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Abstract. We introduce an asset-allocation framework based on

the active control of the value-at-risk of the portfolio. Within

this framework, we compare two paradigms for making the allo-

cation using neural networks. The first one uses the network to

make a forecast of asset behavior, in conjunction with a tradi-

tional mean-variance allocator for constructing the portfolio. The

second paradigm uses the network to directly make the portfolio

allocation decisions. We consider a method for performing soft

input variable selection, and show its considerable utility. We use

model combination (committee) methods to systematize the choice

of hyperparemeters during training. We show that committees us-

ing both paradigms are significantly outperforming the benchmark

market performance.

1. Introduction

In finance applications, the idea of training learning
algorithms according to the criterion of interest (such
as profit) rather than a generic prediction criterion, has
gained interest in recent years. In asset-allocation tasks,
this has been applied to training neural networks to di-
rectly maximize a Sharpe Ratio or other risk-adjusted
profit measures [1, 3, 10].

One such risk measure that has recently received con-
siderable attention is the value-at-risk (VaR) of the port-
folio, which determines the maximum amount (usually
measured in e.g. $) that the portfolio can lose over a
certain period, with a given probability.

Although the VaR has been mostly used to estimate
the risk incurred by a portfolio [7], it can also be used to
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actively control the asset allocation task. Recent appli-
cations of the VaR have focused on extending the classi-
cal Markowitz mean–variance allocation framework into
a mean–VaR version; that is, to find an efficient set of
portfolios such that, for a given VaR level, the expected
portfolio return is maximized [4, 11].

In this paper, we investigate training a neural net-
work according to a learning criterion that seeks to max-
imize profit under a VaR constraint, while taking into
account transaction costs. One can view this process
as enabling the network to directly learn the mean–VaR
efficient frontier, and use it for making asset allocation
decisions; we call this approach the decision model.
We compare this model to a more traditional one (which
we call the forecasting model), that uses a neural net-
work to first make a forecast of asset returns, followed
by a classical mean–variance portfolio selection and VaR
constraint application.

2. Value at Risk

2.1. Assets and Portfolios. In this paper, we consider
only the discrete-time scenario, where one period (e.g. a
week) elapses between times t − 1 and t, for t ≥ 0 an
integer. By convention, the t-th period is between times
t− 1 and t.

We consider a set of N assets that constitute the basis
of our portfolios. Let Rt be the random vector of simple
asset returns obtained between times t−1 and t. We shall
denote a specific realization of the returns process—each
time made clear according to context—by {rt}.
Definition 1. A portfolio xt defined with respect to a
set of N assets is the vector of amounts invested in each
asset at a time t given:

(1) xt = (x1t, x2t, . . . , xNt)′,

where xit ∈ R and −∞ < xit <∞.

(We use bold letters for vectors or matrices; the ′ rep-
resents the transpose operation.)

The amounts xit are chosen causally: they are a func-
tion of the information set available at time t, which we
denote by It. These amounts do not necessarily sum to
one; they represent the net position (in e.g. $) taken in
each asset. Short positions are allowed.

The total return of the portfolio xt−1 during the
period t is given by Rt = x′t−1Rt.
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2.2. Defining Value at Risk.

Definition 2. The value-at-risk (VaR) with probabil-
ity α of the portfolio xt−1 over period t is the value
Vt ≥ 0 such that:

(2) Pr[R′txt−1 < −Vt | It−1] = 1− α.

The VaR of a portfolio can be viewed as the maximal
loss that this portfolio can incur with a given probability
α, for a given period of time. The VaR reduces the risk
to a single figure: the maximum amount Vt that the
portfolio can lose over one period, with probability α.

2.3. The Normal Approximation. The value at risk
Vt of a portfolio xt−1 is not a quantity that we can gen-
erally measure, for its definition (2) assumes a complete
knowledge of the conditional distribution of returns over
period t. To enable calculations of the VaR, we have to
rely on a model of the conditional distribution; the model
that we consider is to approximate the conditional dis-
tribution of returns by a normal distribution.1

2.3.1. One-Asset Portfolio. Let us for the moment con-
sider a single asset, and assume that its return distribu-
tion over period t, conditional on It−1, is

(3) Rt ∼ N (µt, σ2
t ), σ2

t > 0,

which is equivalent to

(4) Pr[Rt < rt | It−1] = Φ
(

rt − µt
σt

)
,

where Φ(·) is the cumulative distribution function of the
standardized normal distribution, and µt and σ2

t are re-
spectively the mean and variance of the conditional re-
turn distribution.

According to this model, we compute the α–level VaR
as follows: let xt−1 be the (fixed) position taken in the
asset at time t − 1. We choose rt = σtΦ−1(1 − α) + µt
that we substitute in the above equation, to obtain

(5) Pr[Rt < σtΦ−1(1− α) + µt | It−1] = 1− α,

whence
(6)
Pr[Rtxt−1 < (σtΦ−1(1− α) + µt)xt−1 | It−1] = 1− α,

1This model supposes that the portfolio return can be reason-
ably well approximated by a normal distribution, which is the case
for, e.g., stock portfolios and relatively long horizons; however, this
approximation loses its validity for many types of derivative secu-
rities, including options, or short-horizon portfolios.

and, comparing eq. (2) and (6),

Vt = −(σtΦ−1(1− α) + µt)xt−1

= (σtΦ−1(α)− µt)xt−1,(7)

using the fact that Φ−1(1 − α) = −Φ−1(α) from the
symmetry of the normal distribution.

2.3.2. Estimating Vt. Let µ̂t and σ̂t be estimators of the
parameters of the return distribution, computed using
information It−1. (We discuss below the choice of esti-
mators.) An estimator of Vt is given by:

(8) V̂t = (σ̂tΦ−1(α)− µ̂t)xt−1.

If µ̂t and σ̂t are unbiased, V̂t is also obviously unbiased.

2.3.3. N -Asset Portfolio. The previous model can be ex-
tended straightforwardly to the N -asset case. Let the
conditional distribution of returns be

(9) Rt ∼ N (µt,Γt),

where µt is the vector of mean returns, and Γt is the co-
variance matrix of returns (which we assume is positive-
definite). Let xt−1 the fixed positions taken in the assets
at time t − 1. We find the α-level VaR of the portfolio
for period t to be

(10) Vt = Φ−1(α)
√

x′t−1Γt xt−1 − µ′t xt−1.

In some circumstances (especially when we consider
short-horizon stock returns), we can approximate the
mean asset returns by zero. Letting µt = 0, we can
simplify the above equation to

(11) Vt = Φ−1(α)
√

x′t−1Γt xt−1.

We can estimate Vt in the N -asset case by subsituting
estimators for the parameters in the above equations.
First, for the general case,

(12) V̂t = Φ−1(α)
√

x′t−1Γ̂t xt−1 − µ̂′t xt−1,

and when the mean asset returns are zero,

(13) V̂t = Φ−1(α)
√

x′t−1Γ̂t xt−1.

2.4. The VaR as an Investment Framework. The
above discussion of the VaR took the “passive” viewpoint
of estimating the VaR of an existing portfolio. We can
also use the VaR in an alternative way to actively control
the risk incurred by the portfolio. The asset-allocation
framework that we introduce to this effect is as follows:
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©1 At each time-step t, a target VaR Ṽt+1 is set (for
example by the portfolio manager). The goal of our
strategy is to construct a portfolio xt having this
target VaR.

©2 We consult a decision system, such as a neural net-
work, to obtain allocation recommendations for the
set of N assets. These recommendations take the
form of a vector yt, which gives the relative weight-
ings of the assets in the portfolio; we impose no con-
straint (e.g. positivity or sum-to-one) on the yit.

©3 The recommendation vector yt is rescaled by a con-
stant factor (see below) in order to produce a vector
xt of final positions (in dollars) to take in each asset
at time t. This rescaling is performed such that the
estimator V̂t+1|t (computed given the information set
It) of the portfolio VaR over period t + 1 is equal to
the target VaR, Ṽt+1.

©4 Borrow the amount
∑N
i=1 xit at the risk-free rate r0t

and invest it at time t in the portfolio xt for exactly
one period. At the end of the period, evaluate the
profit or loss (using a performance measure explained
shortly.)

It should be noted that this framework differs from a
conventional investment setting in that the profits gen-
erated during one period are not reinvested during the
next. All that we are seeking to achieve is to construct,
for each period, a portfolio xt that matches a given tar-
get VaR Ṽt+1. We assume that it is always possible to
borrow at the risk-free rate to carry out the investment.

We mention that a framework similar to this one is
used by at least one major Canadian bank for parts of
its short-term asset management.

2.5. Rescaling Equations. Our use of the VaR as an
investment framework is based on the observation that
a portfolio with a given target VaR Ṽt+1 can be con-
structed by homogeneously multiplying the recommen-
dations vector yt (which does not obey any VaR con-
straint) by a constant:

(14) xt = βt yt,

where βt ≥ 0 is a scalar. To simplify the calculation
of βt, we make the assumption that the asset returns
over period t+1, follow a zero-mean normal distribution,
conditional on It:

(15) Rt+1 ∼ N (0,Γt+1),

with Γt+1 positive-definite. Then, given a (fixed) recom-
mendations vector yt, ‖yt‖ > 0, the rescaling factor is

given by

(16) βt =
Ṽt+1

Φ−1(α)
√

y′t Γt+1 yt
.

It can be verified directly by substitution into eq. (11)
that the VaR of the portfolio xt given by eq. (14) is
indeed the target VaR Ṽt+1.

2.5.1. Estimating βt. In practice, we have to replace the
Γt+1 in the above equation by an estimator. We can
estimate the rescaling factor simply as follows:

(17) β̂t =
Ṽt+1

Φ−1(α)
√

y′t Γ̂t+1 yt
.

Unfortunately, even if Γ̂t+1 is unbiased, β̂t is biased in
finite samples (because, in general for a random variable
X > 0, E[1/X ] 6= 1/ E[X ]). However, the samples that
we use are of sufficient size for the bias to be negligible.
[2] provides a proof that β̂t is asymptotically unbiased,
and proposes another (slightly more complicated) esti-
mator that is unbiased in finite samples under certain
assumptions.

2.6. The VaR as a Performance Measure. The VaR
of a portfolio can also be used as the risk measure to eval-
uate the performance of a portfolio. The performance
measure that we consider for a fixed strategy S is a sim-
ple average of the VaR-corrected net profit generated
during each period (see e.g. [7], for similar formulations):

(18) WS =
1
T

T∑
t=1

WS
t ,

where WS
t is the (random) net profit produced by strat-

egy S over period t (between times t−1 and t), computed
as follows (we give the equation for Wt+1 to simplify the
notation):

(19) WS
t+1 =

(Rt+1 − ι r0t)′xSt + losst
Vt+1

,

The numerator computes the excess return of the port-
folio for the period (over the borrowing costs at the risk-
free rate r0t), and accounts for the transaction costs in-
curred for establishing the position xt from xt−1, as de-
scribed below.

We note that it is necessary to normalize Wt+1 by the
VaR Vt—the risk measure—, since eq. (16) clearly shows
that a dollar profit as large as desired can be achieved
by making Vt sufficiently large.
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2.6.1. Estimating WS and WS
t . To estimate the quan-

tities WS and WS
t , we substitute for {Rt} the realized

returns {rt}, and we use the target VaR Ṽt as an esti-
mator of the portfolio VaR Vt:

ŴS =
1
T

T∑
t=1

ŴS
t(20)

ŴS
t+1 =

(rt+1 − ι r0t)′xSt + losst

Ṽt+1

.(21)

As for β̂t, we ignore the finite-sample bias of these esti-
mators, for it is of little significance for the sample sizes
that we use in practice.

Examining eq. (20), it should be obvious that this per-
formance measure is equivalent to the well-known Sharpe
Ratio [15] for symmetric return distributions (within a
multiplicative factor), with the exception that it uses the
ex ante volatility (VaR) rather than the ex post volatility
as the risk measure.

2.6.2. Transaction Costs. Transaction costs are modeled
by a simple multiplicative loss:

(22) losst = −c′ |xt − x̃t|
where c = (c1, . . . , cN )′, ci the relative loss associated
with a change in position (in dollars) in asset i, and x̃t
the portfolio positions in each asset immediately before
that the transaction is performed at time t. This posi-
tion is different from xt−1 because of the asset returns
generated during period t:

(23) x̃it = (rit + 1)xi(t−1).

In our experiments, the transaction costs were set uni-
formly to 0.1%.

2.7. Volatility Estimation. As eq. (16) shows, the co-
variance matrix Γt plays a fundamental role in comput-
ing the value at risk of a portfolio (under the normal
approximation). It is therefore of extreme importance
to make use of a good estimator for this covariance ma-
trix.

For this purpose, we used an exponentially-weighted
moving average (ewma) estimator, of the kind put for-
ward by RiskMetrics [13]. Given an estimator of the
covariance matrix at time t− 1, a new estimate is com-
puted by

(24) Γ̂t = λΓ̂t−1 + (1− λ)(rt r′t),

where rt is the vector of asset returns over period t and λ
is a decay factor that controls the speed at which obser-
vations are “absorbed” by the estimator. We used the

value recommended by RiskMetrics for monthly data,
λ = 0.97.

3. Neural Networks for Portfolio

Management

The use of adaptive decision systems, such as neu-
ral networks, to implement asset-allocation systems is
not new. Most applications of them fall into two cate-
gories: (i) using the neural net as a forecasting model,
in conjunction with an allocation scheme (such as mean–
variance allocation) to make the final decision; and (ii)
using the neural net to directly make the asset allocation
decisions. We start by setting some notation related to
our use of neural networks, and we then consider these
two approaches in the context of portfolio selection sub-
ject to VaR constraints.

3.1. Neural Networks. We consider a specific type of
neural network, the multi-layer perceptron (MLP) with
one hidden Tanh layer (with H hidden units), and a
linear output layer. We denote by f : RM 7→ R

N the
vectorial function represented by the MLP. Let x (∈ RM )
be an input vector; the function is computed by the MLP
as follows:

(25) f(x;θ) = A2 tanh(A1x + b1) + b2.

The adjustable parameters of the network are: A1, an
H ×M matrix; b1 an H-element vector; A2 an N ×H
matrix; and b2 an N -element vector. We denote by θ
the vector of all parameters:

θ = 〈A1,A2,b1,b2〉 .

3.1.1. Network Training. The parameters θ are found by
training the network to minimize a cost function, which
depends, as we shall see below, on the type of model—
forecasting or decision—that we are using. In our imple-
mentation, the optimization is carried out using a con-
jugate gradient descent algorithm [12]. The gradient of
the parameters with respect to the cost function is com-
puted using the standard backpropagation algorithm [14]
for multi-layer perceptrons.

3.2. Forecasting Model. The forecasting model cen-
ters around a general procedure whose objective is to
find an “optimal” allocation of assets, one which max-
imizes the expected value of a utility function (fixed a
priori, and specific to each investor), given a probability
distribution of asset returns.

The use of the neural network within the forecasting
model is illustrated in figure 1a. The network is used
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NN Forecast

VaR rescaling

Final position taken
on market xt

VaR rescaling

Final position taken
on market xt

NN
allocation decision

Covariance
forecast
Γ̂t+1|t

Covariance
forecast
Γ̂t+1|t

Return forecast �̂t+1|t

Recommendations yt Recommendations yt

yt−1

Input variables utInput variables ut

Mean-Variance
portfolio selection

(a) (b)

Figure 1.

The forecasting (a) and
decision (b) paradigms for
using neural networks
(NN) in asset allocation.

to make forecasts of asset returns in the next time pe-
riod, µ̂t+1|t, given explanatory variables ut, which are
described in section 5.1 (these variables are determined
causally, i.e. they are a function of It.)

3.2.1. Maximization of Expected Utility. We assume that
an investor associates a utility function U(rt+1,wt) with
the performance of his/her investment in the portfolio wt

over period t + 1. (For the remainder of this section, we
suppose, without loss of generality, that the net capital
in a portfolio has been factored out of the equations; we
use wt to denote a portfolio whose elements sum to one.)

The problem of (myopic) utility maximization con-
sists, at each time-step t, in finding the porfolio wt that
maximizes the expected utility obtained at t + 1, given
the information available at time t:

(26) w∗t = argmax
wt

E[U(Rt+1,wt) | It].

This procedure is called myopic because we only seek
to maximize the expected utility over the next period,
and not over the entire sequence of periods until some
end-of-times.

The expected utility can be expressed in the form of
an integral:

(27) E[U(Rt+1,wt) | It] =
∫

Rt+1

Pt+1|t(r)U(r,wt) dr,

where Pt+1|t(·) is the probability density function of the
asset returns, Rt+1, given the information available at
time t.

3.2.2. Quadratic Utility. Some “simple” utility functions
admit analytical solutions for the expected utility (27).
To derive the mean–variance allocation equations, we

shall postulate that investors are governed by a quadratic
utility of the form

(28) U(Rt+1,wt) = R′t+1wt − λ
(
w′t(Rt+1 − µt+1)

)2
.

The parameter λ > 0 represents the risk aversion of the
investor; more risk-averse investors will choose higher
λ’s.

Assuming the first and second moment of the con-
ditional distribution of asset returns exist, and writing
them µt+1 and Γt+1 respectively (with Γt+1 positive-
definite), eq. (28) can be integrated out analytically to
give the expected quadratic utility:

(29) E[U(Rt+1,wt) | It] = µ′t+1wt − λw′tΓt+1wt.

Substituting estimators available at time t, we obtain an
estimator of the expected utility at time t + 1:

(30) Ût+1(wt) = µ̂′t+1|twt − λw′tΓ̂t+1|twt.

(We abuse slightly the notation here by denoting by Û
the estimator of expected utility.)

3.2.3. Mean–variance allocation. We now derive, under
quadratic utility, the portfolio allocation equation. We
seek a vector of “optimal” weights w∗t that will yield
the maximum expected utility at time t + 1, given the
information at time t.

Note that we can derive an analytical solution to this
problem because we allow the weights to be negative as
well as positive; the only constraint that we impose on
the weights is that they sum to one (all the capital is
invested). In contrast, the classical Markowitz formula-
tion [9] further imposes the positivity of the weights; this
makes the optimization problem tractable only by com-
putational methods, such as quadratic programming.
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We start by forming the lagrangian incorporating the
sum-to-one constraint to eq. (29), observing that maxi-
mizing this equation is equivalent to minimizing its neg-
ative (ι is the vector (1, . . . , 1)′):

(31) L(wt, α) = −µ′t+1wt + λw′tΓt+1wt + α(w′tι− 1).

After differentiating this equation and a bit of algebra,
we find:

(32) w∗t =
1
λ

Γ−1
t+1

(
µt+1 −

ι′Γ−1
t+1µt+1 − λ

ι′Γ−1
t+1ι

ι

)
.

In practical use, we have to substitute estimators avail-
able at time t for the parameters µt+1 and Γt+1 in this
equation.

To recapitulate, the “optimal” weight vector w∗t con-
stitutes the recommendations vector yt output by the
mean–variance allocation module in figure 1a.

3.2.4. MLP Training Cost Function. As illustrated in
figure 1a, the role played by the neural network in the
forecasting model is to produce estimates of the mean
asset returns over the next period. This use of a neu-
ral net is all-the-more classical, and hence the training
procedure brings no surprise.

The network is trained to minimize the prediction er-
ror of the realized asset returns, using a quadratic loss
function:
(33)

CF(θ) =
1
T

T∑
t=1

‖f(ut;θ)− rt+1‖2 + CWD(θ) + CID(θ)

where ‖·‖ is the Euclidian distance, and f(·;θ) is the
function computed by the MLP, given the parameter vec-
tor θ. The CWD(θ) and CID(θ) terms serve regularization
purposes; they are described in section 4.

As explained above, the network is trained to mini-
mize this cost function using a conjugate gradient op-
timizer, with gradient information computed using the
standard backpropagation algorithm for MLPs.

3.3. Decision Model. Within the decision model, in
contrast with the forecasting model introduced previ-
ously, the neural network directly yields the allocation
recommendations yt from explanatory variables ut (fig-
ure 1b).

We introduce the possibility for the network to be
recurrent, taking as input the recommendations emitted
during the previous time step. This enables, in theory,
the network to make decisions that would not lead to
excess trading, to minimize transaction costs.

3.3.1. Justifying The Model. Before explaining the tech-
nical machinery necessary for training the recurrent neu-
ral network in the decision model, we provide a brief
explanation as to why such a network would be attrac-
tive. We note immediately that, as a downside for the
model, the steps required to produce a decision are not
as “transparent” as they are for the forecasting model:
everything happens inside the “black box” of the neu-
ral network. However, from a pragmatic standpoint, the
following reasons lead us to believe that the model’s po-
tential is at least worthy of investigation:
• The probability density estimation problem—which

must be solved in one way or another by the fore-
casting model—is intrinsically a difficult problem in
high dimension. The decision model does not require
an explicit solution to this problem (although some
function of the density is learned implicitly by the
model).
• The decision model does not need to explicitly pos-

tulate a utility function that admits a simple mathe-
matical treatment, but which may not correspond to
the needs of the investor. The choice of this utility
function is important, for it directly leads to the allo-
cation decisions within the forecasting model. How-
ever, we already know, without deep analysis, that
quadratic utility does not constitute the “true” util-
ity of an investor, for the sole reasons that it treats
good news just as negatively as bad news (because
both lead to high variance), and does not consider
transaction costs. Furthermore, the utility function
of the forecasting model is not the final financial cri-
terion (18) on which it is ultimately evaluated. In
contrast, the decision model directly maximizes this
criterion.

3.3.2. Training Cost Function. The network is trained
to directly minimize the (negative of the) financial per-
formance evaluation criterion (18):

(34) CD(θ) = − 1
T

T∑
t=1

Wt + CWD(θ) + CID(θ) + Cnorm.

The terms CWD(θ) and CID(θ), which are the same as in
the forecasting model cost function, are described in sec-
tion 4. The new term Cnorm induces a preference on the
norm of the solutions produced by the neural network;
its nature is explained shortly.

The effect of this cost function is to have the net-
work learn to maximize the profit returned by a VaR-
constrained portfolio.
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3.3.3. Training the MLP. The training procedure for the
MLP is quite more complex for the decision model than
it is for the forecasting model: the feedback loop, which
provides as inputs to the network the recommendations
yt−1 produced for the preceding time step, induces a
recurrence which must be accounted for. This feedback
loop is required for the following reasons:
• The transaction costs introduce a coupling between

two successive time steps: the decision made at time
t has an impact on both the transaction costs in-
curred at t and at t + 1. This coupling induces in
turn a gradient with respect to the positions xt com-
ing from the positions xt+1, and this information can
be of use during training. We explain these depen-
dencies more deeply in the following section.
• In addition, knowing the decision made during the

preceding time step can enable the network to learn a
strategy that minimizes the transaction costs: given
a choice between two equally profitable positions at
time t, the network can minimize the transaction
costs by choosing that closer to the position taken
at time t − 1; for this reason, providing yt−1 as in-
put can be useful. Unfortunately, this ideal of mini-
mizing costs can never be reached perfectly, because
our current process of rescaling the positions at each
time step for reaching the target VaR is always per-
formed unconditionally, i.e. oblivious to the previous
positions.

3.3.4. Backpropagation Equations. We now introduce the
backpropagation equations. We note that these equa-
tions shall be, for a short moment, slightly incomplete:
we present in the following section a regularization con-
dition that ensures the existence of local minima of the
cost function.

The backpropagation equations are obtained in the
usual way, by traversing the flow graph of the alloca-
tion system, unfolded through time, and by accumu-
lating all the contributions to the gradient at a node.
Figure 2 illustrates this graph, unfolded for the first few
time steps. Following the backpropagation-through-time
(BPTT) algorithm [14], we compute the gradient by go-
ing back in time, starting from the last time step T until
the first one.

Recall that we denote by f(·;θ) the function com-
puted by a MLP with parameter vector θ. In the deci-
sion model, the allocation recommendations yt are the
direct product of the MLP:

(35) yt = f(yt−1,ut;θ),

where ut are explanatory variables considered useful to
the allocation problem, which we can compute given the
information set It.

We shall consider a slightly simpler criterion C to min-
imize than eq. (34), one that does not include any reg-
ularization term. As we shall see below, incorporating
those terms involves trivial modifications to the gradient
computation. Our simplified criterion C (illustrated in
the lower right-hand side of figure 2) is:

(36) C = −Ŵ .

From eq. (18), we account for the contribution brought
to the criterion by the profit at each time step:

(37)
∂C

∂Ŵt+1

= − 1
T

.

Next, we make use of eq. (19), (22) and (23) to deter-
mine the contribution of transaction costs to the gradi-
ent:

∂C

∂losst
= − 1

T Ṽt
(38)

∂losst
∂xit

= −ci sign(xit − x̃it)(39)

∂losst
∂x̃it

= ci sign(xit − x̃it)(40)

∂losst+1

∂xit
= ci sign(xi(t+1) − x̃i(t+1))

∂x̃i(t+1)

∂xit
= ci sign(xi(t+1) − x̃i(t+1)) (1 + ri(t+1)).(41)

From this point, again making use of eq. (19), we
compute the contribution of xit to the gradient, which
comes from the two “paths” by which xit affects C: a
first direct contribution through return between times t
and t+1; and a second indirect contribution through the
transaction costs at t + 1:

(42)
∂C

∂xit
=

∂C

∂Ŵt+1

∂Ŵt+1

∂xit
+

∂C

∂Ŵt+2

∂Ŵt+2

∂xit
.

Because ∂C/∂Ŵt+1 is simply given by eq. (37), we
use eq. (19) to compute

(43)
∂C

∂Ŵt+1

∂Ŵt+1

∂xit
= − 1

T Ṽt

(
ri(t+1) − r0t +

∂losst
∂xit

)
,

whence,

(44)
∂C

∂Ŵt+1

∂Ŵt+1

∂xit
=

− 1
T Ṽt

(
ri(t+1) − r0t − ci sign(xit − x̃it)

)
.
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Figure 2.

Flow graph of the steps
implemented by the decision
model, unfolded through
time. The backpropagation
equations are obtained by
traversing the graph in the
reverse direction of the
arrows. The numbers in
parentheses refer to the
equations (in the main text)
used for computing each
value.

In the same manner, we compute the contribution

(45)
∂C

∂Ŵt+2

∂Ŵt+2

∂xit
= − 1

T Ṽt+1

∂losst+1

∂xit
,

which gives, after simplification,

(46)
∂C

∂Ŵt+2

∂Ŵt+2

∂xit
=

− 1
T Ṽt+1

(
ci sign(xi(t+1) − x̃i(t+1)) (1 + ri(t+1))

)
.

Finally, we add up the two previous equations to ob-
tain

(47)
∂C

∂xit
=

− 1
T Ṽt

(
ri(t+1) − r0t − ci sign(xit − x̃it)

)
− 1

T Ṽt+1

(
ci sign(xi(t+1) − x̃i(t+1)) (1 + ri(t+1))

)
.
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We are now in a position to compute the gradient with
respect to the neural network outputs. Using eq. (14)
and (16), we start by evaluating the effect of yit on
xit:2

(48)
∂xit
∂yit

=
Ṽt

Φ−1(α)
(
y′t Γ̂t+1|t yt

) 1
2

−
yit Ṽt

∑N
k=1 γ̂ik(t+1) ykt

Φ−1(α)
(
y′t Γ̂t+1|t yt

) 3
2
,

and for i 6= j,

(49)
∂xit
∂yjt

= −
yit Ṽt

∑N
k=1 γ̂jk(t+1) ykt

Φ−1(α)
(
y′t Γ̂t+1|t yt

) 3
2
.

(As previously noted, α is the desired level of the VaR
and Φ−1(·) is the inverse cumulative distribution func-
tion of the standardized normal distribution.)

The complete gradient is given by

(50)
∂C

∂yit
=
∑
k

∂C

∂xkt

∂xkt
∂yit

+
∂C

∂ft+1
,

where ∂C/∂ft+1 is the gradient with respect to the in-
puts of the neural network at time t+1, which is a usual
by-product of the standard backpropagation algorithm.

3.3.5. Introducing a “Preferred Norm”. The cost func-
tion (36) corresponding to the financial criterion (18)
cannot reliably be used in its original form to train a
neural network. The reason lies in the rescaling equa-
tions (14) and (16) that transform a recommendation
vector yt into a VaR-constrained portfolio xt. Consider
two recommendations y(1)

t and y(2)
t that differ only by a

multiplicative factor δ > 0:

y(2)
t = δy(1)

t .

As can easily be seen by substitution in the rescaling
equations, the final porfolios obtained from those two
(different) recommendations are identical! Put differ-
ently, two different recommendations that have the same
direction but different lengths are rescaled into the same
final portfolio.

This phenomenon is illustrated in figure 3, which shows
the level curves of the cost function for a small allocation
problem between two assets (stocks and bonds, in this

2To arrive at these equations, it is useful to recall that y′ Γ y

can be written in the form of
P
k

P
` γk` yk y`, whence it easily

follows that ∂
∂yi

y′ Γy = 2
P
k γik yk.

case), as a function of the recommentations output by
the network. We observe clearly that different recom-
mendations in the same direction yield the same cost.

The direct consequence of this effect is that the op-
timization problem for training the parameters of the
neural network is not well posed: two different sets of
parameters yielding equal solutions (within a constant
factor) will be judged as equivalent by the cost function.
This problem can be expressed more precisely as follows:
for nearly every parameter vector θ, there is a direction
from that point that has (exactly) zero gradient, and
hence there is no local minimum in that direction. We
have observed empirically that this could lead to severe
divergence problems when the network is trained with
the usual gradient-based optimization algorithms such
as conjugate gradient descent.

This problem suggests that we can introduce an a
priori preference on the norm of the recommendations.
This preference is introduced by way of a soft constraint,
the regularization term Cnorm appearing in eq. (34):

(51) Cnorm =
φnorm

2T

T∑
t=1

(
N∑
i=1

y2
i − ρ2

)2

.

Two parameters must be determined by the user: (i)
ρ, which is the desired norm for the recommendations
output by the neural network (in our experiments, it
was arbitrarily set to ρ2 = 0.9), and (ii) φnorm, which
controls the relative importance of the penalization in
the total cost.

Figure 4 illustrates the cost function modified to in-
corporate this penalization (with ρ2 = 0.9 and φnorm =
0.1). We now observe the clear presence of local minima
in this function. The optimal solution is in the same di-
rection as previously, but it is now encouraged to have a
length ρ.

This penalization brings forth a small change to the
backpropagation equations introduced previously: the
term ∂C/∂yit, eq. (50), must be adjusted to become:

(52)
∂C′

∂yit
=

∂C

∂yit
+

φnorm

T
(
N∑
j=1

y2
jt − ρ2)(2yit).

4. Regularization, Hyperparameter Selection,

and Model Combination

Regularization techniques are used to specify a-priori
preferences on the network weights; they are useful to
control network capacity to help prevent overfitting. In
our experiments, we made use of two such methods,
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Figure 3. Level curves of the non-regularized cost function for a
two-asset allocation problem. The axes indicate the value of each
component of a recommendation. There is no minimum point
to this function, but rather a half-line of minimal cost, starting
around the origin towards the bottom left.
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Figure 4. Level curves of the regularized cost function for the
two-asset problem. The “preferred” norm of the recommendations
has been fixed to ρ2 = 0.9. In contrast to fig. 3, a minimum can
clearly be seen a bit to the left and below the origin (i.e. along the
minimum half-line of fig.3).

weight decay and input decay (in addition, for the deci-
sion model, to the norm preference covered previously.)

4.1. Weight Decay. Weight decay is a classic regular-
ization procedure that imposes a penalty to the squared
norm of all network weights:

(53) CWD(θ) =
φWD

2

∑
k

θ2
k,

where the summation is performed over all the elements
of the parameter vector θ (in our experiments, the biases,
e.g. b1 and b2 in eq. (25), were omitted); φWD is a
hyperparameter (usually determined through trial-and-
error, but not in our case as we shall see shortly) that
controls the importance of CWD in the total cost.

The effect of weight decay is to encourage the network
weights to have smaller magnitudes; it reduces the learn-
ing capacity of the network. Empirically, it often yields
improved generalization performance when the number
of training examples is relatively small [6]. Its disadvan-
tage is that it does not take into account the function to
learn: it applies without discrimination to every weight.

4.2. Input Decay. Input decay is a method for per-
forming “soft” variable selection during the regular train-
ing of the neural network. Contrarily to combinatorial
methods such as branch-and-bound and forward or back-
ward selection, we do not seek a “good set” of inputs
to provide to the network; we provide them all. The
network will automatically penalize the network connec-
tions coming from the inputs that turn out not to be
important.

Input decay works by imposing a penalty to the squa-
red-norm of the weights linking a particular network in-
put to all hidden units. Let θ

(1)
jh the network weight

(located on the first layer of the MLP) linking input j
to hidden unit h; the squared-norm of the weights from
input j is:

(54) C
(j)
ID (θ) =

H∑
h=1

(
θ

(1)
jh

)2

,

where H is the number of hidden units in the network.
The weights that are part of C

(j)
ID (θ) are illustrated in

figure 5.
The complete contribution CID(θ) to the cost function

is obtained by a non-linear combination of the C
(j)
ID :

(55) CID(θ) = φID

∑
j

C
(j)
ID

η + C
(j)
ID (θ)

,

The behavior of the function x2/(η + x2) is shown in
figure 6. Intuitively, this function acts as follows: if the
weights emanating from input j are small, the network
must absorbe a high marginal cost (locally quadratic)
in order to increase the weights; the net effect, in this
case, is to bring those weights closer to zero. On the
other hand, if the weights associated with that input
have become large enough, the penalty incurred by the
network turns into a constant independent of the value
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Figure 6. The function x2/(η + x2), for two values of η.

of the weights; those are then free to be adjusted as
appropriate. The parameter η acts as a threshold that
determines the point beyond which the penalty becomes
constant.

Input decay is similar to the weight elimination proce-
dure [17] sometimes applied for training neural networks,
with the difference that input decay applies in a collec-
tive way to the weights associated with a given input.

4.3. Model Combination. The capacity-control meth-
ods described above leave open the question of selecting
good values for the hyperparameters φWD and φID. These
parameters are normally chosen such as to minimize the
error on a validation set, separate from the testing set.
However, we found desirable to completely avoid using
a validation set, primarily because of the limited size of
our data sets. Since we are not in a position to choose

the best set of hyperparameters, we used model com-
bination methods to altogether avoid having to make a
choice.

We use model combination as follows. We have M un-
derlying models, sharing the same basic MLP topology
(number of hidden units) but varying in the hyperpa-
rameters. Each model m implements a function fmt(·).3
We construct a committee whose decision is a convex
combination of the underlying decisions:

(56) ycom
t =

M∑
m=1

wmt fmt(ut),

with ut the vector of explanatory variables, and wmt ≥ 0,∑
mwmt = 1. The weight given to each model de-

pends on the combination method; intuitively, models
that have “worked well” in the past should be given
greater weight. We consider three such combination
methods: hardmax, softmax, and exponentiated gradi-
ent.

4.3.1. Hardmax. The simplest combination method is to
choose, at time t, the model that yielded the best gener-
alization performance (out-of-sample) for all (available)
preceding time steps. We assume that a generalization
performance result is available for all time steps from
G + 1 until t− 1 (where t is the current time step).4

Let Ŵm(τ) the (generalization) financial performance
returned during period τ by the m-th member of the
committee. Let m∗t the “best model” until time t− 1:

(57) m∗t = argmax
m

t−1∑
τ=G+1

Ŵm(τ).

The weight given at time t to the m-th member of the
committee by the hardmax combination method is:

(58) whardmax
mt =

{
1 if m = m∗t ,

0 otherwise.

4.3.2. Softmax. The softmax method is a simple modifi-
cation of the previous one. It consists in combining the
average past generalization performances using the soft-
max function. Using the same notation as previously, let

3Because of the retrainings brought forth by the sequential val-

idation procedure described in section 4.4, the function realized by
a member of the committee has a time dependency.

4We shall see in section 4.4 that this out-of-sample performance
is available, for all time steps beyond an initial training set, by
using the sequential validation procedure described in that section.
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W̄mt be the average financial performance obtained by
the m-th comittee member until time t− 1:

(59) W̄mt =
1

t−G− 1

t−1∑
τ=G+1

Ŵm(τ).

The weight given at time t to the m-th member of the
committee by the softmax combination method is:

(60) wsoftmax
mt =

exp(W̄mt)∑M
k=1 exp(W̄kt)

.

4.3.3. Exponentiated Gradient. We used the fixed share
version [5] of the exponentiated gradient algorithm [8].
This method uses an exponential update of the weights,
followed by a redistribution step that prevents any of the
weights from becoming too large. First, raw weights are
computed from the “loss” (19) incurred in the previous
time step:

(61) w̃mt = wm(t−1) eδWt(fm(t−1)).

Next, a proportional share of the weights is taken and
redistributed uniformly (a form of taxation) to produce
new weights:

poolt =
M∑
m=1

w̃mt

wexp. grad.
mt = (1− α)w̃mt +

1
M − 1

(poolt − αw̃mt).(62)

The parameters δ and α control, respectively, the con-
vergence rate and the minimum value of a weight. Some
experimentation on the initial training set revealed that
δ = 0.3, α = 0.01 yielded reasonable behavior, but these
values were not tuned extensively.

An extensive analysis of this combination method, in-
cluding bounds on the generalization error, is provided
by [5].

4.4. Performance Estimation for Sequential De-
cision Problems. Cross-validation is a performance-
evaluation method commonly used when the total size
of the data set is relatively small, provided that the data
contains no temporal structure, i.e. the observations can
be freely permuted. Since this is obviously not the case
for our current asset-allocation problem, ordinary cross-
validation is not applicable.

To obtain low-variance performance estimates, we use
a variation on cross-validation called sequential valida-
tion that preserves the temporal structure of the data.
Although a formal definition of the method can be given
(e.g. [2]), an intuitive description is as follows:

©1 An initial training set is defined, starting from the
first available time step and extending until a prede-
fined time G (included). A model of a given topol-
ogy M (fixing the number of hidden units, and the
value of the hyperparameters) is trained on this ini-
tial data.

©2 The model is tested on the P observations in the
data set that follow after the end of the training set.
The test result for each time step is computed using
the financial performance criterion, eq. (19). These
test results are saved aside.

©3 The P test observations used in step©2 are added to
the training set, and a model with the same topology
M is retrained using the new training set.

©4 Steps ©2 and©3 are performed until the data set is
exhausted.

©5 The final performance estimate for the model with
topology M for the entire data set is obtained by
averaging the test results for all time steps saved in
step ©2 (cf. eq. (18)).

We observe that for every time step beyond G (the
end of the initial training set), a generalization (out-of-
sample) performance result is available for this time step,
even though the data for this time step might eventually
become part of a later training set.

4.4.1. Choosing P . The “progression” factor P in the
size of the training set is a free parameter of the method.
If non-stationarities are suspected in the data set, P
should be chosen as small as possible; the obvious down-
side is the greatly increased computational requirement
incurred with a small P .

In our experiments, we attempted to strike a compro-
mise by setting P = 12, which corresponds to retraining
every year for monthly data.

5. Experimental Results and Analysis

5.1. Overall Setting. Our experiments consisted in al-
locating among the 14 sectors (subindices) of the Toronto
Stock Exchange TSE 300 index. Each sector represents
an important segment of the canadian economy. Our
benchmark market performance is the complete TSE 300
index. (To make the comparisons meaningful, the mar-
ket portfolio is also subjected to VaR constraints). We
used monthly data ranging from January 1971 until July
1996 (no missing values). Our “risk-free” interest rate
is that of the short-term (90-day) Canadian government
T-bills.
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To obtain a performance estimate for each model, we
used the sequential validation procedure, by first train-
ing on 120 months and thereafter retraining every 12
months, each time testing on the 12 months following
the last training point.

5.1.1. Inputs and Preprocessing. The input variables ut
provided to the neural networks consisted of:
• 3 series of 14 moving average returns (short-, mid-,

and long-term MA depths).
• 2 series of 14 return volatilities (computed using ex-

ponential averages with a short-term and long-term
decay).
• 5 series, each corresponding to the “instantaneous”

average over the 14 sectors of the above series.
The resulting 75 inputs are then normalized to zero-
mean and unit-variance before being provided to the net-
works.

5.1.2. Experimental Plan. The experiments that we per-
formed are divided into two distinct parts.

The first set of experiments is designed to understand
the impact of the model type (and hence of the cost
function used to train the neural network), of network
topology and of capacity-control hyperparameters on the
financial performance criterion. In this set, we consider:
• Model type. We compare (i) the decision model

without network recurrence, (ii) the decision model
with recurrence, (iii) the forecasting model without
recurrence.
• Network topology. For each model type, we eval-

uate the effect of the number of hidden units, from
the set NH ∈ {2, 5, 10}.
• Capacity control. For each of the above cases,

we evaluate the effects of the weight decay and in-
put decay penalizations. Since we do not know a
priori what are good settings for the hyperparame-
ters, we train several networks, one for each combi-
nation of φWD ∈ {10−3, 10−2, 10−1, 100} and φID ∈
{10−3, 10−2, 10−1, 100}.

The second set of experiments verifies the usefulness
of the model combination methods. We construct com-
mittees that combine, for a given type of model, MLP’s
with the same number of hidden units but that vary
in the setting of the hyperparameters controlling weight
and input decay (φWD and φID). We evaluate the relative
effectiveness of the combination methods, along with the
overall performance of a committee compared with that
of its underlying models.

5.2. Results with Single Models. We now analyze
the generalization (out-of-sample) performance obtained
by all single models on the financial performance crite-
rion. In all the results that follow, we reserve the term
“significant” to denote statistical significance at the 0.05
level.

Detailed performance results for the individual mod-
els is presented elsewhere [2]. Comparing each model
to the benchmark market performance5 we observe that
several of the single models are yielding net returns that
are significantly better than the market.

Figures 7 and 8 show the impact of input decay and
weight decay on a cross-section of the experiments (in
both cases, the forecasting model with 5 hidden units;
WD = 1.0 for fig. 7 and ID = 0.01 for fig. 8.) At
each level of a factor, the average performance (square
markers) is given with a 95% confidence interval; the
benchmark market performance (round markers) and the
difference between the model and the benchmark (trian-
gular markers) are also plotted.

5.2.1. anova Results for Single Models. We further com-
pared the single models using a formal analysis of vari-
ance (anova) to detect the systematic impact of a cer-
tain factors. These results are given in tables 1, 2, and
3, respectively for the decision model without and with
recurrence, and for the forecasing model. We make the
following observations:
• For all the model types, the input decay factor has

a very significant impact.
• The number of hidden units is significant for the de-

cision models (both with and without recurrence)
but is not significant for the forecasting model.
• Weight decay is never significant.
• Higher-order interactions (of second and third order)

between the factors are never significant.

5.2.2. Comparisons Between Models. We also tried to
detect performance differences attributable to the model
type (decision without or without recurrence, forecast-
ing).

As table 4 shows, an anova using the model type
as the only factor reveals that we must forcibly reject
the null hypothesis that all model types are equivalent.
To better understand the performance differences, we
performed pairwise comparisons between models.

5This comparison is performed using a paired t-test to obtain
reasonable-size confidence intervals on the differences. The ba-
sic assumptions of the t-test—normality and independence of the
observations—were quite well fulfilled in our results.
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Figure 8. Effect of Weight Decay.

Table 5 shows the difference between all model pairs
(averaging over all the possible values of the other fac-
tors, i.e. the number of hidden units and the value of
the hyperparameters controlling weight decay and input
decay). The table shows that, at the “highest level,”
the forecasting model performs significantly better than
either decision model.

However, the conclusions made by averaging over all
values of the hyperparameters lose their validity when we
consider a smaller set of hyperparameters values. Table 6
shows the performance difference obtained by restricting
the models under consideration to the set trained with
input decay φID ∈ {0.001, 0.01} (and averaging over the

Table 1. anova results for the decision model without re-
currence, showing the effect of single factors (number of hidden
units (NH), weight decay (WD) and input decay (ID)) along with
second- and third-order interactions between these factors.

Degrees of Sum of
freedom squares F -value Pr(F )

ID 3 3.146 2.937 0.032 ?
WD 3 0.015 0.014 0.998
NH 2 3.458 4.841 0.008 ?

ID : WD 9 0.158 0.049 0.999
ID : NH 6 1.483 0.692 0.656
WD : NH 6 0.114 0.053 0.999

ID : WD : NH 18 0.589 0.092 0.999
Residuals 8928 3188.357

Table 2. anova results for the decision model with recur-
rence.

Degrees of Sum of

freedom squares F -value Pr(F )

ID 3 8.482 8.649 0.000 ?
WD 3 0.111 0.114 0.952
NH 2 2.969 4.542 0.012 ?

ID : WD 9 0.392 0.133 0.999
ID : NH 6 1.505 0.767 0.596
WD : NH 6 0.286 0.146 0.990

ID : WD : NH 18 0.336 0.057 1.000
Residuals 8928 2918.357

Table 3. anova results for the forecasting model without re-
currence.

Degrees of Sum of
freedom squares F -value Pr(F )

ID 3 5.483 3.617 0.013 ?
WD 3 0.068 0.044 0.988
NH 2 0.384 0.380 0.684

ID : WD 9 0.172 0.038 1.000
ID : NH 6 3.684 1.215 0.295
WD : NH 6 0.207 0.068 0.999

ID : WD : NH 18 0.977 0.107 1.000
Residuals 8928 4511.072

other factors). For this subset of models, the decision
model with recurrence is significantly better than either
the decision model without recurrence or the forecast-
ing model.

From these results, we cannot draw definitive conclu-
sions on the relative merit of the decision model versus
the forecasting model, other than the decision model is
considerably more sensitive than is the forecasting model
to the settings of the hyperparameters used to train the
neural network. This should intuitively make sense since
much more is expected from the neural network within
the decision model.
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Table 4. anova results on the model types.

Degrees of Sum of
freedom squares F -valeur Pr(F )

Model type 2 4.19 5.298083 0.005 ?
Residuals 26925 10651.81

Table 5. Pairwise comparisons between model types, averag-
ing over the performance at all levels of the other factors (nb.
of hidden units, weight and input decay). ‘D’=decision model;
‘F’=forecasting model.

sample
Model x Model y x− y t-value DoF Pr(t)

D w/ rec. D w/o rec. 0.002 0.371 8975 0.710
F w/o rec. D w/o rec. 0.027 3.457 8975 0.001 ?
F w/o rec. D w/ rec. 0.025 3.275 8975 0.001 ?

Table 6. Pairwise comparisons between model types, for the sub-
set of experiments at input decay φID ∈ {0.001, 0.01}, and averag-
ing over the performance of the other factors. ‘D’=decision model;
‘F’=forecasting model.

sample
Model x Model y x− y t-value DoF Pr(t)

D w/ rec. D w/o rec. 0.026 3.164 4487 0.002 ?
F w/o rec. D w/o rec. 0.005 0.419 4487 0.676
F w/o rec. D w/ rec. −0.022 −2.001 4487 0.046 ?

5.3. Results with Model Combination. The raw re-
sults obtained by the combination methods are given in
tables 7, 8, and 9, respectively for the decision mod-
els without and with recurrence, and the forecasting
model. Each table gives the generalization financial per-
formance obtained by a committee constructed by com-
bining MLP’s with the same number of hidden units,
but trained with different values of the hyperparame-
ters controlling weight decay and input decay (all com-
binations of φWD ∈ {10−3, 10−2, 10−1, 100} and φID ∈
{10−3, 10−2, 10−1, 100}.) Each result is given with a
standard error derived from the t distribution, along with
the difference in performance with respect to the market
benchmark (whose standard error is derived from the t
distribution using paired differences.)

A graph summarizing the results for the exponenti-
ated gradient combination method appears in figure 9.
Similar graphs are obtained for the other combination
methods.

By way of illustration, figure 10 shows the (out-of-
sample) behavior of one of the committees. The top part
of the figure plots the monthly positions taken in each of
the 14 assets. The middle part plots the monthly returns
generated by the committee and, for comparison, by the
market benchmark; the monthly value-at-risk, set in all
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Figure 9. Out-of-sample performance of committees (made with
exponentiated gradient) for three types of models. The market
performance is the solid horizontal line just above zero.

our experiments to 1$, is also illustrated, as an experi-
mental indication that is is not traversed too often (the
monthly return of either the committee or the market
should not go below the −1$ mark more than 5% of the
times). Finally, the bottom part gives the net cumula-
tive returns yielded by the committee and the market
benchmark.

5.3.1. anova Results for Committees. Tables 10 and 11
formally analyze the impact of the model combination
methods.

Restricting ourselves to the exponentiated gradient
committees, we first note (table 10) that no factor, either
the model type or the number of hidden units, has a
statistically significant effect on the performance of the
committees.

Secondly, when we contrast all the combination meth-
ods taken together, we note that the number of hidden
units has an overall significant effect. This appears to be
attributable to the relative weakness of the ‘hardmax’
combination method, even though no direct statistical
evidence can confirm this conjecture. The other combi-
nation methods—softmax and exponentiated gradient—
are found to be statistically equivalent in our results.

5.3.2. Comparing a Committee with its Underlying Mod-
els. We now compare the models formed by the commit-
tees (restricting ourselves to the exponentiated gradient
combination method) against the performance of their
best underlying model, and the average performance of
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Table 7. Results for three model combination methods, applied to the decision model without recurrence. NH refers to the number
of hidden units. The average net market return for the period under consideration is 0.009 (standard error=0.042).

Exponentiated Gradient Softmax Hardmax

NH Avg. Return Diff. w/ market Avg. Return Diff. w/ market Avg. Return Diff. w/ market

2 0.023 (0.044) 0.014 (0.035) 0.043 (0.043) 0.034 (0.033) 0.012 (0.045) 0.003 (0.059)

5 0.107 (0.041) ? 0.099 (0.056) 0.099 (0.041) ? 0.090 (0.053) 0.126 (0.041) ? 0.117 (0.061)

10 0.090 (0.045) ? 0.081 (0.060) 0.089 (0.045) ? 0.080 (0.060) 0.083 (0.046) 0.074 (0.057)

Table 8. Results for three model combination methods, applied to the decision model with recurrence. The same remarks as in
table 7 apply.

Exponentiated Gradient Softmax Hardmax

NH Avg. Return Diff. w/ market Avg. Return Diff. w/ market Avg. Return Diff. w/ market

2 0.072 (0.043) 0.063 (0.038) 0.087 (0.042) ? 0.078 (0.036) ? 0.050 (0.039) 0.041 (0.052)

5 0.138 (0.041) ? 0.129 (0.051) ? 0.132 (0.041) ? 0.123 (0.047) ? 0.124 (0.041) ? 0.116 (0.054) ?

10 0.090 (0.042) ? 0.081 (0.056) 0.084 (0.043) ? 0.076 (0.056) 0.106 (0.042) ? 0.097 (0.057)

Table 9. Results for three model combination methods, applied to the forecasting model without recurrence. The same remarks
as in table 7 apply.

Exponentiated Gradient Softmax Hardmax

NH Avg. Return Diff. w/ market Avg. Return Diff. w/ market Avg. Return Diff. w/ market

2 0.127 (0.052) ? 0.119 (0.048) ? 0.137 (0.052) ? 0.128 (0.049) ? 0.031 (0.050) 0.022 (0.048)

5 0.156 (0.055) ? 0.147 (0.053) ? 0.138 (0.053) ? 0.129 (0.054) ? 0.130 (0.054) ? 0.121 (0.050) ?

10 0.113 (0.052) ? 0.104 (0.058) 0.120 (0.051) ? 0.111 (0.057) 0.040 (0.052) 0.032 (0.058)

Table 10. anova results for the exponentiated gradient commit-
tees. The factors are the model type (noted M : decision without
or with recurrence; forecasting) and the number of hidden units
(noted NH), along with the interaction between the two.

Sum of
DoF squares F -value Pr(F )

M 2 0.959 1.215 0.297
NH 2 1.006 1.274 0.280

M : NH 4 0.346 0.219 0.928
Residuals 1665 657.217

Table 11. anova results comparing the model combination
method (noted C: hardmax; softmax; exp. gradient), the model
type (noted M , as before), the number of hidden units (noted
NH), along with higher-order interactions between these factors.

Sum of
DoF squares F -value Pr(F )

C 2 0.673 0.862 0.422
M 2 1.094 1.401 0.246

NH 2 3.365 4.309 0.013 ?
C : M 4 0.905 0.579 0.678

C : NH 4 0.546 0.350 0.844
M : NH 4 0.674 0.431 0.786

C : M : NH 8 0.302 0.097 0.999
Residuals 4995 1950.545
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Figure 10.

Out-of-sample behavior of the
(exponentiated gradient)

committee built upon the
forecasting model with 5
hidden units. (a) Monthly
positions (in $) taken in each
asset. (b) Monthly return,
along with the 95%-VaR (set
to 1$). (c) Cumulative return.

their underlying models, for all model types and number
of hidden units.

Table 12 indicates which of the respective underlying
models yielded the best performance (ex post) for each
committee, and tabulates the average difference between
the performance of the committee (noted x) and the per-
formance of that best underlying (noted y). Even though
a committee suffers in general from a slight performance
degradation with respect to its best underlying model,
this difference is, in no circumstance, statistically signif-
icant. (Furthermore, we note that the best underlying
model can never directly be used by itself, since its per-
formance can only be evaluated after the facts.)

Table 13 gives the results of the average performance
of the underlying models (noted y) and compares it with
the performance of the committee itself (noted x). We
note that the committee performance is significantly bet-
ter in four cases out of nine, and “quasi-significantly”
better in two other cases. We observe that comparing
a committee to the average performance of its underly-
ing models is equivalent to randomly picking one of the
underlyings.

We can conclude from these results that, contrarily
to their human equivalents, model committees can be
significantly more intelligent than one of their members

picked randomly, and can never be (according to our re-
sults) significantly worse than the best of their members.

6. Conclusion

We demonstrated the viability of directly training a
(possibly recurrent) neural network according to a VaR-
adjusted profit criterion for making asset-allocation deci-
sions within a VaR-control framework. The performance
results are comparable to those obtained with a fore-
casting model used jointly with classical mean–variance
portfolio selection.

We showed the importance of the input decay regu-
larizer as a soft input selection procedure, in the case
where networks contain a large number of inputs.

Finally, we noted an effective use of committee meth-
ods to systematize the choice of hyperparameters during
neural network training. While many of their underly-
ing models are underperformers, we found that several
of our committees (both of the forecasting and the deci-
sion types) are nevertheless significantly outperforming
the benchmark market index.
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Table 12. For each model type, comparison between the exponen-
tiated gradient committee (noted x) and the performance of the
best underlying model part of the committee (noted y).

Model
Underlying
〈WD, ID〉

Sample
x− y t-value DoF Pr(t)

NH=2 10−1, 10−1 −0.034 −0.77 185 0.43

NH=5 100 , 10−3 −0.033 −1.65 185 0.10

D
ec

is
io

n
w

/
o

re
cu

r.

z

}|

{

NH=10 10−3, 10−1 −0.019 −0.82 185 0.41

NH=2 100 , 10−3 −0.024 −0.71 185 0.47

NH=5 10−3, 10−2 −0.001 −0.05 185 0.95

D
ec

is
io

n
w

/
re

cu
r.

z

}|

{

NH=10 10−3, 10−3 −0.024 −1.59 185 0.11

NH=2 10−2, 10−3 0.005 0.16 185 0.86

NH=5 10−2, 10−1 −0.007 −0.22 185 0.82

F
o
re

ca
st

w
/
o

re
cu

r.

z

}|

{

NH=10 10−3, 10−1 −0.015 −0.46 185 0.64

Table 13. For each model type, comparison between the expo-
nentiated gradient committee (whose performance is noted x) and
the arithmetic mean of the performances of the underlying models
part of the committee (noted y).

Model
Average of
underlyings

Sample
x−y t-value DoF Pr(t)

NH=2 0.033 (0.033) −0.012 −0.539 185 0.591

NH=5 0.078 (0.034) 0.026 1.595 185 0.112

D
ec

is
io

n
w

/
o

re
cu

r.

z

}|

{

NH=10 0.070 (0.040) 0.016 1.834 185 0.068

NH=2 0.043 (0.030) 0.025 1.106 185 0.270

NH=5 0.087 (0.032) 0.049 3.156 185 0.002 ?

D
ec

is
io

n
w

/
re

cu
r.

z

}|

{

NH=10 0.057 (0.039) 0.032 2.653 185 0.009 ?

NH=2 0.095 (0.042) 0.030 2.008 185 0.046 ?

NH=5 0.089 (0.040) 0.065 3.471 185 0.001 ?

F
o
re

ca
st

w
/
o

re
cu

r.

z

}|

{

NH=10 0.079 (0.040) 0.031 1.902 185 0.059
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