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Abstract
This paper considers extensions of the Libor market model (Brace et al (1997), Jamshidian
(1997), Miltersen et al (1997)) to markets with volatility skews in observable option prices.
We expand the family of forward rate processes to include diffusions with non-linear forward
rate dependence and discuss efficient techniques for calibration to quoted prices of caps and
swaptions. Special emphasis is put on generalized CEV processes for which closed-form
expressions for cap and swaption prices are derived. We also discuss modifications of the
CEV process which exhibit more appealing growth and boundary characteristics. The
proposed models are investigated numerically through Crank-Nicholson finite difference
schemes and Monte Carlo simulations.

1. Introduction
In a significant new line of research, the recent papers by Brace et al (1997), Jamshidian (1997),
and Miltersen et al (1997) introduce a novel approach to arbitrage-free term structure modeling.
Rather than working with the continuously compounded instantaneous forward rates as in Heath
et al (1992), or the continuously compounded spot interest rates as in Vasicek (1977) and Cox et
al (1985), these papers take discretely compounded (Libor) forward rates as the model primitives.
Unlike continuously compounded forward rates, log-normally diffused discrete forward rates turn
out to be non-explosive and, significantly, allow for pricing of Libor caplets by the “market
convention” Black (1976) formula. The log-normal models advocated by Brace et al (1997),
Jamshidian (1997), and Miltersen et al (1997) are therefore often termed Libor market models.

                                                       
1 The authors wish to thank Steven Shreve, Paul Glasserman, Wes Petersen, and Jakob Sidenius for insights and
discussions.
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While the Libor market models do not allow for usage of the Black (1976) formula in the
pricing of swaptions, Brace et al (1997) derive good closed-form approximations for swaption
prices under the log-normal market model assumptions. Availability of closed-form pricing
formulas for both caps and swaptions enables efficient calibration of the model to market prices, a
key feature of the model in terms of its usefulness in practical applications.

The basic premise of the Libor market model -- log-normally distributed Libor rates -- is,
however, increasingly being violated in many important cap and swaption markets. In particular,
implied Black (1976) volatilities of caplet and swaption prices often tend to be decreasing
functions of the strike and coupon, respectively, indicating a fat left tail of the empirical forward
rate distributions relative to log-normality. This so-called volatility skew is currently most
pronounced in the Japanese Libor market, but also exists in US and German markets, among
others. The presence of the volatility skew motivates the formulation of models where the
diffusion coefficients of the discrete forward rates are non-linear functions of the rates themselves.
In this paper we describe a general class of such models, which we will term extended market
models. The models focused on here are characterized by a forward rate diffusion term that is
separable, in the sense that it can be described as a product of a general time- and maturity-
dependent function and a time-homogeneous non-linear function of the forward rate.

The separable form of the diffusion coefficient is shown to be tractable and allows for
quick calibration to caplets by numerical solution of one-dimensional forward or backward partial
differential equations (PDEs). For this we suggest an efficient numerical routine based on a
deterministic time-change and the Crank-Nicolson finite-difference scheme. Alternatively, for the
case where the forward-dependence of the diffusion term can be described by a power function,
also termed the CEV (Constant Elasticity of Variance) model, we derive closed-form solutions for
caplet prices. These results essentially extend the analysis of Schroder (1989) to the time-
inhomogeneous case.

As we will show, the CEV model is about as tractable as the log-normal market model but
can provide a much closer fit to observed caplet prices. To motivate our studies of the CEV
model, below we show implied Black (1976) volatilities of CEV model caplet prices as functions
of strike plotted against bid and ask implied caplet volatilities from the Japanese Libor market
(provided by the GRFP interest rate option desk, May 1998). We have included prices for 2- and
9-year caplets; the CEV power (to be defined later) of the volatility coefficient is set to 0.6 for
both maturities.



3

Market and CEV caplet prices in Japanese Libor market, May 1998

Figure 1

Though closed-form caplet prices and a good market fit makes the CEV model attractive
it also exhibits certain technical irregularities. These can be circumvented, however, by the
introduction of a 'regularized' version of the CEV process, here named the LCEV (Limited CEV)
model. We show that the CEV closed-form caplet prices can be seen as a limiting case of those
produced by the LCEV model. By numerical examples we illustrate that the CEV formulas can be
used as very accurate approximations of caplet prices under the LCEV process.

For swaptions, the market model is less tractable than is the case for caps and floors. By
making certain simplifying assumptions, however, we demonstrate that swaptions can be treated
in exactly the same way as caplets. In particular, we are able to construct highly accurate closed-
form approximations for swaption prices in the CEV market model. Our analysis is based on the
concept of forward swap measures (see Jamshidian (1997)) which simplifies the development of
closed-form approximations significantly compared to the approach taken in Brace et al (1997).

In the final part of the paper, we consider schemes to implement the proposed framework
in a Monte Carlo setting. Monte Carlo simulations are then used to examine some of our results
through numerical examples. Particular emphasis is put on tests of the swaption approximations
and on quantifying discretization biases.

The rest of this paper is organized as follows. In Section 2 we provide notation and
introduce the probability measures and stochastic processes necessary for later work. In Section
3, we narrow the discussion to the class of "separable" forward rate processes. After proving
certain existence and uniqueness results, we describe a technique of deterministic time-change that
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proves useful for this class of models. The section also introduces the CEV process and derives its
transition density. In Section 4 we consider the PDEs for pricing of caplets and derive closed-
form formulas for caplet prices in the CEV model. We also introduce the LCEV model and
consider the convergence of the LCEV to the CEV model. Section 5 discusses the pricing of
swaptions using closed-form approximations, and Section 6 is devoted to Monte-Carlo
implementation of the extended market models and various numerical tests. Finally, Section 7
contains our conclusions. For clarity, all significant proofs are deferred to an appendix.

2. Basic Setup
Consider an increasing maturity structure 0 0 1 1= < < < +T T TK...  and define a right-continuous2

mapping function n t( )  by

T t Tn t n t( ) ( )− ≤ <1 .

While we do not put any restrictions on the maturity structure other than it being increasing, in
practice we would often use a nearly equidistant spacing between points (say 3 or 6 calendar
months) to match conventions used in swap and futures markets. With P t T( , )  denoting the time t
price of a zero-coupon bond maturing at time T, we define discrete forward rates on the maturity
structure as follows:

F t
P t T

P t Tk
k

k

k

( )
( , )

( , )
≡ −F

HG
I
KJ+

1
1

1δ
,  δk k kT T= −+ 1 ,

or

P t T P t T F tk n t j j
j n t

k

( , ) ( , ) ( ( ))( )
( )

= + −

=

−

∏ 1 1
1

δ .

For this definition to be meaningful, we must require that t Tk≤  and k K≤ . For brevity, we will
omit such obvious restrictions on time and indices in most of the equations that follow.

The discrete forward rates constitute our model primitives and collectively determine the
state and evolution of interest rates. To state our assumptions about the stochastic processes
driving the forward rates, we first fix our probability measure to be the Tk + 1  forward measure
Qk + 1 , i.e. the equivalent probability measure induced by using the Tk + 1 -maturity zero-coupon

                                                       
2 While some authors define n(t) to be left-continuous, we find our definition more convenient, particularly for
discrete-time numerical work. In particular, our definition ensures that n(t) does not jump when we move forward
from a date that coincides with a point in the maturity structure.
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bond as numeraire. We will assume that Qk + 1  exist and is unique for all k. Absence of arbitrage
then implies that P t T P t Tk k( , ) / ( , )+ 1 , and thus F tk ( ) , are martingales. Assuming that the forward
rate dynamics are governed by a vector Brownian motion, we specify the forward rate dynamics
as an Ito process:

dF t t dW tk k k( ) ( ) ( )= +σ T
1 ,  (1)

where W tk + 1( )  is an m-dimensional Brownian motion under Qk + 1  and σ k t( )  is an m-dimensional
adapted volatility function satisfying the usual integrability conditions. The forward measures
corresponding to the different times of the maturity structure can be shown (Jamshidian (1997))
to be related iteratively through:

dW t dW t
t

F t
dtk k

k k

k k
+ = +

+1 1
( ) ( )

( )
( )

δσ
δ

.

Defining the convenient spot measure Q  as the equivalent measure under which W t W tn t( ) ( )( )=
is a Brownian motion, we have from (1)

dF t t t dt dW tk k k( ) ( ) ( ) ( )= +σ µT , µ
δσ

δk
j j

j jj n t

k

t
t

F t
( )

( )
( )( )

=
+=

∑ 1
(2)

Notice, that the numeraire of the spot measure should not be interpreted as P t n t( , ( ))  but rather
as a "rolling" zero-coupon bond (Jamshidian (1997)) with time t price of

B t P t T P T T P t T F Tn t j
j

n t

j n t j j j
j

n t

( ) ( , ) ( , ) ( , ) ( ( ))( )

( )

( )

( )

= = +
=

−

+
−

=

−

∏ ∏
0

1

1
1

0

1

1 δ . (3)

While not used in this paper, we point out that the measure QK + 1  also receives special attention in

the literature and is known as the terminal measure.

3. The Libor Market Model and its Extensions
The framework set up in Section 2 so far is quite broad and, through the choice of volatility
functions σ k t( ) , allows for a variety of models for interest rate evolution. For example, in the
popular Libor market model (Brace et al (1997), Jamshidian (1997), Miltersen et al (1997)), the
volatility functions are of the form
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σ λk k kt F t t( ) ( ) ( )= ,

where λk t( )  is a bounded m-dimensional deterministic function. The resulting log-normal
distribution of F tk ( )  under the Tk + 1  forward measure justifies the usage of the market standard
Black (1976) formula for interest rate caps and floors. While the function λk t( )  allows for
calibration to a term-structure of implied caplet volatilities, the market model formulation is not
rich enough to capture the often observed dependence of implied interest rate option volatilities
on strike (the volatility skew). This motivates formulation of models in which the volatility
functions are specified as

σ ϕ λk k kt F t t( ) ( ( )) ( )= . (4)

where again λk t( )  is a bounded vector valued deterministic function, and ϕ: [ , ) [ , )0 0∞ → ∞  is a

possibly non-linear function.

Theorem 1.
Suppose that ϕ ( )0 0=  and F k Kk ( ) ,0 0 0≥ ≤ ≤ . If in (4) ϕ  satisfies

a) Local Lipschitz Continuity:

∀ > ∃ > ≤ < ≤ < − ≤ −n C s t if x n and y n then x y C x yn n0 0 0 0, . . , ( ) ( )ϕ ϕ ,

b) Linear Growth:

∃ > ≤ + ∀ >C s t x C x x0 1 02 2. . ( ) ( ),ϕ ,

then non-explosive, pathwise unique solutions of the no-arbitrage SDEs for F tk ( ) , n t k K( ) ≤ ≤ ,

exist under all measures Qi , n t i K( ) ≤ ≤ + 1. If Fk ( )0 0> , the solutions are positive for all t >

0.

Proof:
In Appendix A.♠

The local Lipschitz condition in Theorem 1 guarantees uniqueness of the solution to the SDE,
whereas the growth condition ensures that it does not explode in finite time. For most of our
applications (many of which involve discrete-time approximations to the forward rate processes)
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uniqueness is not a particularly critical feature and we shall shortly look at a process that violates
the local Lipschitz condition at zero. The technical problems that arise are typically
inconsequential and can, as we shall see, be taken care of in various ad-hoc ways if necessary. The
less restrictive Yamada and Watanabe condition (Karatzas and Shreve (1991), p.291), can be
shown to provide no weakening of the conditions in Theorem 1 for SDEs for Fk  in measures
other than Qk + 1 .

Provided that ϕ  is regular enough to allow for a unique, non-negative solution to the no-
arbitrage forward rate SDEs (for instance, by satisfying the conditions of Theorem 1), we will
refer to (4) as the extended market model. More general than the log-normal approach, the
extended market model still remains quite tractable, particularly when it comes to the pricing of
caps and floors. The following Lemma is useful for exploiting the "separable" form of (4) through
a time-change:

Lemma 1.
Define

v t u duk k

t
( ) || ( )||= z λ 2

0
, ~ ( ( )) || ( )|| ( )W v t u dW uk k k k

t

+ += z1 10
λ .

~Wk + 1  is a m-dimensional Brownian motion under the deterministic time-change v tk ( )  and (1)

can be represented as the SDE

df v t f v t dZ v tk k k k k
k

k( ( )) ( ( )) ~ ( ( ))= +ϕ b g 1 , (5)

where f v t F tk k k( ( )) ( )= , and ~ ( ( )) ( ) /|| ( )|| ~ ( ( ))Z v t t t W v tk
k

k k k k k+ +≡1 1λ λT  is a one-dimensional
Brownian motion.

Proof:
Follows from standard results for time-changes of Brownian motions, see e.g. Øksendahl (1995,
p. 141).♠

A natural way to calibrate the extended market model is to parametrize ϕ  directly and back out
("imply") the λk -functions from generic options (see e.g. Brace et al (1997) and Sidenius (1997)
for various approaches). As we shall see, the fact that, in some sense, the λk -functions can be
collapsed into a time-change will greatly facilitate the process of constructing these functions from
market data.
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3.1. Case study: the CEV process
An example of a specification of a separable model is

ϕ α( )x x= (6)

where α  is a positive constant. This is the constant elasticity of variance (CEV) model studied in
the context of equity option pricing by Cox and Ross (1976) and Schroder (1989).

The CEV model specification will not satisfy the local Lipshitz condition of Theorem 1 for
0 1< <α , and will violate the linear growth condition for α > 1 . Theorem 1 can therefore not be
used to characterize the properties of the market model with the CEV specification of ϕ ( )⋅ . As
the CEV process is attractive both empirically and theoretically, we have compiled some useful
results about the CEV model below:

Lemma 2.
Consider the stochastic differential equation

dx v x v dZ vb g b g b g= α
, (7)

where α  is a positive constant and Z  is a one-dimensional Brownian motion. The following
holds:

a)  All solutions to (7) are non-explosive.
b)  For α ≥ 1 2/  the SDE (7) has a unique solution.
c)  For  0 1< <α , x = 0  is an attainable boundary for the process (7); for α ≥ 1 , x = 0  is an

unattainable boundary for the process (7).
d)  For 0 1 2< <α /  the SDE (7) does not have a unique solution, unless a separate boundary

condition is specified for the boundary behavior in x = 0 .

Proof:
In Appendix A.♠

For 1
2 1≤ <α , results b) and c) in Lemma 2 combined with the time-change representation in

Lemma 1 implies that the SDE

dF t F t t dW tk k k k( ) ( ) ( ) ( )= +
α λT

1 (8)



9

gives rise to a naturally occurring absorbing barrier in Fk = 0 . According to d), however, if
0 1 2< <α /  the behavior of Fk  in 0 is not unique and requires us to select between the possible
solutions. In our case, the choice of boundary condition is dictated by the no-arbitrage condition
which requires that Fk  remains a martingale (not just a local martingale), even when started at 0.
It is thus clear that when 0 1 2< <α /  we must insist on 0 being an absorbing boundary for Fk .
In total, we thus associate (8) with an absorbing boundary at Fk = 0  for all 0 1< <α .

With 0 always being an absorbing barrier, the transition density of the process (8) can be
written down in closed form. The result is stated in Lemma 3 for later use in the discussion of
caplet pricing.

Lemma 3.
Consider the SDE (8) for positive α ≠ 1, and define

X T
F T

v t T u duk
k

k kt

T
( )

( )
, , ( , ) ( ) ,=

−
= −

−
=

− z2 1

2
2

1
1

2 1

α

α
ϑ

α
λ

b g

b g b g
I x

x
j a j

x u e dua

a j

j

x ub g b g
b g b g=

+ +
=

+

=

∞
− −∞∑ z/

!
,

2
1

2

0

1

0Γ
Γ .

Let q X T X tk k k+ 1 ( )| ( )b g be the conditional density of X Tk ( )  given X tk ( ) , t T≤ , under the

probability measure Qk + 1 . If the level Fk = 0  is defined to be an absorbing boundary for (8)

when 0 1 2< <α / , then, for all positive α ≠ 1,

q X T X t
v T

e
X T
X t

I
X t X T

v t Tk k k
k

X T X t
v t T k

k

k k

k

k k

k
+

− − −

= F
HG

I
KJ

F
HG

I
KJ1

2

2
1

2
( )| ( )

( )
( )
( )

( ) ( )
( , )

( ) ( )
( , )

/

b g
ϑ

ϑ .

Proof of Lemma 3:
In Appendix A.♠

4. Caplet pricing
To calibrate the extended market model to market, it is important that efficient algorithms for the
pricing of generic, liquid instruments be available. In this section we will consider the pricing of
interest rate caplets, that is, instruments that at time Tk + 1  pay the amount δk k kF T H( ) − +b g . While
closed-form expressions are available in certain instances (see the later case study on the CEV
process), we generally will need to rely on numerical methods. As we shall see, applying such
methods as part of a calibration process is not as computationally demanding as it might seem.
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Theorem 2.
Let C tk b g denote the price of a Libor caplet maturing at time Tk  with strike H  and payment
time Tk + 1 . Assume that forward rate dynamics satisfy (4). In the absence of arbitrage, C tk b g is
given by

C t P t T g v t T F t v t T u duk k k k k k k k kt

Tk
( ) ( , ) ( , ), ( ) , ( , ) ( ) ,= =+ zδ λ1

2b g

where g x( , )τ  solves the initial-value problem

− + =∂
∂τ

ϕ ∂
∂

g
x

g
x

1
2

2
2

2 0( ) ,    g x x H( , ) ( )0 = − + . (9)

Proof:
In Appendix A.♠

To solve the PDE (9) numerically, we can, for example, use a Crank-Nicholson finite difference
scheme (e.g. Smith (1985)). Appendix B briefly discusses the mechanics of this scheme and
verifies that a direct discretization of (9) is stable and convergent. Occasionally, one can take
advantage of special forms of ϕ  and introduce transformations of x to improve the properties of
the finite difference scheme. For example, when ϕ ( )x x=  it is customary (and appropriate) to
introduce y x= ln  and discretize in y. For everywhere differentiable ϕ , the transformation

y x x dx( ) ( )= −zϕ 1 (10)

might offer numerical advantages over a direct discretization (see e.g. Jamshidian (1991))
provided, of course, that the inverse of (10) exists and can be computed in closed form.

A crucial point about (9) is that the functions g(.,.)  only depend on the strike H and is
independent of the initial forward rate F tk ( )  as well as the function λk t( ) . This means that we
can use the same finite difference grid to price caplets with different maturities (and thus different
forwards and volatilities), as long as the strikes remain the same. For example, the price of the Tl -
maturity caplet with strike H is given by C t P t T g v t T F tl l l l l l( ) ( , ) ( , ), ( )= +δ 1 b g which, in finite
difference terms, just corresponds to another grid-cell than the one used to pick up C tk ( ) . In
general, to solve for caplet prices maturing at all Tj , n t j K( ) ≤ ≤ , we would need as many finite
difference lattices as there are different strikes3. More importantly, in a model calibration where
                                                       
3 An exception occurs when ϕ ( )x  is a power function. Here, only a single grid is needed as we can normalize all
strikes to a common number and absorb the normalization constants into the definition of vk . For power functions,
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we are running some root-search algorithm to determine the functions λk t( ) , we only need to
compute these finite difference grids once, before the search routine is launched. This is so,
because for each relevant caplet the finite difference grid will generate a vector of caplet prices in
the τ -domain. For each iteration on λk t( ) , determining the corresponding caplet prices thus
becomes a mere matter of computing v t Tk k( , )  and looking up (possibly interpolating) the right
τ -entry in the finite difference grid.

As a final point, notice that if the number of strikes exceeds the number of initial forwards,
it is computationally advantageous to replace the backward equation (9) with the forward
equation of Dupire (1994). In this approach, calendar time t and the initial forward are considered
fixed, whereas caplet maturity and strike are variable, i.e. C C T H t F tk k k= ( , ; , ( )) . Writing
C t P t T h H v t T F tk k k k k k( ) ( , ) , ; ( , ), ( )= δ 0b g, h x( , )τ  solves the forward PDE

− + =∂
∂τ

ϕ ∂
∂

h
x

h
x

1
2

2
2

2 0( ) (11)

subject to the boundary condition h x F t F t xk k( , ; , ( )) ( ( ) )0 0 = − + . (11) can be discretized using the
same approach as for (9). We need one finite difference grid for all different time t forwards, but
each grid can accommodate different strikes and maturities.

4.1. Case study: the CEV process
For the CEV specification (6) studied in the previous section it is possible to obtain closed-form
expressions for caplet prices. The results are contained in Theorem 3 below.

Theorem 3.
As above, let C tk b g denote the arbitrage-free price of a Libor caplet maturing at time Tk  with
strike H  and payment time Tk + 1 . Also, let N ( )⋅  be the standard Normal cumulative distribution
function, and χ ϑ λ2 ⋅, ,b g be the cumulative distribution function for a non-central χ2 -
distributed random variable with non-centrality parameter λ and ϑ  degrees of freedom. Define

a
H

v t T
b c

F t
v t Tk k

k

k k

=
−

=
−

=
−

− −2 1

2

2 1

21
1

1 1

( ) ( )

( ) ( , )
, ,

( )
( ) ( , )

,
α α

α α α

x
F t H v t T

v t T
k k k

k k
± = ±ln[ ( ) / ] ( , )

( , )

1
2 ,  v t T u duk k kt

Tk
( , ) ( ) .= z λ 2

                                                                                                                                                                                  
however, the closed-form caplet pricing solution in Theorem 3 is more convenient than the finite difference
method.
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Assuming that forward rates evolve according to (8), we then have the following results:

a) For 0 1< <α  and an absorbing boundary at the level Fk = 0 :

C t P t T F t a b c H c b ak k k k( ) ( , ) ( ) ( , , ) ( , , )= − + −+δ χ χ1
2 21 2c h .

b) For α = 1:

C t P t T F t N x HN xk k k k( ) ( , ) ( ) ( ) ( )= −+ + −δ 1 .

c) For α > 1 :

C t P t T F t c b a H a b ck k k k( ) ( , ) ( ) ( , , ) ( , , )= − − − −+δ χ χ1
2 21 2c h .

Proof:
b) is just the usual Black (1976) caplet formula for log-normal forward rates. a) and c) are proven
in Appendix A.♠

The non-central χ2 -distribution function in the above caplet formulas can be computed using, for
instance, the efficient numerical procedure described by Ding (1992).

Below we report implied (Black (1976) formula) log-normal volatilities for the cases
α λ= =05 0 05. , .k  and α λ= =15 083. , .k , for different strikes and maturities. In both cases, the
λk s'  are assumed constant as a function of time and k. Also, the initial forward curve is assumed
flat at Fk = 0 06.  for all k .

Implied log-normal volatilities for CEV caplet prices
α λ= =05 0 05. , .k , Fk = 0 06.

Tk \H 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.3109 0.2655 0.2417 0.2256 0.2137 0.2042 0.1964 0.1899 0.1842 0.1792

5 0.3104 0.2662 0.2422 0.2261 0.2141 0.2046 0.1967 0.1901 0.1844 0.1795

10 0.3114 0.2670 0.2428 0.2266 0.2145 0.2049 0.1971 0.1905 0.1847 0.1797

20 0.3113 0.2677 0.2436 0.2273 0.2152 0.2056 0.1977 0.1910 0.1853 0.1802

30 0.3084 0.2670 0.2436 0.2276 0.2155 0.2059 0.1981 0.1914 0.1856 0.1806

Table 1A
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Implied log-normal volatilities for CEV caplet prices
α λ= =15 083. , .k , Fk = 0 06.

Tk \H 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.1527 0.1702 0.1835 0.1943 0.2034 0.2113 0.2184 0.2247 0.2305

5 0.1527 0.1704 0.1837 0.1946 0.2037 0.2117 0.2188 0.2252 0.2310

10 0.1529 0.1706 0.1840 0.1949 0.2041 0.2121 0.2193 0.2257 0.2315

20 0.1532 0.1710 0.1845 0.1955 0.2047 0.2128 0.2200 0.2264 0.2323

30 0.1535 0.1714 0.1849 0.1958 0.2051 0.2132 0.2203 0.2267 0.2324

Table 1B

As is evident from the tables, by varying the parameter α , the CEV process can generate both
downward-sloping and upward-sloping volatility skews. The figure below emphasizes this point
by graphing the implied 3-year caplet volatility skew for various values of α . In the figure, the
forward curve is constant at Fk = 0 06.  and λk  (independent of time) is for each α  set such that
the at-the-money (H = 0.06) implied log-normal volatility equals 30%.

Implied log-normal caplet volatilities as a function of CEV α
T t Fk k− = =3 0 06; .

Figure 2
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4.2. Case Study: the 'Limited' CEV (LCEV) Process
One problem with the CEV specification of the market model is that for α < 1 , the origin is an
attainable and absorbing boundary for the process. The positive probability of absorbed forwards
is not necessarily a problem for the pricing of caplets, but is obviously not desirable from an
empirical standpoint and might also create some difficulties in the pricing of more exotic
structures. On the other hand, when α > 1  the growth condition of Theorem 1 is not satisfied and
that could well create problems with exploding interest rate paths under probability measures
where the forward drift is non-zero.

To overcome the regularity problems of the CEV process, we can specify a 'regularized'
version of CEV market model by letting

ϕ εα αx x xb g c h= ⋅ − −min ,1 1 ,   ε > 0 (12)

where ε  is a small fixed number when α < 1 , and a large fixed number when α > 1 . We will use
the term limited CEV (LCEV) process for the specification (12). Roughly speaking, when forward
rates cross over the 'switching level' ε , the LCEV process becomes a geometric Brownian motion
with a high, but finite, volatility. Notice that the LCEV process satisfies the Lipschitz and growth
conditions of Theorem 1 and that zero is an unattainable boundary for all Fk . The drawback of
the (12) is, of course, that the closed-form expressions for caplets can only be used as
approximations and that exact caplet prices must, in theory at least, be obtained by numerical
procedures. As we shall see, however, the cap price dependence on ε  is typically limited, making
the closed-form expressions in Theorem 3 sufficient for calibration purposes.

To obtain caplet prices under the LCEV process, we first turn to the finite difference
scheme outlined earlier. In the tables below, we give implied log-normal volatilities for the two
scenarios we considered earlier for the CEV process. All numbers were generated using a Crank-
Nicholson finite difference scheme with a mesh size of 500 500×  points.

Implied log-normal volatilities for LCEV caplet prices (500 x 500 CN scheme)
α λ ε= = =05 0 05 0 0025. , . , .k , Fk = 0 06.

T\H 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.3099 0.2657 0.2417 0.2256 0.2137 0.2042 0.1964 0.1899 0.1842 0.1792

5 0.3104 0.2662 0.2422 0.2261 0.2141 0.2045 0.1967 0.1901 0.1844 0.1795

10 0.3113 0.2670 0.2428 0.2266 0.2145 0.2049 0.1971 0.1905 0.1847 0.1797

20 0.3109 0.2676 0.2436 0.2273 0.2152 0.2056 0.1977 0.1910 0.1853 0.1802

30 0.3078 0.2668 0.2435 0.2275 0.2155 0.2059 0.1981 0.1914 0.1856 0.1806

Table 2A
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Implied log-normal volatilities for LCEV caplet prices (500 x 500 CN scheme)
α λ ε= = =15 0 83 0 25. , . , .k , Fk = 0 06.

T\H 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

1 0.1532 0.1706 0.1835 0.1943 0.2034 0.2113 0.2184 0.2247 0.2305

5 0.1532 0.1705 0.1837 0.1945 0.2037 0.2117 0.2188 0.2252 0.2310

10 0.1532 0.1706 0.1840 0.1949 0.2041 0.2121 0.2192 0.2256 0.2314

20 0.1534 0.1710 0.1845 0.1954 0.2045 0.2124 0.2194 0.2255 0.2309

30 0.1534 0.1713 0.1846 0.1954 0.2043 0.2119 0.2184 0.2242 0.2292

Table 2B

Comparing Table 2A-B to the results for the unconstrained CEV case (Table 1A-B), we see that
the closed-form formula is a good approximation for the LCEV cap prices, although the choices
of ε  above result in a slight rounding of the corners of the implied volatility grids.

By letting either ε → +0  (α < 1 ) or ε → ∞  (α > 1 ), one would expect the LCEV process
to approach the CEV process. This is formalized in the Theorem below:

Theorem 4.
Suppose that

dx v x v dZ v( ) ( ) ( )= α ,

dy v y v y v dZ v( ) min , ( ) ( ) ( )= − −εα α1 1c h ,

where α > 0 , and x y( ) ( )0 0 0= > . For 0 1
2< <α , 0 is an absorbing boundary for x. Let h > 0 ,

H > 0 , and T > 0  be given, and let P be the relevant probability measure. Then

a) For α ≥ 1 : lim ( ) ( ) ,
ε→ ∞

< − < =P Px T h y T hb g b g 0

lim ( ( ) ) ( ( ) ) .
ε→ ∞

+ +− − − =E x T H E y T HP P 0

b) Forα < 1 : lim ( ) ( ) ,
ε→ +

< − < =
0

0P Px T h y T hb g b g
lim ( ( ) ) ( ( ) ) .
ε→ +

+ +− − − =
0

0E x T H E y T HP P

Proof:
In Appendix A.♠
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Theorem 3 shows that prices of caps and (by put-call parity) floors in the CEV and LCEV models
can be brought to converge to each other. To investigate the speed of this convergence, consider
the computation of C t P t Tk k( ) / ( , )+ =1 E F T Ht

k
k k

+ +−1 ( )b g  when T tk − = 30 , F tk ( ) .= 0 02 ,
α = 05. , and λk = 0 09.  (independent of time). The low rates, long maturity, and high volatility
(around 65% in log-normal terms) implies a probability of eventual absorption of 84.8% (!) in the
CEV process, so our example should emphasize the differences between the CEV and LCEV
processes. In Table 3, we have used the Crank-Nicholson scheme to compute C t P t Tk k( ) / ( , )+ 1  in
the LCEV process, for various values of ε  and H. The table also contains the exact CEV value
based on formula a) in Theorem 2.

30-year undiscounted caplet prices (in basis points) for LCEV model (500 x 500 CN)
T tk − = 30 , F tk ( ) .= 0 02 , α = 05. , and λk = 0 09.

ε  / H 0.01 0.0125 0.015 0.02 0.025 0.03 0.04 0.05
0.005 185.1828 181.6836 178.2509 171.5790 165.1633 158.9841 147.3179 136.5103

0.004 185.2726 181.7794 178.3522 171.6905 165.2824 159.1094 147.4516 136.6487

0.003 185.3204 181.8327 178.4096 171.7525 165.3489 159.1795 147.5269 136.7268

0.002 185.3637 181.8782 178.4575 171.8054 165.4056 159.2394 147.5911 136.7937

0.001 185.3849 181.9003 178.4807 171.8313 165.4335 159.2688 147.6228 136.8266

0.0005 185.3841 181.9004 178.4811 171.8314 165.4335 159.2688 147.6228 136.8267

0.00025 185.3835 181.9003 178.4813 171.8314 165.4335 159.2688 147.6229 136.8267

0.0001 185.3830 181.9001 178.4813 171.8314 165.4336 159.2689 147.6229 136.8267

0 185.3827 181.9000 178.4814 171.8314 165.4336 159.2689 147.6229 136.8268

CEV 185.3829 181.8984 178.4791 171.8319 165.4317 159.2694 147.6235 136.8273

Table 3

Despite the extreme parameters of the option in Table 3, the prices generated by the LCEV model
are very close to those of the CEV model. In fact, for no combination of ε  and H in the table
above is the price difference larger than 0.4 bp. Using the CEV caplet pricing formula to price
caplets under a reasonably truncated LCEV process is generally justifiable and will help improve
the speed at which the LCEV process can be calibrated to cap market quotes.

5. Swaption pricing
In Section 4, we saw that the properties of the extended market models makes the pricing of caps
and floors straightforward, a feature that greatly facilitates the calibration of the model to quoted
market prices of these instruments. While cap and floor prices might sometimes suffice for model
calibration (see e.g. Jamshidian (1997) for a discussion), one would, however, normally also want
to supplement the calibration with quoted prices of at-the-money (ATM) swaptions.
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Unfortunately, the Libor market model framework does not allow for an exact closed-form
swaption pricing formula. Jamshidian (1997) discusses the usage of Monte Carlo simulation to
price swaptions in the Libor market model, although he realizes the computational problems in
embedding simulations in the calibration root-search algorithm4. We discuss Monte Carlo pricing
of swaptions and other fixed income derivatives in section 6.

A more attractive approach is suggested in Brace et al (1997) who develop a closed-form
(log-normal) approximation that appears to work reasonably well for a range of market and
swaption parameters. Briefly speaking, Brace et al make a rank-1 assumption about a certain
variance-covariance matrix and approximate a series of (stochastic) forward rate drifts as
deterministic functions of time. These assumptions allow for a decomposition along the lines of
Jamshidian (1989) and necessitates root-search algorithms to locate the critical level of a Gaussian
perturbation factor. While the approximations in Brace et al can be extended to cover Gaussian
models, they are not easily expanded to more complicated processes. In this section, we seek to
develop analytical swaption price approximations that are broad enough for the models
considered in this paper. Our approximations are, essentially, based on par rate dynamics in a
forward swap measure, and result in pricng PDEs that are of the same type as for caplets (Section
4). While it is difficult to construct accurate approximations for every imaginable form and level
of forward rate volatilities, our approach seems to work well for most "reasonable" specifications.
For the log-normal and CEV specifications of the extended market model, closed-form solutions
are available that are are both faster (no root-search necessary) and, in our experience, often more
accurate than the formulas in Brace et al. Section 6 contains some tests of our approximations
using the CEV / LCEV model as an example.

Consider now a European payer swaption maturing at some date Ts , s K∈ { , ,..., }1 2 . The
swaption gives the holder the right to pay fixed cashflows5 θδk − >1 0  at Tk , for
k s s e= + +1 2, ,...,  in exchange for Libor (paid in arrears) on a $1 notional. Ts  and Te  are thus
the start- and end-dates of the underlying swap, respectively, and clearly we require
T T TK e s+ ≥ >1 . Notice that we only consider swaps with cash-flow dates that coincide with the
maturity structure. At maturity Ts  the value of the payer swaption S is, by definition,

S T P T T F T P T T P T Ts s k k k s
k s

e

s e k s k
k s

e

( ) ( , ) [ ( ) ] ( , ) ( , ) .= −F
HG

I
KJ = − −F

HG
I
KJ+

=

− +

+
=

− +

∑ ∑1

1

1

1

1δ θ θ δ (13)

                                                       
4 In defense of the Monte Carlo method, we should point out, however, that since each Monte Carlo path allows for
simultaneous pricing of all swaptions in the calibration set, calibration will typically still be computationally
feasible, albeit slow.
5 In practice, the fixed side of the swap might sometimes have a different payment basis and/or frequency than the
floating side. Handling of arbitrary fixed cash-flow streams can be done by changing the definition of the
numeraire in (14) to include the actual cash-flows. For notational convenience, we have omitted this simple
extension here.
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We now define

B t P t TS
k k

k s

e

( ) ( , )= +
=

−

∑ δ 1

1

, (14)

R t
P t T P t T

B t
s e

S( )
( , ) ( , )

( )
= −

, (15)

whereby we can write (13) in the alternative form

S T B T R Ts
S

s s( ) ( ) ( )= − +θb g . (16)

B tS ( )  in (14) is a strictly positive process and can thus be used as a pricing numeraire. We use
QS  to denote the measure induced by this numeraire; we will refer to QS  as the forward swap
measure for the swaption S. By standard theory, absence of arbitrage implies that the so-called
par-rate R t( )  in (15) is a martingale under QS . Assuming that the yield curve dynamics are
governed by an extended market model of the type (4), an application of Ito's lemma to (15)
yields,

dR t
R t
F

F t t dW t
jj s

e

j j
S( )

( )
( ( )) ( ) ( )=

=

−

∑ ∂
∂

ϕ λ
1

T ,

where W S  is a m-dimensional Brownian motion under QS  and

∂
∂

δ
δ

δ
R t
F

R t
F t

P t T
P t T P t T

P t T

B tj

j

j j

e

s e

k k
k j

e

S

( ) ( )
( )

( , )
( , ) ( , )

( , )

( )
=

+ −
+

L

N

MMMM

O

Q

PPPP
+

=

−

∑
1

1

1

. (17)

Due to the complexity of (17), the process for R(t) is not tractable. To proceed, we notice that for
most reasonable shifts of the forward curve, the expression (17) normally varies very little with
time and the state of interest rates. For forward curve movements that are predominantly parallel
(which is the case in practice), it is often also reasonable to assume that the ratio

ϕ ϕF t R tj ( ) / ( )d i b g
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is close to constant. In total, we suggest the following approximation of the dynamics of R in the
extended Libor market model:

dR u R u w t u dW u t u Tj
j s

e

j
S

e( ) ( ) ( ) ( ) ( ),≈ ≤ <
=

−

∑ϕ λb g 1
T , (18)

where

w t
R t
F t

F t

R tj
j

j( )
( )
( )

( )

( )
= ∂

∂
ϕ
ϕ
d i
b g (19)

can be computed from (17).
With the approximation (18), the SDE for R under QS  takes exactly the same form as the

forward rate SDE's discussed in Section 3, and all the Theorems and Lemmas of this section
apply. Further, the form of (16) shows that the swaption pricing problem becomes identical (after
substitution of numeraires) to the caplet pricing problem discussed in detail in Section 4. From
(9), for instance, we can write the swaption price as

S t B t p v t T R t v t T w t u duS
S s S s j

j s

e

jt

Ts( ) ( ) ( , ), ( ) , ( , ) ( ) ( ) ,= =
=

−

∑zb g 1
2

λ

where p xτ,b g solves

− + =∂
∂τ

ϕ ∂
∂

p
x

p
x

1
2

2
2

2 0( ) ,    g x x( , ) ( )0 = − +θ .

In a calibration, we would need to solve as many PDEs as there are different swaption coupons;
as discussed in Section 4, however, these PDEs only must be solved once, before the calibration
loop is started.

As for caplets, the CEV specification of ϕ  allows for a closed-form pricing formulas,
listed below for convenience. The formulas also serve as an approximation for swaption prices
under the LCEV forward rate process.
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Theorem 5.
Consider a European payer swaption on a swap with start date Ts , end date Te , and fixed
cashflows θδk − >1 0  at Tk , for k s e= + 1,..., . Assume that the forward rate dynamics are given
by the CEV specification (8) and that the approximation (18) holds. Define

d
v t T

b f R t
v t T

g
R t v

v
v t T w t u du

S s S s

s

s
S s j

j s

e

jt

Ts

=
−

=
−

=
−

= ± =

− −

±
=

−

∑z
θ
α α α

θ λ

α α2 1

2

2 1

2

1
2

1
2

1
1

1 1

( ) ( )

( ) ( , )
, , ( )

( ) ( , )
,

ln[ ( ) / ]
, ( , ) ( ) ( ) ,

where R t( )  is defined in (15) and the w j 's in (17) and (19). Also let B tS ( )  be as in (14). In the
absence of arbitrage, the price at time t Ts≤  of the swaption is given by

a) For 0 1< <α  and an absorbing boundary at the level Fk = 0 :

S t B t R t d b f f b dS( ) ( ) ( ) ( , , ) ( , , )= − + −1 22 2χ θχc h .

b) For α = 1:

S t B t R t N g N gS( ) ( ) ( ) ( ) ( )= −+ −θ

c) For α > 1 :

S t B t R t f b d d b fS( ) ( ) ( ) ( , , ) ( , , )= − − − −1 22 2χ θχc h .

Proof:
Follows directly from the proof of Theorem 4.♠

6. Monte Carlo simulation
Having discussed efficient ways to price the simple instruments that can form the basis for a
market calibration, we now turn to application of the extended market model to the pricing of
more complicated OTC structures. Consider a final maturity T TK≤ + 1  and a derivative security
with payout V T( )  at time T. V T( )  is allowed to depend on the path of all forwards F tk ( ) ,
k K= 0 1, ,..., , for t T∈ [ , ]0 . Under the spot measure Q, we have
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V E V T B T( ) ( ) / ( )0 = Q (20)

where E Q[ ]⋅  denotes expectation under the spot measure and the numeraire B is defined in (3).
Evaluation of (20) can very rarely be done analytically, hence we need to consider numerical
methods. As the forward rate evolution in the extended market model is generally non-Markov
and involves multiple factors, trees and lattices are typically not computationally feasible (see for
example discussion in Jamshidian (1997)) and we here exclusively deal with the Monte Carlo
method. We will assume that the reader is familiar with the basics of this technique; a good survey
of Monte Carlo methods in finance is Boyle et al (1997). As indicated in (20), we will work in the
spot measure throughout, but point out that other measures would do as well.

To generate random paths of forward rates, we first set up a L-dimensional simulation
time grid, 0 0 1 1= < < < < =−t t t t TL L... . Being general, we do not require this grid to subdivide
(or equate) the maturity grid 0 0 1 1= < < < +T T TK... , but we point out that it is often convenient to
at least have the maturity grid be a subset of the simulation grid. The separation of maturity and
simulation grids makes some computations a bit more cumbersome, but allows us to maintain a
steady, equidistant forward rate maturity structure while at the same time allowing for perfect
alignment of the simulation time grid with all dates required in the payout computations6. Given
the finite set of simulation dates, we obviously have no hope of simulating the continuous-time
processes Fk , but must contend ourselves with some approximation $Fk  defined on { , ,..., }t t tL0 1 .

Consider now a specific date ti  and assume that all $ ( )F tk i , n t k Ki( ) ≤ ≤ , are known. The
simplest way to advance the simulation to ti + 1  is to apply an Euler scheme to the continuous-time
SDE (2):

$ ( ) $ ( ) $ ( ) ( ) $ ( )F t F t F t t tk i k i k i k
T

i k i i i i+ = + +1 ϕ λ µ εd i ∆ ∆ ,  n t k Ki( )+ ≤ ≤1 (21)

where ∆i i it t≡ −+ 1 , εi  is a m-dimensional vector of independent standard Gaussian variables, and

$ ( ) ( )
( )

( )( )

µ λ
δϕ

δk i j i
j j i

j j ij n t

k

t t
F t

F t
i

=
+=

∑ d i
1

. (22)

In the equation (22) for $ ( )µ k it , there is some ambiguity in the choice of the lower summation
index if ti  falls on a date in the maturity structure, say t Ti a=  for some integer a. Due to our

                                                       
6 The generality of our setup will quite frequently require the pricing of zero coupon bonds that do not mature
directly on a date in the maturity structure. This can be accomplished through one of various possible interpolation
techniques. Similarly, one will typically need schemes to interpolate (or extrapolate) P(t, n(t)) when t is not in the
maturity structure.
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definition of the mapping function n( )⋅  as being right-continuous, we exclude the term
λ δϕ δa a a a a a a aT F T F T( ) ( ) / ( ( ))b g 1 +  in $ ( )µ k it . In continuous time, the term would disappear at
t dti + , so on intuitive grounds it is reasonable to ignore it and, in effect, start the sum from index
a + 1 . As was the case for finite difference schemes, it is sometimes advantageous to write down
Euler schemes for some suitable chosen transformation of forward rates (see (10)). For instance,
the Euler discretization of the evolution of log-transformed forward rates leads to the
multiplicative simulation scheme below:

$ ( ) $ ( ) exp
$ ( )
$ ( )

( ) $ ( )
$ ( )
$ ( )

( )F t F t
F t

F t
t t

F t

F t
tk i k i

k i

k i
k
T

i k i
k i

k i
k i i i i+ = −

F
HGG

I
KJJ +

L
N
MM

O
Q
PP

F
H
GG

I
K
JJ1

1
2

ϕ
λ µ

ϕ
λ ε

d i d i
∆ ∆ (23)

Unlike (21), (23) guarantees that forward rates are positive. As such, (23) should strictly speaking
not be used for models where zero is attainable (such as the CEV process).

Independent of the form and magnitude of ϕ  and λ, the discrete-time dynamics of the
direct Euler scheme (21) will always involve a finite probability of generating negative forward
rates, even if such rates are unattainable in a continuous-time setting. In some cases this can be
ignored, but for processes where ϕ  is not defined for negative arguments (such as the CEV
process introduced earlier) heuristic rules must be employed to ensure that the forwards stay non-
negative. For instance, for CEV processes it is natural to absorb all negative forwards at zero. For
processes where 0 is known to be unattainable, negative forward rates can be 'reflected' at zero
and be replaced by their absolute values.

The Euler schemes (21) and (23) are simple and easy to implement, but have a built-in bias
relative to the true continuous-time SDE (2). That is, only in the limit ∆i → 0  would the
simulated dynamics of forward rates match the continuous-time distribution implied by the SDE
(2). While the Euler scheme will eventually converge to the true distribution, the speed of
convergence is only of (weak) order 1 (see Kloeden and Platen (1992)). The presence of the first-
order bias has two related implications. First, arbitrages amongst the various zero-coupon bonds
in the maturity structure exist and the initial bond prices, P Tk( , )0 , will not be replicated exactly,
even for an infinite number of Monte Carlo trials. Second, the simulated prices of caps, floors and
swaptions will exhibit a bias relative to the continuous-time prices (which we would normally use
for model calibration, see Sections 4 and 5).

The first problem is normally the less severe of the two, and can sometimes be eliminated
completely through suitable choice of simulation variable. For instance, if we can write down an
unconstrained Euler scheme directly in D t P t T B tk k( ) ( , ) / ( )≡ , the numeraire-deflated zero-
coupon bond prices automatically become discrete-time martingales on { }ti , resulting in bias-free
prices of zero-coupon bonds. For processes with strictly non-negative state space (such as the
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CEV process), unconstrained Euler discretization of D tk ( )  is, however, generally not possible
but, as discussed earlier, must be supplemented with rules for dealing with occasional negative
rates. These rules will destroy the discrete-time martingale property of the Euler scheme for
D tk ( ) . Glasserman and Zhao (1998) discuss discrete-time arbitrage-free schemes in much more
detail, but as the biases in bond prices produced even by naïve schemes like (21) are typically very
small, we shall not pursue the topic further here.

To address the problems of bias in more generality, one can turn to the methods of high-
order discretization schemes; see for example the monograph by Kloeden and Platen (1992) for
details. Unlike the technique discussed above, these schemes cannot eliminate biases completely,
but merely increase the speed of convergence. On the other hand, the benefits of high-order
discretization techniques are not limited to bond prices, but all (suitably regular) functionals of the
path of forward rates, including option payouts. The classical example of a high-order simulation
scheme is the 2nd-order Milstein-scheme (Kloeden and Platen (1992)) based on a stochastic
Taylor expansion of forward rates. As it requires computation of explicit derivatives in time and
forward rates, this scheme is, unfortunately, extremely cumbersome when applied to the
( K n t− +( ) 1)-dimensional system of m-factor SDEs (2). (An exception occurs for the basic log-
normal model with piecewise flat volatilities; the second-order Milstein scheme for this case can
be found in Brotherton-Ratcliffe (1997)). A simpler way to apply a high-order simulation scheme
is by Romberg-Richardson extrapolation (Talay and Tubaro (1990), Kloeden and Platen (1992)),
where price estimates at different time-steps are combined to cancel off leading order error terms.
Extrapolation schemes are simple and elegant, but they are typically less effective than schemes
based on analytical derivatives. While we have not performed a systematic study, a number of
Monte Carlo tests of extrapolation methods for caps and swaption prices in the CEV model gave
disappointing results. For more details on extrapolation methods and some tests in a short-rate
setting, see also Andersen (1995).

Before we proceed to test the suggested simulation algorithms on the CEV process, we
should make the (obvious) point that the discrete-time Monte Carlo schemes dicussed above not
only involve systematic biases, but are also subject to the usual random sample errors. Methods to
control the variance of the sample error are surveyed in Boyle et al (1997) and, in an interest rate
setting, Andersen (1995) and will not be discussed here.

6.1. Case Study: the square-root LCEV Process
In this section we will test and illustrate the method of Monte Carlo simulation by using it to
compute the prices of bonds, caplets, and swaptions under the square-root LCEV dynamics (see
Section 4). As we still wish to use the closed-form CEV caplet formula and swaption
approximation, we set the parameter ε  in (12) to a low number, ε = 1 400/ ; that is,
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ϕ ( ) { , }/x x MIN x= ⋅ −20 1 2 . ϕ ( ) { , }/x x MIN x= ⋅ −20 1 2 . We will assume that the forward curve has
constant semi-annual spacing, i.e. δk = 0 5.  for all k , and consider the following two scenarios:

Scenario A:
Constant initial forward rates of 6%: Fk ( ) .0 0 06= , for all k
Constant volatility of 5%: λk t( ) .= 0 05, for all k and t

Scenario B:
Constant initial forward rates of 2%: Fk ( ) .0 0 02= , for all k
Downward-sloping volatility function: λk t MAX k n t( ) { . . ( ( )), . }= − −0 09 0 02 0 01

The scenarios A and B are rough proxies for the current (summer 1998) market conditions in the
US and Japan, respectively. Notice the extremeness of scenario B: in approximate log-normal
terms, the initial volatilities start out at around 65% and fall to 25% for the 10-year forward. The
time 0 caplet volatilities consistent with scenario B are displayed in Figure 3:

Caplet (square-root) Volatility vs. Caplet Maturity (Scenario B)

Figure 3

To simulate the LCEV process, we here use the log-Euler scheme (23) which ensures that the
positivity of forward rates in the continuous-time LCEV process (see Theorem 1) is maintained in
our simulations. For the square-root LCEV process, it also appears that the simulation bias of the
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log-Euler scheme (23) is typically slightly lower than that of the Euler scheme (21). This might
not be the case for arbitrary LCEV specifications, particularly not when α  in (12) is low.

In Table 4A and 4B, we have used 1 million random paths (but no variance reduction
techniques) in the Euler scheme (21) to estimate the prices of selected zero-coupon bonds under
the scenarios above. The table contains sample price errors (simulated price - true price) and
standard deviations (S.D.) for simulation time-steps of 0.5, 0.25, and 0.125.

Zero-coupon bond price simulation errors (in basis points) in scenario A
1,000,000 Monte Carlo Paths, Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Bond ∆ = 05. ∆ = 0 25. ∆ = 0125.
Maturity Error S.D. Error S.D. Error S.D.

1 0.000 0.001 0.000 0.001 0.001 0.002

2 0.01 0.01 0.00 0.01 -0.02 0.01

5 -0.03 0.03 -0.06 0.03 -0.06 0.04

7 -0.05 0.04 -0.04 0.04 -0.07 0.04

10 -0.05 0.07 -0.02 0.05 -0.06 0.05

Exact Prices: 0.9426 (1 yr); 0.8885 (2 yrs); 0.7441 (5 yrs); 0.6611 (7 yrs); 0.5537 (10 yrs)

Table 4A

Zero-Coupon Bond Price Simulation Errors (in basis points) in Scenario B
1,000,000 Monte Carlo Paths, Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Bond ∆ = 05. ∆ = 0 25. ∆ = 0125.
Maturity Error S.D. Error S.D. Error S.D.

1 0.03 0.01 0.03 0.01 -0.01 0.01

2 0.16 0.04 0.09 0.03 -0.05 0.03

5 0.30 0.08 0.16 0.06 -0.03 0.06

7 0.47 0.09 0.25 0.08 0.01 0.07

10 0.70 0.11 0.37 0.09 0.17 0.08

Exact Prices: 0.9803 (1 yr); 0.9610 (2 yrs); 0.9053 (5 yrs); 0.8700 (7 yrs); 0.8195 (10 yrs)

Table 4B

In the case of scenario A, all computed price errors are less than 0.1 bp. Moreover, as the price
errors consistently are less than 2 sample standard deviations in magnitude, they are essentially
indistinguishable from 0. In other words, while we know from the discussion earlier that the log-
Euler scheme will result in a bond price bias, for the moderate volatilities in scenario A this bias is
so small that not even 1,000,000 simulations allows us to separate it from random noise. In the
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case of scenario B, however, the bias is still small, but can be distingusihed from noise,
particularly for long maturities. For the 10-year bond, for instance, when ∆ = 05.  the price bias
amounts to 0.7 basis points or more than 6 standard deviations. As expected, the price errors in
Table 4B fall when the simulation time-step is decreased. For the relatively coarse time-steps
used, however, the convergence order generally appears higher than the expected number of 1.

Turning now to the pricing of caplets, tables 5A and 5B list our simulation results for at-
the-money caplets of various maturities. The simulation errors in the tables are here defined as the
simulated price minus the exact CEV price, the latter computed from Theorem 3, Section 4.

ATM Caplet Price Simulation Errors (in basis points) in Scenario A
1,000,000 Monte Carlo Paths, Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Caplet ∆ = 05. ∆ = 0 25. ∆ = 0125.
Maturity Error S.D. Error S.D. Error S.D.

1 0.002 0.02 0.006 0.02 0.05 0.02

2 0.03 0.03 0.03 0.03 0.08 0.03

5 0.05 0.03 0.04 0.03 0.08 0.03

7 0.001 0.03 -0.004 0.03 0.05 0.03

10 -0.05 0.03 -0.01 0.03 -0.02 0.03

Exact CEV Prices (bp): 22.33 (1 yr); 29.72 (2 yrs); 39.20 (5 yrs); 41.10 (7 yrs); 40.98 (10 yrs)

Table 5A

ATM Caplet Price Simulation Errors (in basis points) in Scenario B
1,000,000 Monte Carlo Paths, Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Caplet ∆ = 05. ∆ = 0 25. ∆ = 0125.
Maturity Error S.D. Error S.D. Error S.D.

1 0.12 0.02 0.15 0.02 0.16 0.02

2 0.23 0.03 0.20 0.03 0.17 0.02

5 0.22 0.03 0.20 0.03 0.15 0.02

7 0.20 0.02 0.17 0.03 0.08 0.02

10 0.21 0.02 0.20 0.03 0.04 0.02

Exact CEV Prices (bp): 21.85 (1 yr); 23.99 (2 yrs); 23.00 (5 yrs); 22.35 (7 yrs); 21.40 (10 yrs)

Table 5B

As was the case for zero-coupon bonds, simulated price errors for scenario A are mostly not
statistically significant, not even for long caplet maturities. Somewhat surprisingly, the errors
appear to be increasing with the number of simulation time-steps, an effect that probably can be
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attributed to the accumulation of rounding errors in the computer algorithm. In scenario B, the
price errors are statistically significant, but small: even for ∆ = 05. , no price error in Table 5B
exceeds 0.25 basis points. Interestingly, the bias seems to grow very slowly, or in some cases even
decrease, with the caplet maturity. Similar behavior can be seen in the simulation studies by
Glasserman and Zhao (1998) for the log-normal market model.

To investigate how the caplet strike impacts the simulation error, Figure 4 graphs some
simulated caplet price errors in scenario B for various values of the strike H.

Caplet Price Simulation Errors (Simulated - CEV) in Scenario B
1,000,000 Monte Carlo Paths, Log-Euler Scheme, ∆ = 05. , ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Figure 4

We notice that the errors for out-of-the-money and, in particular, in-the-money caplets are
somewhat higher than was the case for at-the-money strikes. In general one expects any
approximation of the forward rate distributions to deteriorate in the tails, so these results for the
log-Euler scheme are not surprising.

Having investigated the accuracy of the simulation schemes on caps, we now proceed to
use Monte Carlo simulation to investigate the accuracy of the swaption pricing formulas in
Section 5. As for caps, consider the LCEV model ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2 . We first turn to the
pricing of ATM payer swaption in the scenarios A and B introduced earlier. To keep the
simulation bias low, we set the simulation time-step to ∆ = 0125.  in the log-Euler discretization
scheme (23). The tables below contain simulated swaption prices and sample errors, as well as
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prices and price errors (formula price - simulated price) computed by the closed-form
approximation in Theorem 5. In the tables, the notation "1 x 5", say, denotes a 1-year swaption on
a 5-year swap (that is, the last payment on the swap occurs at year 6).

ATM Payer Swaption Prices in Scenario A (in basis points)
1,000,000 Monte Carlo Paths, ∆ = 0125. , Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Swaption

Simulated

Price S.D.

CEV

Approx.

Price

Error

Price

Error (%)

1 x 1 44.13 0.04 44.01 -0.12 -0.27

1 x 5 196.60 0.15 196.18 -0.42 -0.22

1 x 10 342.58 0.25 342.15 -0.43 -0.13

5 x 1 77.44 0.06 77.27 -0.17 -0.22

5 x 5 344.78 0.24 344.45 -0.33 -0.09

5 x 10 599.65 0.37 600.76 1.11 0.18

10 x 1 80.71 0.05 80.76 0.05 0.06

10 x 5 359.17 0.19 360.02 0.86 0.24

10 x 10 623.46 0.24 627.91 4.45 0.71

Table 6A

ATM Payer Swaption Prices and Biases in Scenario B (in basis points)
1,000,000 Monte Carlo Paths, ∆ = 0125. , Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Swaption

Simulated

Price S.D.

CEV

Approx.

Price

Error

Price

Error (%)

1 x 1 38.46 0.04 38.25 -0.21 -0.54

1 x 5 70.26 0.06 70.37 0.11 0.16

1 x 10 93.72 0.08 93.90 0.18 0.19

5 x 1 39.73 0.04 39.57 -0.16 -0.40

5 x 5 84.50 0.07 84.62 0.13 0.15

5 x 10 130.45 0.10 130.52 0.08 0.06

10 x 1 37.18 0.04 37.18 0.004 0.01

10 x 5 90.45 0.07 90.79 0.34 0.37

10 x 10 149.98 0.11 150.36 0.38 0.25

Table 6B

The errors reported in Tables 6A-B are somewhat difficult to interpret as they are caused by three
separate effects: the bias of the log-Euler scheme; the approximative nature of the formula in
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Theorem 5; and the random variation of the Monte Carlo estimate. Nevertheless, with the
majority of the errors in Tables 6A-B being less than 0.5 basis points, the formula in Theorem 5
seems to work well, and certainly appears accurate enough for calibration purposes. Not
suprisingly, the largest errors are encountered for long-dated options on long-dated swaps; for
instance, in scenario A, the price of the 10 x 10 swaption is mispriced by around 4.5 basis points,
or 0.71% of the simulated price. Again, it is difficult to determine how much of this error is
caused by the imprecision of the Monte Carlo estimate, and how much is caused by the built-in
bias of the formula in Theorem 5. Despite the fact that short-term volatilities in scenario B are
much higher than those in Scenario A, the strong mean reversion in Scenario B (see Figure 3)
ensures that the volatilities of moderate- to long-dated swaps are very similar to those in Scenario
A (see Figure 5). As a consequence, the pricing errors associated with Scenario B are roughly
comparable to those in scenario A, particularly when the swaption maturity and swap tenor are
not very short.

To test how the approximation in Theorem 5 works for in- and out-of-the-money
swaptions, we fix the swap tenor to 5 years and consider various swap coupons and swaption
maturities. The table below reports our results for scenario A (results for scenario B were very
similar and are omitted).

Payer Swaptions on 5-year Swap in Scenario A (in basis points)
1,000,000 Monte Carlo Paths, ∆ = 0125. , Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

          1 x 5              5 x 5           10 x 5
Coupon

(%)

Simulated

Price (S.D)

CEV

Approx.

Simulated

Price (S.D)

CEV

Approx.

Simulated

Price (S.D)

CEV

Approx.

4.5 622.73 (0.07) 623.28 613.46 (0.18) 613.67 540.64 (0.13) 541.67

5.0 452.79 (0.10) 453.29 511.92 (0.21) 511.97 473.81 (0.15) 474.79

5.5 308.88 (0.14) 309.00 422.44 (0.23) 422.29 413.40 (0.17) 414.33

6.0 196.60 (0.15) 196.18 344.78 (0.24) 344.45 359.17 (0.19) 360.02

6.5 116.37 (0.14) 115.53 278.43 (0.24) 277.92 310.78 (0.20) 311.55

7.0 64.01 (0.11) 63.02 222.53 (0.23) 221.88 267.84 (0.20) 268.53

7.5 32.77 (0.08) 31.84 176.10 (0.22) 175.34 229.97 (0.20) 230.57

8.0 15.63 (0.06) 14.92 138.04 (0.20) 137.19 196.74 (0.19) 197.25

8.5 6.97 (0.04) 6.50 107.20 (0.18) 106.33 167.73 (0.18) 168.15

Table 7
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Overall, the swaption formula in Theorem 5 does an excellent job, with the vast majority
of computed prices in Table 7 being within 1 basis point of the simulated prices (the largest price
error in Table 7 is 1.03 basis point and occurs for the 10 x 5 swaption with a coupon of 4.5%).

To get a clearer picture of the volatility skew being generated by the square-root LCEV
process, Figure 5 graphs the implied log-normal volatility (computed from the standard Black-
Sholes swaption formula, see e.g. Jamshidian (1997)) of the 5 x 5 swaption for various levels of
the fixed coupon. The graph also contains data from Scenario B.7

Implied Log-Normal Volatility of 5 x 5 Payer Swaption vs. Fixed Coupon
1,000,000 Monte Carlo Paths, ∆ = 0125. , Log-Euler Scheme, ϕ ( ) ( , )/x x MIN x= ⋅ −20 1 2

Figure 5

Notice that the volatility skew in Scenario B flattens out for high coupons, a consequence of the
downward-sloping volatility function (mean reversion) and the decreasing duration of the fixed
side of the swap when coupons are increased.

                                                       
7 In the graph, only the simulated swaption prices were used. The prices computed from the formula in Theorem 5
resulted in implied volatilities that were, on average, less than 0.001 away from the ones computed from the
simulated prices.
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7. Conclusions.
In this paper we have discussed the extension of Libor market models to non-linear forward
volatility functions. Unlike log-normal models, the proposed framework is capable of producing
volatility smiles or skews consistent with those observed in many markets for caps and swaptions.
The effort involved in calibrating the models to market data appears reasonable as efficient
numerical routines are available for the pricing of caps and swaptions. Forward rate models based
on CEV and LCEV processes were shown to be about as tractable as the log-normal model
(which itself belongs to this model class), yet are capable of generating both upward- and
downward-sloping volatility skews that conform well to observable market data. For the general
case, the paper discusses and demonstrates the usage of Crank-Nicholson finite difference
schemes to price caps and swaptions, and contains numerous Monte Carlo studies examining,
among other things, the accuracy of the proposed swaption formulas and the price biases
introduced by Euler or log-Euler discretizations of the forward rate processes. In general, the
proposed model framework seems to be a viable and useful extension of the standard log-normal
Libor market models.
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Appendix A-- Proofs of Lemmas and Theorems

Proof of Theorem 1.
Due to the recursive nature of the SDEs in the various measures, it suffices to consider the system
of SDEs (2) under the spot measure Q:

dF t F t t t dt dW t t
F t t

F tk k k k k
j j j

j jj n t

k

( ) ( ) ( ) ( ) ( ) , ( )
( ( )) ( )

( )( )

= + =
+=

∑ϕ λ µ µ
δϕ λ

δb g T

1
.

Assume that existence and uniqueness has been established for Fj , j n t k= −( ).. 1 . Also assume
that Fj ≥ 0 , j n t k= ( ),.., . By elementary analysis, the local Lipschitz and growth conditions on
ϕ  ensures that each term in the sum for µ k t( )  is locally Lipschitz continuous and bounded. The
growth condition on ϕ  in turn ensures that the product ϕ λ µF t t tk k k( ) ( ) ( )b g T  is also locally
Lipschitz continuous and, due to the boundedness of µ k t( ) , satisfies a linear growth condition.
For Fk ≥ 0 , the result in Theorem 1 now follows from standard existence and uniqueness
theorems (e.g. Arnold (1992), p. 112). Clearly, if F tk ( ) = 0  for some t < ∞ , uniqueness and
ϕ ( )0 0=  ensures that F sk ( ) = 0  for all s t> , i.e. the forward rate is non-negative.

To show that forward rates stay strictly positive if started above 0, consider first the
probability measure Qk + 1 . According to Lemma 1, under Qk + 1  the boundary behavior of Fk  in 0
is the same as that of the process x,

dx v x v dZ v( ) ( ) ( )= ϕ b g (A.1)
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where x( )0 0>  and Z t( )  is a one-dimensional Brownian motion. According to Borodin and

Salminen (1996, p.17), x will have 0 as an inaccessible boundary if

m a z s da
z

( , ) ( )b g = + ∞z0 ,

where

m dx x dx s dx dx( ) ( ) , ( )= =−2 2ϕ ,

are the speed and the scale measures of the process (A.1), respectively. The local Lipshitz
condition together with ϕ 0 0b g=  gives us that for b a z∈ ( , ) :

ϕ ϕ ϕ ϕ( ) ( ) ( ) ( )b b K b b K bz z= − ≤ ⇒ ≥− − −0 2 2 2

and thereby,

m a z s da b db da K b dbda
z

a

zz

za

zz
( , ) ( ) ( )b g

0

2

0

2 2

0
2 2z zz zz= ≥ ⋅ = + ∞− − −ϕ .

Hence we conclude that Fk  cannot reach 0 under Qk + 1 . To extend the result to other probability
measures, notice that since the terms of the form ϕ δ( ) / ( )x xj1 +  are bounded for non-negative x,
the Novikov condition (Duffie (1996, p. 288)) guarantees that Q Qi j,  are equivalent probability
measures for all i, j. As equivalent measures share null-sets, Qk

kF t+ = =1 0 0( )b g  for all t shows
that Fk  stays positive under all probability measures.♠

Proof of Lemma 2.
a) follows from the remark in Karatzas and Shreve (1991, p. 332); and b) follows from example
5.2.15 in Karatzas and Shreve (1991). As in the proof of Theorem 1, we characterize the
boundary condition at 0 through a speed/scale measure integral. In particular, 0 is an accessible
boundary for (7) iff

m a z s da
z

( , ) ( )b g
0z < ∞ ,   

where

m dx x dx( ) = −2 2α , s dx dx( ) = .
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Hence,

m a z s da m db s da b db da
z

a

zz

a

zz
( , ) ( ) ( ) ( )

,
,

b g
0 0

2

0
2

1
1z zz zz= =

< + ∞ <
= + ∞ ≥

RST
− α α

α

which shows (c). To show (d), according to Borodin and Salminen (1996, Chapter II) it suffices
to consider the integral

s z s a m da
z

( ) ( ) ( )−z b g
0

If the integral is bounded by + ∞ , the level x = 0  is a so-called entrance point. If x = 0  is also an
attainable boundary, the SDE (7) needs to be associated with additional boundary conditions in
x = 0  for it to have a unique solution. For our case we get

s z s a m da z a a da
z z

( ) ( ) ( ) ( )
, /
, /

− = −
< + ∞ <
= + ∞ ≥

RSTz z −b g
0

2

0
2

1 2
1 2

α α
α

Hence, for the case of 0 1 2< <α /  additional boundary conditions have to be added for the
process (7) to have a unique solution. ♠

Proof of Lemma 3.
Using Lemma 1, we see that it suffices to consider the time-changed forward rate process

df v f v dZ vk k k
kb g b g b g= +

α ~
1

where ~Zk
k
+ 1  is a one-dimensional Brownian motion. Assuming that X tk ( ) > 0 , we define

x v s X sk k k( ) ( )b g=  which, according to Ito’s Lemma, satisfies

dx v dv x v dZ vk k k
kb g b g b g= −

−
+ +

1 2
1

2 1
α
α

~

up to the stopping time inf ( )
s t kx s
>

= 0l q . The SDE for x vk ( )  identifies it as a squared Bessel
process of index ϑ α= − −2 1/ ( ) . Using a result in Borodin and Salminen (1996, p. 117), we
obtain the results of Lemma 3 after substituting v v t Tk≡ ( , ) .♠
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Proof of Theorem 2.
Let Et

k + ⋅1[ ]  denote expectation under Qk + 1  conditional on the information available at time t.
Absence of arbitrage implies that

C t P t T E F T H P t T E f v T Hk k k t
k

k k k k v t
k

k k kk
( ) ( , ) ( ( ) ) ( , ) ( ( )) ) ,( )= − = −+

+ +
+

+ +δ δ1
1

1
1 b g

where the notation from (5) is used in the second equality. (5) and the Feynman-Kac Theorem
(Duffie (1996)) proves Theorem 2 after a suitable change of time-variable.♠

Proof of Theorem 3.
For the case a), the results of Lemma 3 enable us to write

E F T H F t v H dk
k k k a

+
+

+
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− = − −F
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where

ξ
α

ξ
α

ψ ξ ξ
ξ

ξ ξ
α α

ξ ξ
α

α

=
−

=
−

= F
HG

I
KJ

− −
− −

−

−

F T

v t T

F t

v t T
e Ik k

k

k

k

b g
b g b g

b g
b g b g b g e j

b g b g b g

b g

2 1

2 0

2 1

2
0

1
4 1

1
2 1

0
2 1 2 1

20

,
,

,
, .

We now note that
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Comparing to Johnson and Kotz (1981, p. 436), we can now identify the first part of formula in
a). To derive the second part, let π ϑ λ χ ϑ λx x x, , , , /b g b g= ∂ ∂2 . Using the results of Johnson and
Kotz (1981, p. 436) we note that ψ ξ π ξ α ξb g b g= + −2 2 1 10 , / ( ), . Schroder (1989) shows that

π ϑ λ λ χ ϑ2 2 1 2 2
0

2 2x d x z
z

, , , ,
/ b g b gz = − − .

Using this we obtain



37

ψ ξ ξ χb g b gd c b a
a

=
+ ∞z 2

2
, ,

/
,

which shows a). The result c) can be derived in the same way.♠

Proof of Theorem 4.
We first concentrate on proving convergence in distribution, i.e. that
lim ( ) ( )P Px T h y T h< − < =b g b g 0 . The result in a) is obvious and follows directly from the non-
explosiveness of the CEV process (see Lemma 2) which implies that the probability of y hitting
ε , and thus of y differing from x, vanishes for ε → ∞ . This argument obviously cannot be used
to prove b) since, as we have already seen, CEV processes with 0 1< <α  have positive
probability of hitting 0. So define the stopping time

τ ε= ≤inf{ : ( ) }v x v

so that x v y v( ) ( )=  for 0 ≤ ≤v τ . We can then write

P P P P

P P

x T h y T h x T h T y T h T

y T h T x T h T

( ) ( ) ( ) , ( ) ,

( ) , ( ) , .

< − < = < < − < <

= ≥ < − ≥ <
b g b g b g b g

b g b g
τ τ

τ τ
(A.2)

To bound8 the terms in (A.2), we first introduce the indicator function 1{ }τ<T  and note that

E y T E y T y TT T T T Tmin( , ) { } { } min( , ) { }( ) ( ) min( , )τ τ τ τ τ τ ε1 1 1< < <= = ≤b g , (A.3)

where the second equality follows from the Optional Sampling Theorem (Karatzas and Shreve
(1991), p.19) and the fact that y is a martingale. By the law of iterated conditional expectations,
we conclude that

E y TT0 1{ } ( )τ ε< ≤ .

Also note that

P P P Py T h T d
y T

h
d

y T
h

d
hy T h T y T h T T

( ) ,
( ) ( )

{ ( ) , } { ( ) , } { }
≥ < = ≤ ≤ ≤

≥ < ≥ < <z z zτ ε
τ τ τ

b g , (A.4)

                                                       
8 We are grateful to Steven Shreve for pointing out this ingenious argument.
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where the last inequality follows from (A.3). With the boundary conditions in 0 as specified in the
Theorem, the process x is also a martingale (see discussion after Lemma 2), and we can use the
same arguments to derive

P x T h T
h

( ) ,≥ < ≤τ εb g (A.5)

Now, finally,

P P P Px T h y T h MAX y T h T x T h T
h

( ) ( ) ( ) , , ( ) ,< − < ≤ ≥ < ≥ < ≤b g b g b g b gc hτ τ ε
,

where the second inequality follows from (A.4) and (A.5). Letting ε → +0  gives the result in b).
Having established convergence in distribution, we now need to show convergence of

E x T HP ( ( ) )− +  - E y T HP ( ( ) )− + . We have

E x T H E y T H E x T H x T E y T H y T

E H x T E H y T

P P P P

P P

( ( ) ) ( ( ) ) ( ) ( ( )) ( ) ( ( ))

( ( )) ( ( ))

− − − = + − − + −

= − − −

+ + + +

+ +

where the second inequality follows from the martingale property of x and y and the fact that
x y( ) ( )0 0= . As ( )H z− +  is a bounded, continuous function of z, the results in the Theorem
follow from the Dominated Convergence Theorem (see Duffie (1996), p. 280).♠

Appendix B -- Finite difference solution of (9)

As a first step, introduce a uniform mesh ( , )xl jτ  with

x x l jl x j= + =0 ∆ ∆, τ τ

for 0 ≤ ≤l N , 0 ≤ ≤j M . x0  and xN  represent the upper and lower limits of x-space (typically
either 0 and ∞  , or − ∞  and ∞ ), and should be set such that most of the statistically significant x-
space is captured by the mesh. τ M  represents the largest value of τ  for which a solution of (9)
will be required. Using $ ,gl j  to denote the finite difference approximation of the true solution
g xl j( , )τ , a Crank-Nicholson discretization of (9) at node ( , )xl jτ  is given by
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− − + − + + − + =+ + − + + + − +
1

2
2 2 01

2

2 1 1 1 1 1 1 1∆ ∆τ

ϕ
( $ $ )

( ) $ $ $ $ $ $, , , , , , , ,g g
x

g g g g g gl j l j
l

x
l j l j l j l j l j l jd i

or, equivalently,

( ) $ $ $ ( ) $ $ $, , , , , ,1 11
1
2 1 1

1
2 1 1

1
2 1

1
2 1+ − − = − + ++ + + − + + −α α α α α αl l j l l j l l j l l j l l j l l jg g g g g g , (B.1)

where α ϕ τl l xx= ( ) /2 2∆ ∆ . Starting from the known boundary condition at τ = 0 ,
$ ( , ) ( ),g g x x Hi i i0 0= = − + , the tridiagonal system (B.1) can be solved forward in τ  using, for

example, the O(N) algorithm in Press et al (1992), p. 51.

The close resemblance between (6) and the heat equation strongly suggests that (B.1) is stable.
This can be verified formally by a Von Neuman analysis (Smith (1985)). A Taylor-expansion
analysis of (B.1) further reveals that the local truncation error of (B.1) approaches 0 as ∆ t  and
∆ x  approach 0 ("consistency"). By Lax's equivalence theorem for linear PDEs (e.g. Smith
(1985), p. 72) we conclude that (B.1) is convergent.


