m, and moneyness k, at
time s. ∆Fs(m)s = Fs+1(m)−Fs(m) is the price change for the corresponding
futures contract at time s, which also has maturity m. ∆IVs(m) = IVs+1(m)−
IVs(m) is the change in the implied volatility for the at-the-money options,
with maturity m, at time s. In practice, call and put options do not have
exactly the same implied volatility, but they are very close. Therefore, IVs(m)
is the average implied volatility for the at-the-money call and put options.
The objective function is optimized over all the weights, wi, in the hidden and
output nodes. D̂s and V̂s are functions of the all the weights in the hidden and
output nodes and the xi value in the four input nodes.

Figure 3 showed the fitted option prices versus observed option prices on July
5, 2000, calculated by the Neural Network of option price. Recall that the

11



0
0.5

1

−0.2

0

0.2
0

0.5

1

expiry

Call Delta

X/F−1 0
0.5

1

−0.5

0

0.5
0

10

20

expiry

Call Vega

X/F−1

0
0.5

1

−0.2

0

0.2
−2

−1

0

expiry

Put Delta

X/F−1 0
0.5

1

−0.5

0

0.5
−100

−50

0

50

expiry

Put Vega

X/F−1

Fig. 4. Multilayer Perceptron of price - hedge parameters

optimization is performed over one year of weekly data, while there are 19
parameters in this model, and 23 in the Network model of Delta and Vega.
As there are more data than parameters, the fit on any one day might not be
exact. However, this also prevents model overfitting. The fit is actually quite
good.

Figure 4 and 5 are hedge ratios derived from the two different Neural Networks.
Both figures are drawn for the estimated parameter as of July 5, 2000. This is a
typical day. Figure 4 shows the hedge ratios derived from the Neural Network
of option price. Delta for deep out-of-the-money options look rather strange
and it is sloping downward with decreasing moneyness, in stead of flattening
out. Similar pattern for the Call Delta has been reported in Hutchinson-Lo-
Poggio (1994). On the other hand, vega does not seem to increase noticeably
with increasing expiry. This is in sharp contrast to Figure 5 for the ratios
derived from the Neural Network of delta and vega. Here, Delta surface looks
a lot more familiar, and it is more steep for near expiry options than longer
lived ones, while vega shows a significant increase with expiry, as expected.

Using the Network model, the formula for the predicted option price changes
as a function of changes in futures price and implied volatility is:

D̂s ∆Fs(m) + V̂s ∆IVs(m) (31)

12



0
0.5

1

−0.2

0

0.2
0

0.5

1

expiry

Call Delta

X/F−1 0
0.5

1

−0.5

0

0.5
0

10

20

30

expiry

Call Vega

X/F−1

0
0.5

1

−0.2

0

0.2
−1

−0.5

0

expiry

Put Delta

X/F−1 0
0.5

1

−0.5

0

0.5
0

10

20

30

expiry

Put Vega

X/F−1

Fig. 5. Multilayer Perceptron of delta/vega - hedge parameters

with D̂s being the Network delta function at time s, and V̂s the Network vega
function, ∆Fs is the changes of underlying futures price, and ∆IVs is the
changes in the at-the-money implied volatility as calculated by a 200 steps
Cox-Ross-Rubinstein model for American options.

Figure 6 show the actual option price changes versus the option price changes
predicted by the Network of price. Compare Figure 6 with Figure 7 of the
actual option price changes versus the option price changes predicted by the
Network of Delta and Vega. Some difference in performance is to be expected,
as the latter model is explicitly optimized over the delta and vega, while the
former is optimized over option prices. However, the extent of the difference
is rather large.

As a last test, we calculate the cumulative hedge return with both networks,
and also for that with Black-Scholes hedge parameters. As S&P experienced
a very sharp increase over the period under consideration, we need to take
proper care in the construction of our test portfolio. Otherwise, the more
recent years’ hedge results will overshadow the earlier years’ results. In the
delta neutral portfolio, we have a combination of at-the-money put (or call)
option and one dollar notional value of the underlying futures contract. The
amount of options is so chosen to neutralize the delta of the futures, while it
would have an exposure in vega. Similarly, for the delta-vega neural portfolio,

13



1000 1200 1400 1600 1800
−10

0

10

20

30

40
Call Near

strike

pr
ic

e 
ch

an
ge

1000 1200 1400 1600 1800
−50

−40

−30

−20

−10

0
Put Near

strike

pr
ic

e 
ch

an
ge

1200 1400 1600 1800
0

5

10

15

20

25

30
Call Far

strike

pr
ic

e 
ch

an
ge

1200 1300 1400 1500 1600 1700
−30

−25

−20

−15

−10

−5

0
Put Far

strike

pr
ic

e 
ch

an
ge

Fig. 6. Multilayer Perceptron of price - observed option price changes (+) versus
hedged returns (o). “Put Near” is the nearest to maturity put option, while “Put
Far” is the next nearest to maturity put option. Similar for calls.

we combined a one dollar notional value of underlying futures contract both at-
the-money put and call options such that delta and vega of the total portfolio
are neuralized. Such construction ensures that each day’s hedging result has an
equal impact. Every time we will use the nearest to maturity futures contract
and its corresponding options. We bought the portfolio on day one, and sell
it one week later. Buy another portfolio and sell it the week after. When the
nearest maturity is less than 14 calendar days, we will switch to the next
maturity, in order to maintain market liquidity. Funding costs/revenues are
included in the results. Transaction costs are ignored.

We only use at-the-money options in this test, as away-from-the-money options
exhibit “smirk”, also known as “smile”, which is stochastic. Doing delta and
vega hedging is not sufficient for away-the-money options, as this strategy
does not take changes in the smirk into consideration. The smirk in S&P 500
futures options is examined in Carverhill-Cheuk-Dyrting (2002).

Results from the cumulative hedging test are listed in Table 1. Cox-Ross-
Rubinstein is losing money for all three portfolios, while both Networks are
making money in Delta-Vega Neural, and the Delta-Neural Call portfolios. Of
course, both gain and losses indicate hedging error. However, the cumulative
hedging gains are statistically insignificant, as the corresponding standard

14



1000 1200 1400 1600 1800
−10

0

10

20

30

40
Call Near

strike

pr
ic

e 
ch

an
ge

1000 1200 1400 1600 1800
−35

−30

−25

−20

−15

−10

−5

0
Put Near

strike

pr
ic

e 
ch

an
ge

1200 1400 1600 1800
0

5

10

15

20

25

30
Call Far

strike

pr
ic

e 
ch

an
ge

1200 1300 1400 1500 1600 1700
−30

−25

−20

−15

−10

−5

0
Put Far

strike

pr
ic

e 
ch

an
ge

Fig. 7. Multilayer Perceptron of delta/vega - observed option price changes (+)
versus hedged returns (o). “Put Near” is the nearest to maturity put option, while
“Put Far” is the next nearest to maturity put option. Similar for calls.

Delta-Vega Neutral Delta Neutral Call Delta Neutral Put

mean std dev mean std dev mean std dev

Cox-Ross-Rubinstein -.07 1.8 -.08 2.5 -.07 3.7

MLP (price) .12 2.1 .59 5.1 -.81 8.5

MLP (delta/vega) .02 1.4 .56 4.6 -.84 7.8
Table 1
Cumulative Returns from Hedged Portfolios.

deviations are large. Now, let’s turn our attention to the standard deviations.
If the hedging gains and losses are negligible, the strategy with the lowest
standard deviation should be a better hedging tool.

For both delta neutral call and put portfolios, using Cox-Ross-Rubinstein
delta estimate results in the smallest standard deviation. That is, Cox-Ross-
Rubinstein gives a better hedge when you only care about delta. However,
it is not a fair comparison for the Neural Network of delta/vega, because it
is constructed to minimize the hedging error resulting from both delta and
vega. For the delta-vega neutral portfolio, we see that the Neural Network of
delta/vega has the lowest standard deviation for hedging error. It is also lower

15



than standard deviation of two delta neural portfolios, as delta neutral portfo-
lio is far from riskless — it has vega risk. The Neural Network of option price is
always inferior to the Network of delta/vega for all three test portfolios. Also,
the Neural Network of price is performing worse than Cox-Ross-Rubinstein. 6

5 Conclusion

We have examined two different methods to set up a Neural Network for
option pricing and hedging. As the accuracy of hedging parameters are of
paramount importance to traders in practice, it is advisable to set up the
system to give delta and vega directly, in stead of deriving from the sigmoid
function for the price. However, a Neural Network of delta/vega does not
produce option price as an output. For practical use, we suggest to construct
a Neural Network model with three output nodes: option price, delta and vega,
with option price calibrated to observed option prices, while delta and vega
calibrated to observed option price changes. Our results also showed that a
Neural Network of delta/vega produces better hedging parameters than the
standard Cox-Ross-Rubinstein model for American options.

References

Altman, E.I., G. Marco, and F. Varetto, 1994, “Corporate distress diagno-
sis: Comparisons using linear discriminant analysis and neural networks”,
Journal of Banking and Finance 18, 505–529.

Black, F., and M. Scholes, 1973, “The pricing of options and corporate liabil-
ities”, Journal of Political Economy 81, 637–659.

Carverhill, A., T.H.F. Cheuk, and S. Dyrting, 2002, “The Price of the Smirk:
Returns to Delta and Vega Neutral Portfolios of S&P500 Futures Options”,
Working paper, University of Hong Kong.

Cox, J.C., S.A. Ross, and M. Rubinstein, 1979, “Option Pricing: A Simplified
Approach”, Journal of Financial Economics 7, 229–263.

Garcia, R., and R. Gençay, 2000, “Pricing and Hedging Derivative Securities
with Neural Networks and a Homogeneity Hint”, Journal of Econometrics
94, 93-115.

Hornik, K., M. Stinchcombe, and H. White, 1989, “Multi-Layer Feedforward
Networks are Universal Approximators”, Neural Networks 2, pp. 359–366.

6 This is consistent with Hutchinson-Lo-Poggio (1994), where Neural Network is
reported to perform worse than Black-Scholes in terms of Delta Hedging for short-
term near-the-money options, in table XVI.

16



Hutchinson, J.M., A.W. Lo, and T. Poggio, 1994, “A Nonparametric Ap-
proach to Pricing and Hedging Derivatives Securities Via Learning Net-
works”, Journal of Finance 49, 851–889.

Marquardt, D.W., 1963, “An algorithm for least-squares estimation of nonlin-
ear parameters”, Journal of the Society for Industrial and Applied Mathe-
matcs 11, 431-441.

Meissner, G., and N. Kawano, 2001, “Capturing the Volatility Smile of Options
on High-Tech Stocks–A Combined GARCH-Neural Network Approach”,
Journal of Economics and Finance 25, pp. 276-292.

Press, W.H., S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, 2002, “Nu-
merical Recipes in C++”, 2nd Edition, Cambridge University Press.

Ripley, B.D., 1996, “Pattern Recognition and Neural Networks”, Cambridge
University Press.

Trippi, R.R., and E. Turban, 1996, “Neural Networks in Finance and Invest-
ing”, 2nd Edition, Irwin.

17


