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Abstract

Many fields of modern science and engineering have to deal with events which
are rare but have significant consequences. Extreme value theory is considered to
provide the basis for the statistical modelling of such extremes. The potential of ex-
treme value theory applied to financial problems has only been recognized recently.
This paper aims at introducing the fundamentals of extreme value theory as well as
practical aspects for estimating and assessing statistical models for tail-related risk
measures.
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1 Introduction

The last years have been characterized by significant instabilities in financial
markets worldwide. This has led to numerous criticisms about the existing risk
management systems and motivated the search for more appropriate metho-
dologies able to cope with rare events that have heavy consequences.

The typical question one would like to answer is: “If things go wrong, how
wrong can they go? ” The problem is then how can we model the rare phe-
nomena that lie outside the range of available observations. In such a situation

? Supported by the Swiss National Science Foundation (projects 12–52481.97 and
1214–056900.99/1). We are grateful to an anonymous referee for corrections and
comments and thank Elion Jani and Agim Xhaja for their suggestions.

Email addresses: Manfred.Gilli@metri.unige.ch,
Evis.Kellezi@metri.unige.ch (Manfred Gilli, Evis Këllezi).
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it seems essential to rely on a well founded methodology. Extreme value theory
(EVT) provides a firm theoretical foundation on which we can build statistical
models describing extreme events.

In many fields of modern science, engineering and insurance, extreme value
theory is well established (see e.g. Embrechts et al. (1999), Reiss and Thomas
(1997)). Recently, more and more research has been undertaken to analyze
the extreme variations that financial markets are subject to, mostly because
of currency crises, stock market crashes and large credit defaults. The tail
behaviour of financial series has, among others, been discussed in Koedijk
et al. (1990), Dacorogna et al. (1995), Loretan and Phillips (1994), Longin
(1996), Danielsson and de Vries (1997b), Kuan and Webber (1998), Straet-
mans (1998), McNeil (1999), Jondeau and Rockinger (1999), Rootzèn and
Klüppelberg (1999), Neftci (2000) and McNeil and Frey (2000). An interest-
ing discussion about the potential of extreme value theory in risk management
is given in Diebold et al. (1998).

This paper deals with the behavior of the tails of financial series. More specif-
ically, the focus is on the use of extreme value theory to assess tail related
risk; it thus aims at providing a modelling tool for modern risk management.

Section 2 presents some definitions of common risk measures which provide the
general background for practical applications. Section 3 reviews the fundamen-
tal results of extreme value theory used to model the distributions underlying
the risk measures. In Section 4, a practical application is presented where the
observations of thirty-one years of daily returns on an index representing the
Swiss market are analyzed. In particular, the loss tail is modelled and point
and interval estimates of the tail risk measures presented in Section 2 are com-
puted. Finally, in Section 5, a brief analysis of out-of-sample performance of
the model is presented which then suggests that the approach is robust and
therefore useful.

2 Risk Measures

Some of the most frequent questions concerning risk management in finance
involve extreme quantile estimation. This corresponds to the determination
of the value a given variable exceeds with a given (low) probability. A typical
example of such measures is the Value-at-Risk (VaR). Other less frequently
used measures are the expected shortfall (ES) and the return level.
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VaR Calculation

VaR is generally defined as the risk capital sufficient, in most instances, to
cover losses from a portfolio over a holding period of a fixed number of days.
Suppose a random variable X with continuous distribution function F models
losses or negative returns on a certain financial instrument over a certain time
horizon. VaR can then be defined as the p-th quantile of the distribution F

VaRp = F−1(1− p), (1)

where F−1 is the so-called quantile function defined as the inverse of the
distribution function F .

For internal risk control purposes, most of the financial firms compute a 5%
VaR over a one-day holding period. The Basle accord proposed that VaR for the
next 10 days and p = 1%, based on a historical observation period of at least 1
year (220 days) of data, should be computed and then multiplied by the ‘safety
factor’ 3. The safety factor was introduced because the normal hypothesis for
the profit and loss distribution is widely recognized as unrealistic.

Expected Shortfall

Another informative measure of risk is the expected shortfall (ES) or the tail
conditional expectation which estimates the potential size of the loss exceeding
VaR. The expected shortfall is defined as the expected size of a loss that exceeds
VaR

ESp = E(X | X > VaRp). (2)

Return Level

If H is the distribution of the maxima observed over successive non overlapping
periods of equal length, the return level Rk

n = H−1(1− 1
k ) is the level expected

to be exceeded in one out of k periods of length n.

3 Extreme Value Theory

When modelling the maxima of a random variable, extreme value theory plays
the same fundamental role as the Central Limit theorem plays when modelling
sums of random variables. In both cases, the theory tells us what the limiting
distributions are.

Generally there are two related ways of identifying extremes in real data. Let
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us consider a random variable which may represent daily losses or returns. The
first approach then considers the maximum (or minimum) the variable takes in
successive periods, for example months or years. These selected observations
constitute the extreme events, also called block (or per-period) maxima. In the
left panel of Figure 1, the observations X2, X5, X7 and X11 represent these
block maxima for four periods with three observations.
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Fig. 1. Block-maxima (left panel) and excesses over a threshold u (right panel).

The second approach focuses on the realizations which exceed a given (high)
threshold. The observations X1, X2, X7, X8, X9 and X11 in the right panel of
Figure 1, all exceed the threshold u and constitute extreme events.

The block maxima method is the traditional method used to analyze data with
seasonality as for instance hydrological data. However, threshold methods use
data more efficiently and, for that reason, seem to become the choice method
in recent applications.

In the following subsections, the fundamental theoretical results underlying
the block maxima and the threshold method are presented.

3.1 Distribution of Maxima (GEV)

The limit law for the block maxima, which we denote by Mn, with n the size
of the subsample (block), is given by the following theorem:

Theorem 1 (Fisher and Tippett (1928), Gnedenko (1943)) Let (Xn) be a
sequence of i.i.d. random variables. If there exist constants cn > 0, dn ∈ R
and some non-degenerate distribution function H such that

Mn − dn

cn

d→ H,
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then H belongs to one of the three standard extreme value distributions:

Fréchet: Φα(x) =











0, x ≤ 0

e−x−α , x > 0
α > 0,

Weibull: Ψα(x) =











e−(−x)α , x ≤ 0

1, x > 0
α > 0,

Gumbel: Λ(x) = e−e−x , x ∈ R.

The shape of the probability density functions for the standard Fréchet, Weibull
and Gumbel distributions is given in Figure 2.
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Fig. 2. Densities for the Fréchet, Weibull and Gumbel functions.

Jenkinson and von Mises suggested the following one-parameter representation

Hξ(x) =











e−(1+ξx)−1/ξ if ξ 6= 0

e−e−x if ξ = 0
(3)

of these three standard distributions, with x such that 1 + ξx > 0. This
generalization, known as the generalized extreme value (GEV) distribution, is
obtained by setting ξ = α−1 for the Fréchet distribution, ξ = −α−1 for the
Weibull distribution and by interpreting the Gumbel distribution as the limit
case for ξ = 0.

As in general we do not know in advance the type of limiting distribution of
the sample maxima, the generalized representation is particularly useful when
maximum likelihood estimates have to be computed.
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3.2 Distribution of Exceedances (GPD)

The theory in theorem 1 strongly underlies the approach where we consider the
distribution of exceedances. This method is also called the peak over threshold
(POT) method.

Our problem is illustrated in Figure 3 where we consider an (unknown) dis-
tribution function F of a random variable X. We are interested in estimating
the distribution function Fu of values of x above a certain threshold u.

0 u xF

1

................................. ................

........

.....................

................

.............
...........
..
..........
...
.........
....
.........
....
.........
....
.........
....
.........
....
.........
....
..........
...
..........
...
............
. ..

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

.........................................................................................................................................................................................................

.................
.........................

......................................................................................................
....................

F (x)

x

◦
Fu

...........................................

0 xF − u

1

................................. ................

........

.....................

................

.................................................................................................................................................................................

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

......

...

........

........

........

........

........

........

.........
........
........
........
........
........
.........
........
........
.........
........
........
.........
........
........
..........
.........
...........
...........
............
.............
..............
...................

..........................
............................................

...........................................................................................................................
...................................................

Fu(y)

y

Fig. 3. Distribution function F and conditional distribution function Fu.

The distribution function Fu is called the conditional excess distribution func-
tion (cedf) and is defined as

Fu(y) = P (X − u ≤ y | X > u), 0 ≤ y ≤ xF − u (4)

where X is a random variable, u is a given threshold, y = x−u are the excesses
and xF ≤ ∞ is the right endpoint of F . We verify that Fu can be written in
terms of F , i.e.

Fu(y) =
F (u + y)− F (u)

1− F (u)
=

F (x)− F (u)
1− F (u)

. (5)

The realizations of the random variable X lie mainly between 0 and u and
therefore the estimation of F in this interval generally poses no problems. The
estimation of the portion Fu however might be difficult as we have in general
very little observations in this area.

At this point EVT can prove very helpful as it provides us with a powerful
result about the cedf which is stated in the following theorem:
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Theorem 2 (Pickands (1975), Balkema and de Haan (1974)) For a large
class of underlying distribution functions F the conditional excess distribution
function Fu(y), for u large, is well approximated by

Fu(y) ≈ Gξ,σ(y), u →∞,

where

Gξ,σ(y) =











1−
(

1 + ξ
σy

)−1/ξ
if ξ 6= 0

1− e−y/σ if ξ = 0
(6)

for y ∈ [0, (xF − u)] if ξ ≥ 0 and y ∈ [0, −σ
ξ ] if ξ < 0. Gξ,σ is the so-called

generalized Pareto distribution (GPD).

If x is defined as x = u + y the GPD can also be expressed as a function of x,
i.e. Gξ,σ(x) = 1− (1 + ξ(x− u)/σ)−1/ξ.

Figure 4 illustrates the shape of the generalized Pareto distribution Gξ,σ(x)
when ξ, called the shape parameter or tail index, takes a negative, a positive
and a zero value. The scaling parameter σ is kept equal to one.
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Fig. 4. Shape of the generalized Pareto distribution Gξ,σ for σ = 1.

As, in general, one cannot fix an upper bound for financial losses we see from
Figure 4 that only distributions with shape parameter ξ > 0 are suited to
model fat tailed distributions.

We will now derive analytical expressions for VaRp and ESp defined respectively
in (1) and (2). First we isolate F (x) from (5)

F (x) = (1− F (u)) Fu(y) + F (u)

and replacing Fu by the GPD and F (u) by the estimate (n−Nu)/n, where n
is the total number of observations and Nu the number of observations above
the threshold u, we have

F (x) = Nu
n

(

1−
(

1 + ξ
σ (x− u)

)−1/ξ
)

+
(

1− Nu
n

)

7



which simplifies to

F (x) = 1− Nu
n

(

1 + ξ
σ (x− u)

)−1/ξ
. (7)

Inverting (7) for a given probability p gives

VaRp = u + σ
ξ

(

(

n
Nu

p
)−ξ

− 1
)

. (8)

Let us now rewrite the expected shortfall as

ESp = VaRp + E(X − VaRp | X > VaRp)

where the second term on the right is the mean of the excess distribution
FVaRp(y) over the threshold VaRp. It is known that the mean excess function
for the GPD with parameter ξ < 1 is

e(z) = E(X − z | X > z) =
σ + ξz
1− ξ

, σ + ξz > 0 . (9)

This function gives the average of the excesses of X over varying values of z.
A general result concerning the existence of moments is that if X follows a
GPD then, for all integers r such that r < 1/ξ, the r first moments exist. 1

Similarly, given the definition (2) for the expected shortfall and using expres-
sion (9), for z = VaRp − u and X representing the excesses y over u we obtain

ESp = VaRp +
σ + ξ(VaRp − u)

1− ξ
=

VaRp

1− ξ
+

σ − ξu
1− ξ

. (10)

4 Modelling the Fat Tails of Stock Returns

Our aim is to model the tail of the distribution of a market index negative
movements in order to estimate extreme quantiles. We analyze the daily re-
turns of the Swiss market represented by the “Credit Suisse General” index 2

for the period from 1–01–1969 to 1–12–1999. The application has been ex-
ecuted in a MATLAB 5.x programming environment. The files containing
the data and the code can be downloaded from the URL www.unige.ch/ses/
metri/gilli/evtrm/evtrm_mm.html. Figure 5 shows the plot of the n = 8065
observed daily returns.

1 See Embrechts et al. (1999), page 165.
2 This index has the longest history among indices representing the Swiss market.
Data have been extracted from DataStream.
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−10
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Fig. 5. Daily returns of the Credit Suisse General index.

A first information about the behaviour of the returns can be obtained by
standardizing, i.e. centering and reducing them. In Figure 6, we reproduce the
histogram of the standardized returns.

−10 −5 0 5 10 15
0

0.005

0.01

0.015

Fig. 6. Tails of the standardized returns (lower part of histogram).

We will now use the theory introduced in the previous chapter to analyze and
model the losses. As, for convenience, we want the losses to be in the right
tail, in the following we have changed the sign of the returns so that positive
values correspond to losses.

First, we will model the exceedances over a given threshold which will enable
us to estimate high quantiles and the corresponding expected shortfall. Second,
we will consider the distribution of the so called block maxima, which then
allows the determination of the return level.

4.1 The Peak Over Threshold (POT) Method

Despite the appealing theoretical framework EVT provides, small sample is-
sues pose problems when it comes to statistical inference. The main problem
is the selection of the threshold u. Theory tells us that u should be high in
order to satisfy Theorem 2, but the higher the threshold the less observations
are left for the estimation of the parameters of the tail distribution function.
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So far, no automatic algorithm with satisfactory performance for the selection
of the threshold u is available. The issue of determining the fraction of data
belonging to the tail is treated by Danielsson et al. (1997), Danielsson and
de Vries (1997a) and Dupuis (1998) among others. Tools from exploratory
data analysis prove helpful in approaching this problem and we will present
them together with our application.

Let us consider the sample distribution function ̂Fn(xn
i ) which, for a set of n

observations, given in increasing order xn
1 ≤ · · · ≤ xn

n, is defined as

̂Fn(xn
i ) =

i
n

i = 1, . . . , n. (11)

The sample distribution function corresponding to the right tail of our data
set is given in Figure 7. Our goal is to estimate the functional form of this
portion of the distribution.

2 4 6 8 10 12 14

0.96

0.98

1

Fig. 7. Right portion of the sample distribution for our data.

Graphical Data Exploration Tools

Quantile plots (QQ–plots) can be used to distinguish visually between different
distribution functions. Figure 8 shows the sample quantiles plotted against the
GPD quantiles. Knowing that for financial data α = 1/ξ takes values in the
range [3, 4] (see e.g. (Embrechts et al., 1999, p. 291)) the GPD quantiles are
computed with ξ = 0.3.

0 2 4 6 8 10 12 14
0

10

20

Fig. 8. QQ–plot of sample quantiles exceeding 1 against the corresponding quantiles
of GPD distribution.

The picture strongly suggests that the hypotheses that our data follow a GPD
distribution is acceptable.
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Another graphical tool that is helpful for the selection of the threshold u is
the sample mean excess plot defined by the points

(u, en(u)) , xn
1 < u < xn

n (12)

and where the sample mean excess function is defined as

en(u) =
∑n

i=k(x
n
i − u)

n− k + 1
, k = min{i | xn

i > u},

where n− k + 1 is the number of observations exceeding the threshold u. The
sample mean excess function is an estimate of the mean excess function e(u).
For the GPD it has been defined in (9) and is linear.

Figure 9 shows the sample mean excess plot corresponding to our data. From
a closer inspection of the plot in the right panel, which zooms the function
for a smaller range of values for u, we suggest trying the value u = 1.56 and
u = 3 for the threshold as they are located at the beginning of a portion of
the sample mean excess plot which is roughly linear.

0 2 4 6 8
0

0.5

1

1.5

2

2.5

3

3.5

4

u
1.5 2 2.5 3

0.8

1

1.2

1.4

1.6

1.8

2

u

Fig. 9. Sample mean excess plot.

Maximum Likelihood Estimation

Given the theoretical results presented in the previous section, we know that
the distribution of the observations above the threshold in the tail should be
a generalized Pareto distribution (GPD). This is confirmed by the QQ-plot
in Figure 8. Different methods can be used to estimate the parameters of the
GPD. 3 We use the maximum likelihood estimation method.

3 These are the maximum likelihood estimation, the method of moments, the
method of probability-weighted moments and the elemental percentile method. For
comparisons and detailed discussions about their use for fitting the GPD to data,
see Hosking and Wallis (1987), Grimshaw (1993), Tajvidi (1996a), Tajvidi (1996b)
and Castillo and Hadi (1997).
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For a sample y = {y1, . . . , yn} the log-likelihood function L(ξ, σ | y) for the
GPD is the logarithm of the joint density of the n observations

L(ξ, σ | y) =











−n log σ −
(

1
ξ + 1

)

∑n
i=1 log

(

1 + ξ
σyi

)

if ξ 6= 0

−n log σ − 1
σ

∑n
i=1 yi if ξ = 0.

According to our interpretation of the sample mean excess plot, we computed
the values ξ̂ and σ̂ which maximize the log-likelihood function for the two
samples corresponding to a threshold of u = 1.56 and u = 3. We obtained
the estimates ξ̂ = 0.35 and σ̂ = 0.67 for u = 1.56 and ξ̂ = 0.33 and σ̂ = 0.96
for u = 3. We observe that the shape parameter varies very little between the
two values of u and we therefore choose the threshold u = 1.56 leaving 247
observations in the tail instead of 56 for u = 3.

Again we may use a QQ–plot to visually check whether the data points satisfy
the GPD assumption. The left panel in Figure 10 shows the plot of the sample
quantiles against Gξ̂,σ̂ quantiles, from where we can conclude that the fit is
satisfactory.

0 5 10 15
0

2

4

6

8

10

12

14

0 5 10 15
0.98

0.985

0.99

0.995

1

Fig. 10. QQ–plot of sample quantiles against Gξ̂,σ̂ quantiles (left panel) and GPD
fitted to the 247 exceedances above the threshold u = 1.56 (right panel).

The GPD fitted to the Nu = 247 exceedances above the threshold u = 1.56 is
plotted in the right panel in Figure 10. High quantiles may now be directly read
in the plot or computed from equation (8) where we replace the parameters
by their estimates

̂VaRp = u + σ̂
ξ̂

(

(

n
Nu

p
)−ξ̂

− 1
)

, ξ̂ 6= 0. (13)

For instance, if we choose p = 0.01 we can compute ̂VaR 0.01 = 2.48 and
̂ES 0.01 = 4.0.
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Confidence Intervals

If we admit that large-sample theory holds for our estimates, we can construct
confidence intervals for the parameters ξ and σ by inverting the likelihood ra-
tio test. 4 As only exceedances enter the estimation procedure, the estimates
rely on very small data sets. For this reason one cannot always rely on the
asymptotic optimality properties of the maximum likelihood estimators. Taj-
vidi (1996a) investigates the performance of several bootstrap and likelihood-
based methods for constructing confidence intervals for the parameters and
quantiles of the GPD. His conclusion is that the profile likelihood confidence
intervals should be corrected for the small sample size using the methodo-
logy of Lawley (1956) and that they are comparable to the bias corrected and
accelerated bootstrap confidence intervals 5 in terms of accuracy.

In addition to single confidence intervals on the parameters, we also consider
joint confidence intervals. For example, a joint interval for the parameters ξ
and σ is given by the contour at level χ2

α,2 of the relative log-likelihood function
defined as L(ξ, σ)− L(ξ̂, σ̂).

To construct single confidence intervals, we need to compute the profile log-
likelihood functions. For example, in the case we need an interval estimate for
ξ, the profile log-likelihood function is

L∗(ξ) = max
σ

L(ξ, σ)

and the 1− α confidence interval is given by values of ξ satisfying

L∗(ξ) > L(ξ̂, σ̂)− 1
2 χ2

α,1

where χ2
α,1 is the 1−α quantile of the χ2 distribution with 1 degree of freedom.

Figure 11 shows the single and joint confidence intervals for the estimated
parameters.

In order to further explore the reliability of the confidence intervals we applied
the bootstrap method to generate 1000 samples. For each sample, we estimated
the parameters and plotted the pairs (ξ̂i, σ̂i), i = 1, . . . , 1000. These points
are plotted in Figure 11 together with the the log-likelihood based confidence
intervals. We can verify that about 5% lie outside the 95% joint confidence
region computed with the likelihood ratio test. For the marginal distributions
we observe that about 13.5% of the estimates of ξ and 18% of the estimates of σ
lie outside the maximum likelihood confidence intervals for a single parameter.
We can also observe that the density of the bootstrap estimates differs from

4 See for instance Azzalini (1996) for an introduction.
5 See Efron and Tibshirani (1993) or Shao and Tu (1995).
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the log-likelihood based confidence interval and further investigation about
the statistical properties of the estimates would be needed.
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Fig. 11. Single and joint 95% confidence intervals for ξ and σ for the POT method.
Dots represent 1000 bootstrap estimates.

The empirical marginal distributions of the bootstrap values for ξ and σ as
well as the corresponding empirical distribution of VaR 0.01 and ES 0.01 are re-
produced in the plots in Figure 12.
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Fig. 12. Empirical bootstrap marginal distributions for ξ̂ (upper left), σ̂ (upper
right), VaR 0.01 (lower left) and ES 0.01 (lower right) for the POT method.

Table 1 summarizes the point estimates, the maximum likelihood (ML) and
the bootstrap (BS) confidence intervals of the marginal distributions.
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Table 1
Point estimates and 95% maximum likelihood (ML) and bootstrap (BS) confidence
intervals for the POT method.

Lower bound Point estimate Upper bound
BS ML ML ML BS

ξ̂ 0.16 0.23 0.35 0.51 0.52
σ̂ 0.52 0.57 0.67 0.79 0.85

̂VaR 0.01 2.33 2.34 2.48 2.65 2.66
̂ES 0.01 3.47 3.53 4.00 5.03 4.67

The results in Table 1 indicate that with probability 0.01 the tomorrow’s
loss will exceed the value 2.48% and that the corresponding expected loss,
that is the average loss in situations where the losses exceed 2.48%, is 4.00%.
These point estimates are completed with 95% confidence intervals. Thus the
expected loss will, in 95 out of 100 cases, lie between 3.47% and 4.67%.

It is interesting to note that the upper bound of the confidence interval for the
parameter ξ is such that the first order moment is finite. This guarantees that
the estimated expected shortfall, which is a conditional first moment, exists.

Log-likelihood based confidence intervals for VaRp can be obtained by using a
reparameterized version of GPD defined as a function of ξ and VaRp:

Gξ,VaRp(y) =















1−
(

1 +
(

n
Nu

p
)−ξ

−1
VaRp−u y

)− 1
ξ

ξ 6= 0

1− n
Nu

p e
y

VaRp−u ξ = 0

.

The corresponding probability density function is

gξ,VaRp(y) =



















(

n
Nu

p
)−ξ

−1
ξ(VaRp−u)

(

1 +
(

n
Nu

p
)−ξ

−1
VaRp−u y

)− 1
ξ−1

ξ 6= 0

−
n

Nu
p e

y
VaRp−u

VaRp−u ξ = 0

.

Figure 13 these likelihood based confidence regions obtained by using this
reparameterized version of GPD.
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Fig. 13. Left panel: Relative profile log-likelihood function and confidence interval for
VaRp. Right panel: Single and joint confidence intervals at level 95% for ξ̂ and VaRp.
Dots represent 1000 bootstrap estimates for the parameters of the POT method.

Similarly, using the following reparameterization for ξ 6= 0

Gξ,ESp = 1−





1 +
ξ +

(

n
Nu

p
)−ξ

− 1

(ESp − u)(1− ξ)
y







− 1
ξ

gξ,ESp =
ξ +

(

n
Nu

p
)−ξ

− 1

ξ(1− ξ)(ESp − u)





1 +
ξ +

(

n
Nu

p
)−ξ

− 1

(ESp − u)(1− ξ)
y







− 1
ξ−1

we compute a log-likelihood based confidence interval for the expected shortfall
ESp. In Figure 14 we see that the log-likelihood confidence interval for ESp is
not symmetric with respect to ̂ES 0.01.
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Fig. 14. Left panel: Relative profile log-likelihood function and confidence interval
for ESp. Right panel: Single and joint confidence intervals at level 95% for ξ̂ and ESp.
Dots represent 1000 bootstrap estimates for the parameters of the POT method.

We observe that in both Figures 13 and 14 the number of bootstrap estimates
lying outside the 95% likelihood joint confidence intervals is 49 out of 1000.
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4.2 Method of Block Maxima

We now apply the block maxima method to our daily return data. For this
method the delicate point is the appropriate choice of the periods defining the
blocks. The calendar naturally suggests periods like months, quarters, etc. In
order to avoid seasonal effects, we choose yearly periods which are likely to be
sufficiently large for Theorem 1 to hold.

Thus our sample has been divided into 31 non-overlapping sub-samples, each
of them containing the daily returns of the successive calendar years. Therefore
not all our blocks are of exactly the same length.

The absolute value of the minimum return in each of the blocks constitute the
data points in the sample of minima M which is used to estimate the gener-
alized extreme value distribution (GEV). Figure 15 plots the yearly minima
and maxima of our daily returns.

1971 1974 1976 1979 1982 1984 1987 1990 1993 1995 1998

−10

0

10

Fig. 15. Yearly minima and maxima of the daily returns of the Credit Suisse General
index.

The standard GEV defined in (3) is the limiting distribution of normalized
extrema. Given that in practice we do not know the true distribution of the
returns and, as a result, we do not have any idea about the norming constants
cn and dn, we use the three parameter specification

Hξ,σ,µ(x) = Hξ

(x− µ
σ

)

x ∈ D, D =























]−∞, µ− σ
ξ [ ξ < 0

]−∞, ∞[ ξ = 0

]µ− σ
ξ ∞[ ξ > 0

(14)

of the GEV, which is the limiting distribution of the unnormalized maxima.
The two additional parameters µ and σ are the location and the scale param-
eters representing the unknown norming constants.

The log-likelihood function we maximize with respect to the three unknown
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parameters is
L(ξ, µ, σ; x) =

∏

i
log(h(xi)), xi ∈ M (15)

where

h(ξ, µ, σ; x) =
1
σ

(

1 + ξ
x− µ

σ

)−1/ξ−1
exp

(

−
(

1 + ξ
x− µ

σ

)−1/ξ
)

is the probability density function if ξ 6= 0 and 1 + ξ x−µ
σ > 0. If ξ = 0 the

function h is

h(ξ, µ, σ; x) =
1
σ

exp
(

−x− µ
σ

)

exp
(

− exp
(

−x− µ
σ

))

.

The log-likelihood estimates we obtain are ξ̂ = 0.28, σ̂ = 1.37 and µ̂ = 2.65. In
Figure 16, we give the plot of the sample distribution and the corresponding
fitted GEV distribution.
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Fig. 16. Sample distribution of yearly maxima and corresponding fitted GEV dis-
tribution.

In practice the quantities of interest are not the parameters themselves, but
the quantiles, also called return levels, of the estimated GEV. The return level
Rk is the level we expect to be exceeded in one out of k one year periods:

Rk = H−1
ξ,σ,µ(1− 1

k ).

Substituting the parameters ξ, σ and µ by their estimates we get

R̂k =















µ̂− σ̂
ξ̂

(

1−
(

− log(1− 1
k )

)−ξ̂
)

ξ 6= 0

µ̂− σ̂ log
(

− log(1− 1
k )

)

ξ = 0
. (16)

Taking for example k = 10, we obtain for our data R̂10 = 6.94, which means
that the maximum loss observed during a period of one year will exceed 6.94%
in one out of ten years on average.
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Confidence Intervals

As already discussed in the case of the GPD estimation, it may prove useful
to approach the quantile estimation problem by directly reparameterizing the
GEV distribution as a function of the unknown return level Rk. To achieve
this, we isolate µ̂ from equation (16) and substitute it into Hξ,σ,µ defined
in (14). The GEV distribution function then becomes

Hξ,σ,Rk =















exp
(

−
(

ξ
σ (x−Rk) +

(

− log(1− 1
k )

)−ξ
)−1/ξ

)

ξ 6= 0

(1− 1
k )

exp
(

−x−Rk

σ

)

ξ = 0

for x ∈ D defined as

D =























]−∞,
(

Rk − ξ
σ

(

− log(1− 1
k )

)−ξ
)

[ ξ < 0

]−∞, ∞[ ξ = 0

]
(

Rk − ξ
σ

(

− log(1− 1
k )

)−ξ
)

, ∞[ ξ > 0

and we can directly obtain maximum likelihood estimates for Rk. The profile
log-likelihood function can then be used to compute separate or joint confi-
dence intervals for each of the parameters. For example, in the case where the
parameter of interest is Rk, the profile log-likelihood function will be defined
as

L∗(Rk) = max
ξ, σ

L(ξ, σ,Rk).

The confidence interval we then derive includes all values of Rk satisfying the
condition

L∗(Rk)− L(ξ̂, σ̂, R̂k) > −1
2 χ2

α, 1

where χ2
α, 1 refers to the (1 − α)–level quantile of the χ2 distribution with 1

degree of freedom. The function L∗(Rk) − L∗(ξ̂, σ̂, R̂k) is called the relative
profile log-likelihood and is plotted in the left panel of Figure 17. For α = 0.05
the interval estimate for R10 is [5.29, 11.63].

In the case where a joint confidence region on two parameters, say ξ and Rk

is needed, the profile log-likelihood function, which in this case is a surface, is
defined as

L∗(ξ, Rk) = max
σ

L(ξ, σ,Rk).

In this case the confidence region is defined as the contour at the level −1
2 χ2

α, 2
of the relative profile log-likelihood function

L∗(ξ, Rk)− L(ξ̂, σ̂, R̂k).

In the right panel of Figure 17, we reproduce the confidence regions at level
95% for the parameters ξ̂ and R̂k. We also generated 1000 bootstrap samples
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and computed the bootstrap confidence intervals for ξ, µ, σ and R10. The pairs
(R10, ξ) are plotted in the right panel of Figure 17.
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Fig. 17. Left panel: Relative profile log-likelihood and 95% confidence interval for
R̂10 estimated with the method of block maxima. Right panel: Joint confidence
region for ξ̂ and R̂10 at level 95%. In both panels the maximum likelihood estimates
are marked with the symbol ∗.

The empirical marginal distributions of the bootstrap values for ξ, σ, µ and
R10 are reproduced in the plots in Figure 18.
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Fig. 18. Empirical marginal distributions of the bootstrap estimates.

Table 2 summarizes the point estimates, the maximum likelihood (ML) and the
bootstrap (BS) confidence intervals for the reparameterized GEV distribution.

Table 2
Point estimates and 95% maximum likelihood (ML) and bootstrap (BS) confidence
intervals.

Lower bound Point estimate Upper bound
BS ML ML ML BS

ξ̂ -.11 0.02 0.28 0.58 0.60
σ̂ 0.91 1.09 1.37 1.84 1.86

R̂10 5.05 5.29 6.94 11.63 9.26
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5 Concluding Remarks

We have illustrated how extreme value theory can be used to model tail-related
risk measures such as value-at-risk, expected shortfall and return level. In order
to assess the reliability of the methods presented in the previous sections, we
did some out-of-sample analysis by repeating all computations for a subsample
of the data covering the period from 1969 to 1989.

For the POT method, Table 3 reproduces the point estimates and the boot-
strap confidence intervals obtained from the 5477 first observations defining
the subsample.

Table 3
Point estimates for the POT method and 95% maximum likelihood (ML) and boot-
strap (BS) confidence intervals corresponding to the period 1969–1989.

Lower bound Point estimate Upper bound
BS ML ML ML BS

ξ̂ 0.12 0.24 0.41 0.65 0.68
σ̂ 0.44 0.48 0.60 0.77 0.83

̂VaR 0.01 2.02 2.03 2.17 2.33 2.34
̂ES 0.01 3.01 3.07 3.60 5.41 4.78

We observe that the estimated values differ very little from values reported in
Table 1 which correspond to the estimates obtained from the whole sample.

We also compared VaR estimated with the POT method with the VaR proposed
by the Basle accord. Assuming the normal distribution for the observations
until 1989, the 1% lower quantile is 1.95. Multiplying this value by 3 gives
5.86, whereas in our calculation the upper bound for the expected shortfall is
4.78. Clearly the POT method provides more accurate information.

As far as the estimation of GEV is concerned, the estimated parameters over
the 21 first yearly maximum losses are ξ̂ = 0.33, σ̂ = 1.2 and µ̂ = 2.36. The
corresponding return level R10 is 6.4, which means that yearly maximum losses
will exceed the value 6.4% once in ten years on average. In Figure 19, we verify
that in the out-of-sample period this value is exceeded twice, which is not in
contradiction with our model.
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Fig. 19. Out of sample comparisons of the return level R10 (horizontal dashed line).
Observed minima exceeding R10 are marked with a star. GEV distribution is esti-
mated over yearly minima from 1969 to 1989 (marked with +).

Finally, it might be interesting to show how the model allows extrapolation
beyond the sample. Using the entire sample, we computed R100 = 15.4%,
i.e. the level we expect to be exceeded only in one year every century. This
value varies only insignificantly whether the full or the subsample is considered.
The models also tells us that the 1987 crash is likely to happen once in 60 years.
This is obtained by computing H(13.1), where H is the GEV distribution with
parameters ξ̂ = 0.33, σ̂ = 1.2 and µ̂ = 2.36.

From the POT model, we conclude that the “once a century loss” of 15.4%
predicted by GEV occurs once every 60 years. We obtain this result by com-
puting the probability p = 1− F (15.4) where F is the estimated GPD. Such
an event will happen on average every 1/p days which in our case gives 60
years. Similarly using the POT method we can compute that the 1987 crash
loss is likely to be exceeded every 37 years. We should mention that the events
forecasted by the POT and block maxima method are not exactly the same,
which in part explains the difference concerning the results of 60 and 100
years.
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Embrechts, P., Klüppelberg, C., and Mikosch, T. (1999). Modelling Extremal
Events for Insurance and Finance. Applications of Mathematics. Springer.
2nd ed.(1st ed., 1997).

Fisher, R. and Tippett, L. H. C. (1928). Limiting forms of the frequency
distribution of largest or smallest member of a sample. Proceedings of the
Cambridge philosophical society, 24:180–190.

Gnedenko, B. V. (1943). Sur la distribution limite du terme d’une série
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