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Abstract

This paper discusses a variety of techniques for modeling the evolution of
interest rates in the presence of stochastic volatily. We cover both Libor
Market models and low-dimensond Makovian HIM modds. To facilitate
mode cdibration, specid emphasis is put on efficient pricing of plain-vanilla
indruments. Effects of stochadtic volility on CMS gructures as well as
Bermudan swaptions are discussed.



1. Introduction.

There is currently great interest in improving fixed income models to better capture
observed voldility skews and smilesin cap and swaption markets. Approaches siggestedin
the literature include state-dependent diffusions (see e.g. Andersen and Andreasen, 2000)
and geometric Brownian motion overlaid with ajump process (as in Glasserman and Kou,
1999). While these approaches are both reasonable, they are not without problemsand it is
unlikely that they tell the whole story. For ingtance, as discussed in Rebonato (2001) and in
anumber of empirica studies, incluson of sochadtic volatility into fixed income modds can
sgnificantly improve the redism of the models. This paper continues this line of research by
focusing on flexible, yet practicd techniques for the financia engineer to condruct interest
rate modds with stochastic volatility. We work with both multi-factor Libor Market (LM)
models and low-dimensional Markovian HIM models, and demonstrate that the proposed
models are reasonable from an empirica perspective. To ad cdibration and fast mark-to-
market of smple derivatives, we pay particular atention to the development a variety of
exact and approximative techniques to compute the prices of basic European derivetives
such as caps, swaptions, and CMS options. Further, the paper introduces numerical
methods for complex derivatives and gives examples of the effects of sochadtic volatility on
Bermudan swaptions.

2. Notation. Libor Market mode!.

Let {T}\\, beadiscrete tenor structure and let F, (t) denotethetimet valueof the
discretely compounded forward rate spanning [T, T,.,]- Also, let R ,(t) denote the par
rate of a plain-vanilla swap exchanging fixed for floating payments at points in the tenor
gructure T, T..,..., T, With d, ° T, - T, and P(t, T) being thetimet discount factor to

timeT, we have

F ) =d.*(Pt.T)/PtT.)- 1), tET,

POT)-POT) A y= 4 o PHT)LET.
A1) A= 8 dPILT) LET,

R (D)
We now postulate modd arbitrage-free forward rate dynamics of the form

dr. () =i (F.®)NVO! O §VOm @ +awmd (13)

where W is an n-dimensond Brownian motion, j :R*® R* is a wel-behaved
deterministic function satisfying j (0) =0, |, isan n-dimensond deterministic voldtility
function loading each scalar Brownian motion, V(t) is a scaar postive process to be
specified, and m, isan n-dimendond numeraire-specific drift that ensures lack of arbitrage
across bonds. An expression for m can be found in Andersen and Andreasen (2000); for
the specia case where the bond P(t,T,,,) isused asthe numeraireasset m,(t) = 0 andthe
kth forward rate is a martingale. Notice that (1a) is non standard as we have alowed the
locd variance ||1, () ||* to be multiplied by a scalar factor \/(t) . Setting \/(t) © 1 (or some

N)Y



deterministic function) recovers the extended Libor market modd of Andersen and
Andreasen (2000); letting V be randomintroduces the desired stochastic movements of rate
volatilities. We note that these movements of the volatility surface are "pardld"; additiond
factors could, in principle, be added to make the fluctuaions of voldilities more
complicated, but the resulting abundance of hard-to-estimate process parameters would
make the mode difficult to populate, hard for traders to comprehend, and probably not
much more flexible in terms of the types of voldility smiles and smirks that could be
generated. The process for V is here assumed to be a classical mean reverting process:

dv(t) =k (q- V(t))dt+ey (V(t))dZ(t), (1b)

where k,q,e >0,y :R*® R* isasmooth function with y (0)=0, and 7 isascaar
Brownian motion independent of W. V has the role of a scale factor, so typicaly (but not
necessarily) V(0)=q =1. To ensure proper scale behavior, it is most natural to st
y (X) =x", p>0, but for now we do not explicitly impose this choice. A few comments
about the chosen framework:

The voldility functions |, ,k =1,2,...,N - 1 are assumed exogenous and it is up to the
modd builder to decide whether a parametric approach or a ron-parametric approach
should be usad in estimating this function.

The assumptions of y (0) =0 and j (0) = 0 ensure that variances and forward rates
canot go beow zero. We shdl occasondly violate the latter condition to gan
tractability.

The V-process generates a near-symmetric smile which is superimposed onto the base
smile produced by the function j . The smile generated by the V- processis” stationary”
in the sense that the bottom of the smile will move dong with fluctugtions in the forward
rate.

If j (x)/x Iis a monotonicaly downwad doping function in x (eg.
j (X)=x", 0< p<1), the base smile is a downward-doping skew. If j (x)/ x isnon-
monotonic (eg. j (x) = x® +wx®, 0< p<1, q>1), the base smile can be a true U-
shaped smile, but will be nongationary: when rates move, the bottom of the smile will
not move with the forward.

The smile effects of j typicaly persist for much longer méaturities then those of the
stochastic volatility process (1b), a consequence of the fact that j introduces
dependency in log-increments of forward rate movements. Working with a generd skew
function j thus dlows the modd builder some flexibility in shaping the long-term
behavior of the smile (but see the point above for a cavest).

While Z is assumed independent' of W, as long as j (x)/x?* const. our modd
nevertheless is able to generate a range of effective correlaions between the loca
forward rate voldility (defined as sk(t,Fk,V)zx/V.,/Hl (7 (F)/F,) and the
forward itsdf.

! The need to assume independence is primarily technical: without it, any change of probability measure
introduces terms depending on forward rates in the process for V, thereby destroying the tractability of
the model.
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As shown in Andersen and Brotherton-Ratcliffe (2001), (1ab) leads to swap par rate
dynamics that for many practical choicesof j  can be closely gpproximated by

dR, (1) » W (O] (Ro(D)! o)W, (1) )

where W, is a vector Brownian motion under the measure (“swap measure’) induced by
using the anuity factor A, as numeraire, and where | . (t) asusua can be gpproximated
asalinear combinationof the | ,’s, k =s,s+1,...,e- 1. Applications and tests of swap rate
gpproximations such as (2) can be found in numerous sources, see for ingtance Andersen
and Andreasen (2000), Glasserman and Kou (1999), and Rebonato (2001), to name a few.

3. Cap and Swaption Pricing by Asymptotic Expansions.

To enable fast modd cdibration, we now seek efficient means of computing prices
of European caps and swaptions. Specificaly, consider now acaplet C, payingatime T,
the amount C,(T,,,) =d, (F (T,)- X)*, aswell as a European payer swaption S, paying
atime T, theamount S (T,) = A (T)(R .(T,)- K)* (XandK arethusthe caplet strike
and the fixed swap coupon, respectively). We have

G, (0)=d,P(O, T )E** (F(T,)- X)",
Ss,e(o) = 'A‘s,e(O)EASJE (Rs,e(Ts) - K)+ )

where EX** and E*+ denote expectations with respect to the probability measures induced
by the numeraires P(t,T,,,) ad A ,(t). respectively. F, isamartingale under the former
meesure; R, isamartingale under the latter. Notice that with the processes (13) and (2)
having identicd form, caplet and swaption price formulas will be completely equivaent
(short of numeraire scding factors), and in this section we only condder the former.
Specificaly, we here propose a asymptotic expansion for the general caplet pricing problem;
in the next section we present an exact transformbased formula for specid choices of the
functionj andy .

To develop an asymptotic expansion, consider first the specid case where V is
non-random, eg. V° 1. Even for this smple case, caplet prices cannot be computed
explicitly under our process assumption. However, for a large class of j 's, accurate
asymptotic expansions can be constructed. For instance, a smal-time expansion around the
specia case j (x) = x resultsin the following expression:

Caplet Expansionfor Vo 1.
Asume V(t)=1 for al t Defining c=TQ|ll, (@|*d and writing

C(0)=P(0,T,,.)d,g(F,(0);c) for somefunction g =g(F;c) , we have
_In(F /X) £iW(F, ¢)?

g(F;c)=FF(d,)- XF(d.), d, = WE.O) , )




where F isthe cumulative Gaussian distribution function, and

W(F, C) — WO(F)C]JZTKUZ +VV1(F)C3/2Tk3/2 +O(Tk5/2),

Wy(F) =X vy () = - o V(F) Zlnﬁwo(F)ﬁ—. FX H
Ui (i 15 () o i (P (X)

Proof and testsof this result can be found in Andersen and Brotherton-Ratdliffe (2001) who
a0 ligt the result for the limit F, ® X . While being constructed to be accurate for small
maturities, the expansion turns out to often retain its precison for long maturities, even for
options with grikes far from at-the-money. This is, for instance, the case for CEV-like
specifications j (x) = x”, aswell astruncated exponentids, j (x) = x(1+ae™) a,b>0.

We now relax the assumption that V © 1 and instead assume that V follows (1b). A
amdl-time expansion for the resulting caplet pricing equations turns out to be cumbersome;
instead we adapt the smdl- e expansonsin Hull and White (1987) and Lewis (2000) to our
purposes. Theresult is.

Caplet Expansion for StochasticV.
Define Y =In(F (0)/X) and c(v)=T, QI O IF (@ +V-ale*)dt. Then
C(0) = PO,T,.,)(T,, - T)g (F(0);c(V(0)) with g given asin Eq. (3), and

¢ (V)=T(V) +@age? +be*) +(@e’ +be’)Y2+he'Y'e " +0(e®)

for coefficients a,, a,, by, b, b,, and L an arbitrary positive number. The
corresponding Black-Scholes implied volatility is given by

S 1o = Wi/ (V) +W,C (V)¥2T, +O(T2) .

The coeffidients a,, a,, by, b,, b, depend on the parameters of the process of V,
including the chosen skew function y . Their computation is essentidly a métter of tedious
agebra, but the resulting expressions are lengthy and for space reasons we here must refer
to Andersen and Brotherton Ratcliffe (2001) for details (article is available on the Internet).
Suffice to say that al coefficients can be computed dmost ingtantaneoudy on a compuiter,
making the resulting expresson extremely efficient ad fast enough even for production
sysems pricing and risk-managing many thousands of ceplets. The paameter L is
essentidly, a defense mechanism protecting the expansion from possible degeneration for
options very deeply out-of-the money (where | Y | can grow large). In most cases, the exact
vadueof L isaf little importance.
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We note that for many typical parameters and option contracts, it often suffices to
only include terms in (4) to order O(e?) (that is, st b, =b, =b, =0), but the higher-
order terms often become important when, say, the mean reversion speed (k) islow and
the volatility-of-variance (e) is high. Figure 1 demongtrates typicd performance of the
O(e?) and O(e*) expansions (“O4” and “O2" in the figure). Many further tests can be
found in Andersen and Brotherton Ratcliffe (2001).

4. Exact Transform Solution.

In cases where very high volatility of variance and/or very low mean reversons are
required, the expangons in Section 3 might have to be continued to inconveniently high
order. In such situations it is sometimes safer and easer to instead rely on exact transform-
based pricing expressons. To develop such expressions, however, we must smplify our
setup somewhat. In particular, we specidize to an &fine setting with y (x) =+/x and
j (X)=mx+(1- mL, where L3 0 and O<m£1. As we shdl show, this setup is
tractable, athough the tractability comes with the cost of permitting interest rates can
become negetive with positive probability. We aso notice that the choice of 'y (x) =+/x
dlows the process (2) to reach 0 with podtive probability if, as will often be the case in
applications, 2kq <e?. As 0 is non-absorbing, this has few practical ramifications,
however.

As demondtrated in Section 3, caplet and swaption formulas have the same form in
our setup; for variety we will here develop the latter. Dropping subscripts (e R ,(t)
becomes R(t) , and so forth), we write

_AO) . A0

S(0) = AOE"(R(T)- K) == 2EAx(T)- K)'° =2 1(0)

where K'=mK +(1- m)L and

x® _

) O (O)MAW(L), x (0) = mR(0)+ (1- m)L -

Using the results of Heston (1993) and Lewis (2000) we find the swaption price formula by
numericaly solving the inverse Fourier integrd

-~ e( iw-+3)Inx (0)/K’
f (0) =x(0)- _Q —H(O,W)dw (5)

4

where i =4/-1 and H (t,w) = g *EU0 with g b given asthe solutions to the Riccati
ODEs

da
—=-kagb, a(T..w )= 0,
™ qb, a(T,w )

%:Amﬂ (t)2w2+kb- 1e?b?, b(T,w)= 0.



For constant | these ODES can be solved in closed form (see eg. Lewis (2000) or Lipton
(2001)), a resut which can aso be used iteratively for piecewise congtant | . Inthe generd
cae, a dmple numericd Runge-Kutta scheme can be goplied a little additiona
computationa expense. We point out that the transform solution can easly accommodate
non-zero correlation r between V and Rby modifying theterm k b in the second ODE to
b(k +(iw- Del r ), but we shall rarely need this as non-zero correlation will hamper the
congruction of practicad models for the joint dynamics of the full yidd curve (see footnote
1).

We findly note that when computing the integrd (5) numericdly, performance can
often be improved by using the case e =0 asa*control variae’ through the split

(- iw+1)Inx (0)/K*

_ K'we - W2+Ln2/2 .
£ (0) _x(0)-50¥T(H(o,w)- g btk )dvv- K Gus

4

where

G =F (x)+ X2 (1- F (x);

« = Inx()/K
N \Y

I+

$v, vi= gt () (a+ (V(0)- ).

With this trick, the combined scheme of Runge-Kutta and numerica Fourier inverson isfast
and accurate, athough some attention to step Szes is, as adways, needed for long-dated
options with strikes far from the atthe-money point. Typicaly, accurate option prices can
be obtained in around 0.03 seconds per option on aregular PC (about three times faster for
the constant parameter case).

5. A low-dimensional Markov mode with stochastic volatility.

In Section 2, we specified our stochadtic interest rate model as an extension of the
multi-dimensona Libor market modd. In many cases it is useful to work with
aoproximating low-dimensond Markov modds that dlow for option pricing in finite
difference grids. We shdl here describe such a modd which can be made approximately
cong stent with the cap and swaption expressions derived earlier.

As a dating point, let f¢,T)=- TInP(t,T)/ T be the usud continuoudy
compounded forward rete a time t for deposit over theinterval [T, T +dT] . Asshown by
Heath, Jarrow, and Morton (HIM) (1992) any arbitrage free modd with a single Brownian
motion driving the yield curve level can be written as

df ¢,T) =s (t,T)g(‘Ss (t ,5)dsct +dW(t)3

where W is a scalar Brownian motion under the risk-neutral measure and {s (t,T)} , isa

T3t

collection of generad stochastic processes adapted to the Brownian motion. The modd is
fully specified by the initial forward curve and a given volatility structure {s (t,T)}., . The

T3t"
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generd one-factor HIM modd requires as full continuum of al forward rates as date
vaiables, with tree or lattice gpproximations of the modd generdly non-recombining and
largely impractical.

Numericaly tractable versons of the HIM mode were tregted in arange of papers
in the early 90s, see for example Babbs (1993), Cheyette (1992), Jamshidian (1991), and
Ritchken and Sankarasubrahmaniam (1992). In particular, it was noticed that when the
forward rate volatility is of the separable form

s (tT)=g(MA1)

where g isadeterministic function and h is some adapted stochastic process, afinite sate
vaiable Makov representation of the yidd curve is possble. Specificdly, defining
n(t) =- g'(t)/ g(t) and h(t) =s (t,t) = g(t)n(t) we get the bond recongtitution formula

P(LT) = I;((%-It_)) g G- 16E A0 G(t,T) = 6 e'QUn % qu (6)

where, in the risk-neutral measure,

dx(t) = (-n (EX(1) + (1)) ot +h () AW/(1), X(0) =0, (78)
dy(t) = (h (t)” - 2n(t)y(1)) ct, y(0) =0 (70)

As long as h(t)=h(t,x(t),y(t)), (6) and (7ab) show that the resulting model is
Markovian in only two date varigbles, x and y. The firgt state variable x can be interpreted
asayidd curve factor, with the instantaneous short rate given by

F(t)° ft,t) =F (0t) +x(t) -

The second dtate variable y has the interpretation of a convexity correction term ensuring
that the mode is arbitrage-free. It is worth noting that the modd only collgpses to a single
date variable modd in the case when n isdeterminigtic. In this case the modd corresponds
to the generd Gaussian mode as presentedin, for example, Jamshidian (1991).

In treditiond implementations of the modd above it is cusomary to let the voltility
of the yidd factor be afunction of the short rate, for example

h@)ury.

In this specification, however, the volatility skew induced by the coefficient p will tend to
flatten for longer underlying tenors. To avoid this we here follow Andreasen (2000) and let
h be afunction of alonger tenor forward swap rate, i.e. h(t) =h(t, Y(t)) where Yissome
forward swap rate, the identity of which can change over time. Which swep rate is chosen at



any point in time will depend on the instrument that we wish to price. For example when
pricing a standard Bermudan swaptior? with find maturity T, we let

Y(t) = R(,e(t)v tT [Tk—lka[ ’

whereas when pricing a Bermudan callable cap we could set
Y (t) = Ry (D), th [Ten Tl -

In any case, through (6), we would obvioudy have h(t) =h (t,x(t), y(t)) . As a generd
rule, we notice that cdibration and specification of low-dimensond Markovian modes
typicaly needs to be ingrument- specific, unlike the Libor market models which are “large’
enough to make possible cdibration to the swaption and cap markets as awhole.

To incorporate stochadic volatility to our Markov modd, we add to (7a-b) the third
date variable V as given by (1b). The actud specification of our modd isthen

h(t) =V O1 (0 (YO),

where | isadeterminigtic function. As before, we will assumethat dZ >dW =0.

For cdibration of the modd above to the swaption market closed-form or smple
approximations for swaption prices are convenient. We note that under our assumptions the
forward swap rate R, (t) evolves according to

R (1)
x

dR(t) = h(t)aW, (t)

where W,, isascdar Brownian motion, and

Rl _PLDBLT) PLTIBLT), o o &ETECD)

Tix A D) A1)

To price swaptions we gpproximate this derivative as being approximately deterministic®,
and arrive at
AR, (1) » VO O (Ro(1))AW,, (1) ®)

* AR  (YO) O
(@) =1 (1) : T )
é ﬂX J ( &,e (0)) z((t):y(t):()

? One might question whether it is sufficient to use only a single driving Brownian motion for the yield
curve when pricing Bermudan swaptions Andersen and Andreasen (2001) conclude that the answer is
generally yes, provided that calibration of the mean reversion parameter N isdone carefully.

* To understand why this is reasonable, we notice that if R, were the continuously compounded yield
on azero-coupon bond, it would be exactly linear inx.

«



We find that the approximation above provides sufficient accuracy for most applications,
even for long-dated options out to, say, 30 years. Importantly, (8) alows us to use the
results in Sections 3 and 4 to efficiently price swaptions and caps. Due to the structure of the
model, once the mean reversion of raten  has been set’, the model volatilities {1 (t)} can
be bootstrap-calibrated to match a strip of swaption prices. On a standard PC, bootstrap
cdibration to, say, the swaption strip {1” 29,2" 28,...,29" 1} canbedoneinlessthan 5
seconds when using transform inversion and in a few tenths of second using expansons (for
comparison, the caibration can be done in less than one tenth of a second when voldtilities
ae daeminigic). Fgure 2 demondrates the qudity of the fit for the case of
j (X)=mx+(@- mL, m=0.2.

6. Numerical Methods.

Numericd implementation of the generd Libor market mode (1a-b) presented in
Section mugt virtudly aways be done through Monte Carlo smulation. Due to the zero
correlaion between the forward rate processes and the stochastic volatility process, it is
possible to split the Monte Carlo generation of interest rate paths into two pieces: 1) draw a
path of the variance process V through time; 2) draw a path of forward rates assuming that
| (tWV(t) is deterministic. Schemes for step 2) are well-known (see e.g. Andersen and
Andreasen (2000)), so we here focus on smulating (1b) on some discrete time-grid
{ti}i:o,l,.. '

A direct Euler or log-Euler discretization of (1b) is prone to ingability unless ether
the time step or the mean-reversion parameter k  are smdl. Noticing the exact result

E(V(t,) V(1)) =q +(V(t)-q)e*

it is generdly better to resort to a moment matching scheme where, for instance, we can
approximate V(t,,,) [V (t;) asalog-normal varidble:

Vit,) = (q + (\7(%) _q )e-k(twl-n))e——;e(ti>2+e<ti)z |

sey (V) k(1o @)

e
Gt)2=Ind1+ . 1
él [@+(Ve)-a)ere) =

2

wherethe z'sare asequence of i.i.d. standard Gaussian draws.

Monte Carlo schemes for the one-factor Markovian mode presented in Section 5
are dmilar to those of the full LM modd. Importantly, however, the limited number of Sate
variables (atota of three) dlows us to write down alow-dimensona PDE for option prices

*To prevent the model from being too non-stationary, it is often best to let the rate mean reversion be
constant. For instance, we could bestfit n to reproduce the auto-correlation of the swap rates as
computed approximately in aglobally fitted LM yield curve model; see Andreasen (2000) for details.
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which can feasibly be solved on a computer. Specificaly, any contingent clam ; satisfies,
subject to boundary conditions, the equation

3l o)
" +D,+D, +D, 2 =0,
&t y B

where
ﬂz
™

X

1
D, =- 3+ (nx+ )7+ 3h’

Dy:'%r"'(hz' 21)0%/1

2

- 1 ﬂ 1 2 T[
D, =-4r+k@-V) g +iey (V) o
with r = f(0,t) +x.

The three-dimensiona PDE above can be handled numericaly using a number of
available solvers. One good method which takes advantage of the fact that the PDE contains
no mixed derivatives is the so-caled Alternaing Directions Implicit (ADI) finite difference
method; see for instance the 3-dimensiona Douglas scheme described Mitchell and Griffiths
(1980). This scheme is uniformly stable, has the same order of computationd effort as a
multinomid tree, yet dlows for complete freedom in grid design and has second order
accuracy in the time-domain (as opposed to trees that only have first order time accuracy).
Non-zero cross terms, i.e. correaion between the rates and the volatility, can be
incorporated without loss of accuracy or dability but & a cost of making the scheme
computationaly more expensived. In our implementation of the ADI scheme for the PDE
above we use a standard three-point dscretisation for the x- and V-dimensons, but afive-
point discretisetion for the y -dimension. This enables us to use a moderate number of grid
points in the y dimension, around 10 or o, without sacrificing much accuracy. On a
standard PC a 30-year Bermudan swaption can be priced in about 10 seconds in the
stochadtic voldility modd. Switching off the stochadtic volatility reduces the cdculation time
to about 0.5 seconds for the same contract.

7. Someempirical observations.

Estimation of the process (1b) is most easly done from observations of movements
of implied volatilities (or their squares, the implied variances) of cgps and swaptions. In
particular, we notice that estimation needs to be done under a pricing measure, not the “real”
higoricd measure, which makes traditional time-series edimation of higoricd volatility
largely usdlessfor our purposes.

The process (1b) implies that volatility of implied variance should decay with
increasing option maturity, eventudly reaching an asymptotic level. The asymptotic leve isa

®In certain special cases it is possible to change variables locally to eli minate the crossterms, resulting
in only a fairly moderate increase in computation time. More generally, we would need to modify the
numerical scheme to explicitly incorporate correlation terms. Typical schemes for this (e.g. predictor-
corrector schemes) would increase computation time by afactor of around two.
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function of the skew specification j ; the speed with which the volatility of implied variance
gpproaches the asymptote is a function of the mean reverson parameter k . FHoure 3
demondtrates that this behavior is empiricaly observable for various swap tenorsin USD. It
is, however, obvious from the figure that the decay towards the asymptote is faster for
short-tenor rates than for long-tenor ones. To make our mode consistent with this behavior
we find that we generaly need mean-reversions k of around 0.3-0.4 for medium-to-long-
tenor rates in USDS, whereas short-dated rates (say, with tenors less than a year) are better
fit with mean reversons of 1 or higher. It is dso obvious from the figure that the volatility of
variance parameter e is higher for short-tenor rates than for long-tenor rates; in the USwe
find that rates with tenors less than 1- year typicdly require e » 150% , whereas |onger-tenor
swap rates are best described with e » 100% or less. The tenor-dependence of parameters
can likely be explained as a diversficaion effect, as the variance processes of different
forwards are, of course, less than perfectly correated (which is what we effectively assume
in our modd with a dngle stochedtic voldility factor). Still, we find empiricaly that
movements of implied voldilities of most swap forward rates are quite high (typically above
80%, at least when the rate tenors exceed 35 years) and as such consider our setup a
reasonable representation of redity. It is in principle not difficult to extend our LM modd
framework to multi-factor variance processes, but, as discussed earlier, the difficulties of
populating the parameters of the modd makes this of somewhat limited practica apped.

Turning now to the question of how well stochastic volatility models can reproduce
the obsarved voldility skews and smiles, we generdly find that the model doesagood job in
both cap and swaptions markets. In Figure 4 we show typica fits for EUR and USD
swaptions data. We typicaly find that parameters estimated from the historical decay-
properties of volatility of implied variance are close to those required to match observed
volatility smiles. In other words, out- of-the-money swaptions are priced approximately at
the cogt of vega- hedging with &- the-money swaptions.

8. Pricing Smple Exatics.

When gpplying stochastic voldility modds to smple instruments, one can often get
ingpiration from the structure of the one-factor Markov model in Section 5 to come up with
reasonable gpproximations. This, for ingtance, is useful when pricing European options on
amortizing swaps, or options and swaps where the floating rate is a long-dated swap rate
(so-caled CMSrae). To illustrate this, consider the time O vaue M (0) of aCMS coupon

paying atime’ T_ theswaprate R (T,):

A.(0)/PO.T,)0

. (9
AT) 5 ©

M (0) = PO,T,)E* (R, (T,)) = P(O,T,)E™* g&,e T)

where E°(3 as before denotes expectation under the martingale measure with the maturity
T, zero-coupon bond as numeraire.

°*INEUR, we generally find that mean reversions are slightly lower thanin USD. See Figure 4.
’ We here ignore the fact that actual payments are typically made in arrears, that is at time T_, . The
adjustment for this payment delay can be performed using the same technique as shown here.



To evduate (9) we need to be able to say something about the digtribution of
Ag'; (T,) under the swap annuity measure. The idea is now to come up with an inspired
gpproximation for the annuity A, (T,) as function of the termina swap rate R, (T,) and
compute the expectation in (9) using earlier results. Dropping the subscriptson A and R we
first note that

(Y1) FCT,)» var* (X(T)) » var* (RO g s

where var”(R(T,)) is the variance in the annuity meesure which can be implied from the
swaption model of the firgt section. The swap rate derivative in the expression above can be
obtained from achosen level of rate meanreversonn .

We can now use the recongtruction formula (6) to write

R(T,) =R(T, x(T,), y(T.)) » R( T, x(T,), ¥(T.)) ;
AT) = A(T, x(T),y(T))» A(T, x(T.), (T,)) .

As the fird of these functiond rdationships is one-to-one, we get an expresson
AT)»I(TR(T,)), for some explicitly computéble function I. To improve the
goproximation, we actudly use

AT)=cA(T,R () (10)
where the congtant ¢ is chosen so that the Radon-Nikodyn satisfies the naturd condition

A TNQ)/POT)O_,
Ecx(T.R(T.);

Equation (10) can now be insarted in (9) which again can be integrated on the density of R
to vaue the CM S coupon. The density of Rcan, asadways, be obtained by differentiation of
swaption prices.

Prob™ (R (T)T [K,K +dK)/dK = 1S (0;K)/ TK? xA,(0) *

where S, (0;K) isthetime O price of a European payer swaption struck at K. Expressions
for these prices have been derived in Sections 3and 4. In Figure 5, we examine the
performance of the above expression for different levels of mean reverson n . Notice that
the convexity adjusments increase with mean reverson, a consequence of increased
voldility of the short end of the curve (and thereby of the annuity A which has rdaivey
short duration).

9. Pricing Exotics and Callable Instruments.



The techniques discussed in Section 8 are only useful for smple, European
ingruments. For more complicated instruments, such as Bermudan swaptions and other
callable or path- dependent structures, the numerical methods discussed in Section 7 must be
gpplied. For strongly path-dependent options, Monte Carlo smulation of the full Libor
market model is the method of choice whereas Bermudan swaptions are probably best
handled in a the low-dimensond Markov mode coupled with an ADI finite difference
solver. We do point out, however, that methods to price Bermudan/American options inside
a Monte Carlo smulation of the full Libor market modd exis (see eg. Andersen and
Broadie 2001 for areview) and will likely become more prevaent in the future as available
computing power continuesto increase.

In Table 1 we use the ADI method to compare prices for 30 year Bermudan
swaptions in the stochastic volatility modd with those of the determinigtic volatility modd.
Provided that the deterministic voltility modd is cdibrated to the European swaptions with
strike equa to that of the underlying swap, the differences between Bermudan pricesin the
dochedtic and deterministic voldility modd are, perhgpos suprisingly, not particularly
sgnificant.
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Figure 1: Implied 1.5year Caplet Volatility Smile
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Pand B: e =200%, k =1

Notes: Panels A and B show the implied (Black) volatility smile for a 1.5year caplet with
k =1 and e =150% and 200%, respectively. The initia forward was 6%, V (0) =q =1, and
the model skew functions were j (x) =x*° and y (x) = x**. The volatility (I ) was set to
6.49% (around 20% in log-normal terms). In the computation of expansion O4 results, the cut-
off parameter L in Eq. (21) was set to 1. The “ADI” numbers reported in the graph were
computed in a two-dimensiona finite difference grid; the "base skew" numbers correspond to
€ =0 (no stochastic volatility component).
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Figure 2: Swaption Volatility Smile. Yield Curve Modd ver sus Approximation
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Notes: Sample of implied Black swaption volatility smiles of yied curve modd (“Modd”) in
Section 5, vs. the approximation eg. (8). Theyield curve model is calibrated to ATM European
swaption prices in EUR (February, 2002) for the strip 1° 29,2" 28,...,29" 1, The graph use
the simple displaced diffusion skew function j (R(t)) = mR(t) +(1- m)R(0), m=0.2, and
y (X) = Jx . other process parameters were e =1,k =0.1, V(0) =g =1. In the full yidd
curve model prices are found by finite-difference solution.



Figure 3: Volatility of Implied Variance of Various Ratesin US
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Notes: The graphs shows the volatility of implied variance (= the square of implied volatility)

implied for US swaptionson 1, 2, 3, 5, 7, and 10-year rates, as estimated from two years
of weekly data from Bloomberg.
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Figure 4: Volatility Smile of Stochastic Volatility Model vs. Mar ket
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Panel B: USD data, February 2002

Notes: the graphs show swaption smile as implied by a stochastic volatility model (2) and as
observed in the market. The graph use the smple displaced diffuson skew function
j (Rt)=mR()+(1- mR(0) andy (X) = «/; Parameters of the stochastic volatility process
in USD were m=0.3, e =1,k =0.3; in EUR the parameterswere m=0,e =1,k =0.1.1In
both currencieswe set V(0) =q =1.



Figure5: CM S Adjustment as Function of Expiry in EUR
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Notes: CMS forward rate adjustment as function of maturity and rate mean reversion N . The
rate tenor is 20 years and the market is EUR, February 2002. The “Modée” numbers were
computed in a finite difference grid; the “ Approximation” numbers were computed as outlined
in Section 8. Mode parameters were asin Figure 4, Pand A.
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Table 1: Bermudan Pricesin EUR under Deterministic and Stochastic Volatility

30ncl par receiver 30ncl par payer 30ncl accr receiver

drike Y dv  vegadiff sv dv  vegadiff| sv dv  vegadiff
30% | 155% 146% 0.40% 36.01% 36.29% -131% | 2.56% 238% 0.50%
35% | 204% 207% -0.08% 29.65% 30.12% -150% | 3.63% 3.62% 0.02%
40% | 272% 283% -030% 23.68% 24.35% -145% | 5.18% 532% -0.21%
45% | 3.67% 382% -0.31% 1827% 1899% -124% | 7.45% 7.67% -0.23%
50% | 503% 514% -0.18% 13.67% 1417% -0.69% |10.82% 10.98% -0.12%
55% | 7.09% 7.06% 0.04% 10.05% 10.08% -0.04% |15.82% 15.8% -0.03%
6.0% |10.21% 1012% 0.12% 7.39% 7.15% 025% |23.18% 23.14% 0.03%
65% |14.74% 1473% 0.01% 551% 529% 023% |33.86% 34.31% -0.26%
70% [ 20.37% 2048% -0.28% 4.18% 3.91% 0.30% |4856% 49.11% -0.39%
75% |26.65% 26.75% -0.40% 325% 3.01% 0.30% |67.13% 67.61% -0.46%
80% [33.25% 33.32% -049% 256% 2.36% 0.28% |89.38% 89.85% -0.61%

Notes: Prices of EUR Bermudan swaptions (February 2002) under stochastic (“sv”) and
deterministic (“dv”) volatility. “30ncl” refers to an annua Bermudan swaption of 30 year
maturity with the first exercise date 1 year from now. “par” means that the underlying swap
of the standard par type, whereas “accr” means that the underlying swap is of the accreting
(or zero-coupon) type. Vega differences (“vega diff”) refer to the difference in sv and dv
option prices expressed in Black implied voldility terms. The model used is the one-factor
Markov modd in Section 5 with skew specification of j (R(t)) = mR(t) + (1- m)R(0) . For the
determinigtic volatility model we use m=0 for the strikes less than or equal to 5.5%, and
M =1 for the remaining strikes. In all cases the deterministic volatility mode! is caibrated to
the European swaptions 1" 29,2" 28,...,29" 1 with the same strike as the Bermudan; the
Europears are vaued in a volatility model of type eg. (2). For the stochagtic volatility model
we use the 1-factor model in Section 5with m=0 andy (X) = \/; and calibrate the modd to
the at-the-money swaptions 1" 29,2" 28,...,29" 1. The stochastic volatility parameters are as
in Figure 4, Pandl A. All reported prices are found by finite difference solution.
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