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Abstract

We present a class of multi-factor stochastic models for energy fu-

tures prices, similar to the interest rate futures models recently formu-

lated by Heath (1998). We do not postulate directly the risk-neutral

processes followed by futures prices, but define energy futures prices

in terms of a spot price, not directly observable, driven by several

stochastic factors. Our formulation leads to an expression for futures

prices which is well suited to the application of Kalman filtering tech-

niques together with maximum likelihood estimation methods. Based

on these techniques we perform an empirical study of a one and a

two-factor model for futures prices for natural gas.
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I Introduction

Prices of energy commodities, like electricity and natural gas, have tradi-

tionally been regulated, with the financial risks associated with the costs of

running a utility company collectively borne by the users. As the United

States and Europe are moving toward a deregulated environment and as new

financial instruments tailored to individual demand profiles are being devel-

oped, it is important to introduce models that account for the risks that the

sellers and buyers of such energy instruments would face.

In this paper we offer a general multi-factor model designed to account

for the observed stochastic behavior of energy futures prices, in the spirit

of the interest rate model proposed by Heath (1998) for bond futures. Like

other models of the term structure of commodity futures prices, such as Cor-

tazar and Schwartz (1994), and Miltersen and Schwartz (1998), our model

fits within the general Heath, Jarrow and Morton (1992) no-arbitrage frame-

work. Additionally, similar to the work of Schwartz and Smith (1997), we

offer a connection between the model for the futures prices and a model for

an underlying spot price. The spot price is assumed to be a given func-

tion of underlying state variables following, exogenously specified, general-

ized Ornstein-Uhlenbeck stochastic processes under the risk-neutral measure.
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The expression for futures prices, as functions of the state variables, is then

derived from the definition of the futures price as the risk-neutral conditional

expectation of the underlying spot at the maturity of the futures contract.

We view our contribution to the literature as twofold: on the theoretical

side we extend the framework presented in Miltersen and Schwartz (1998) to

account for seasonal patterns in the futures curve and also offer a Kalman fil-

ter formulation for the general model, including seasonality and an arbitrary

number of random factors. On the empirical side we offer a study of the nat-

ural gas market, with estimates for the parameters for a seasonal stochastic

processes with one and two factors.

The choice of generalized Ornstein-Uhlenbeck processes for the state vari-

ables underlying the spot and futures model has the desirable properties of

incorporating mean-reversion, an empirical feature of commodity prices, and

of being able to account for the observed term structure of volatilities and

correlations of futures prices. At the same time, the general model we dis-

cuss has lognormally distributed futures prices under the risk-neutral mea-

sure, which leads to closed-form Black-Scholes type formulas for European

options written on the futures. The analytical tractability makes this class

of models very appealing in view of the potential applications, such as fu-

4



tures price curve building and option pricing. Another advantage of our

approach is that it leads to a state space formulation of the futures model

which is well suited for the use of a powerful model estimation technique

which combines Kalman filtering and maximum likelihood methods. We im-

plement this empirical estimation method for the case in which the model has

time-homogeneous instantaneous volatilities for futures prices and the mar-

ket prices of risk relating risk-neutral and real-world probability measures are

assumed constant. Using historical information on futures prices on natural

gas over the period September 1997 to August 1998 we are able to accurately

estimate the values of the model parameters for two special cases of the gen-

eral model: a one-factor and a two-factor model with seasonal adjustments

for futures prices in different months of the year.

One important feature that underlies our choice of general model is the

fact that we explicitly allow the possibility of a futures curve that is non-

monotonic with respect to the term of the futures contract. In particular,

we can account for the seasonal increases and decreases in futures prices

observed in the summer vs. the winter months in the futures curves of

electricity and natural gas, through the presence of a deteministic seasonality

factor in the expression of futures prices. Although certain non-monotonic
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patterns for futures prices of financial assets lead to arbitrage opportunities,

such patterns are often observed in futures prices of energy as well as other

commodities. It is important to realize that the presence of such patterns

in the futures curve of energy assets does not offer arbitrage opportunities,

since the assets delivered are not fungible. A simple example is to consider

on-peak electricity prices, i.e. electricity delivered 6 am to 10 pm, Monday

through Friday, as compared to off-peak electricity prices. Since on-peak

prices are significantly higher than off-peak prices, to take advantage of the

price differential one would need to purchase electricity during off-peak hours

and deliver it during on-peak hours. However, due to inefficiency of storage of

electricity, the “arbitrage” opportunity offered by this strategy is eliminated.

Consistent with no-arbitrage pricing, all tradable assets in our model, that

is, futures contracts and contracts with payoffs based on futures prices, are

martingales under the risk-neutral measure. Since the spot price in our model

does not correspond to the price of a tradable asset it is neither observable,

nor a martingale under the risk-neutral measure.

The rest of the paper is organized as follows. Section II describes the

general multi-factor model. We begin by defining the general framework of

the model and by summarizing the relations between absence of arbitrage,

6



existence of a martingale measure and the implied restrictions on the form

of the real-world and the risk-neutral world futures price processes. We then

introduce the state variables which follow generalized Ornstein-Uhlenbeck

type stochastic processes and in terms of which we define the futures prices.

Section III presents, under some additional, simplifying assumptions, the

state space formulation of the problem, amenable to the use of the Kalman

filter and maximum likelihood parameter estimation methods. In Section

IV an empirical study is presented for two particular futures price models: a

one-factor model with seasonality and mean-reversion in the underlying spot

price stochastic movements and a two-factor model with seasonality and

with the underlying spot price having mean-reverting short-term stochastic

movements and long-term movements following geometric Brownian motion.

The empirical results are based on a one-year historical time series of futures

prices for natural gas contracts. Section V summarizes and concludes the

paper.
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II Formulation of the model

II.A The general framework

We consider a trading interval [0, T ∗], where T ∗ is a fixed time horizon. Un-

certainty in the economy is modeled by the filtered probability space (Ω,F,P)

with P the real world probability measure. Events in the economy are re-

vealed over time according to the filtration F = (Ft)t∈[0,T ∗] generated by n

(n ≥ 1) independent standard Brownian motion factors W 1
t ,W

2
t , . . .W

n
t .

The market model that we are considering contains the energy commodity

futures prices of different maturities T (0 < T < T ∗) as the prices of primary

traded securities. For each T ∈ [0, T ∗] we let F (t, T ), for t ≤ T , denote

the T -maturity futures price process. In addition to these futures prices, the

market model contains the price of an additional primary security, a money

market account. Its price process Bt is defined by: dBt = rtBtdt, B0 = 1,

in terms of the short-term interest rate process rt which is assumed to be

deterministic.

We assume that the market security prices are functions of m state vari-
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ables ξ1
t , ξ

2
t , . . . , ξ

m
t which follow Itô processes defined by:

(1) dξi
t = µi

t dt+
n∑

j=1

σij
t dW

j
t , i = 1, . . . ,m

The coefficients µi
t and σij

t are adapted stochastic processes on (Ω,F,P) which

are sufficiently well behaved for (1) to define an Itô process (see Oksendal

(1995), ch.IV). We further assume that µi
t and σij

t depend only on ξt =

(ξ1
t , ξ

2
t , . . . , ξ

m
t ) and t, so that ξt follows an m-dimensional diffusion process

defined by the system of stochastic differential equations (1).

As a function of the state variables, a generic futures price F (t, T ) =

f(ξt, t, T ) follows a diffusion process (the function f is assumed sufficiently

well behaved for this to hold):

(2) dtF (t, T ) = F (t, T )[α(t, T ) dt+
n∑

j=1

σj(t, T ) dW j
t ]

where

α(t, T ) =
1

f

[∂f
∂t

+
m∑

i=1

µi
t

∂f

∂ξi
t

+
1

2

m∑
i,l=1

n∑
j=1

σij
t σ

lj
t

∂2f

∂ξi
t∂ξ

l
t

]
σj(t, T ) =

1

f

[ m∑
i=1

σij
t

∂f

∂ξi
t

]

We comment now on the arbitrage-free property of the futures market

model and the existence of an equivalent martingale measure. The material
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in the rest of this subsection is based in part on results presented in Duffie

((1996), ch.6,8), Heath, Jarrow and Morton (1992), Musiela and Rutkowski

((1997), ch.10,13).

We will assume that in our market model any investment portfolio in-

volves only a finite number of futures contracts of different maturities as

well as cash investment in the money market account. Let 0 < T1 < T2 <

· · · < TN ≤ T ∗ be an arbitrary collection of maturities. We extend the

processes F (t, Tk) over the whole interval [0, T ∗] by setting F (t, Tk) = 0 for

t ∈ (Tk, T
∗]. A futures trading strategy associated to the set of maturities

T1, . . . , TN consists of an (N + 1)-dimensional F-adapted stochastic process

(φ1
t , φ

2
t , . . . , φ

N
t , ψt). The coordinates φk

t , k = 1, . . . , N , represent the number

of long or short positions in the Tk-maturity futures contract at time t and

satisfy φk
t = 0 for t ∈ (Tk, T

∗]. The amount of cash in the money market

account at time t is ψt. Since futures prices are specified so that the value

of futures contracts remains zero, for every t ∈ [0, T ∗] the value Vt of the

portfolio (φ1
t , φ

2
t , . . . , φ

N
t , ψt) is given by:

(3) Vt = ψtBt

The futures trading strategy is called self-financing if the stochastic process
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Vt satisfies:

(4) dVt =
N∑

k=1

φk
t dF (t, Tk) + ψt dBt

The market model is arbitrage-free if there are no self-financing trading

strategies which give rise to arbitrage opportunities. An arbitrage opportunity

would be represented by a self-financing trading strategy (φ1
t , φ

2
t , . . . , φ

N
t , ψt)

over the time interval [0, T ], associated to a set of maturities 0 < T1 <

T2 < · · · < TN ≤ T , whose portfolio value process Vt satisfies V0 = 0 and

P(VT ≥ 0) = 1, P(VT > 0) > 0 (see (Musiela and Rutkowski (1997), §10.1) or

(Duffie (1996), ch.6) for the additional technical conditions on self-financing

trading strategies involved in the definition of an arbitrage-free market for a

continuous-time model).

Then, aside from technical conditions, the following statements (A)-(D)

are equivalent:

(A) The market model is arbitrage-free.

(B) There exists a probability measure Q equivalent to P such that all

futures price processes are martingales under Q.

(C) There exists an adapted n-dimensional stochastic process

γt = (γ1
t , γ

2
t , . . . , γ

n
t ) on (Ω,F,P), the market price of risk, such that
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EP
[
exp

(
1
2

∑n
j=1

∫ T ∗

0
|γj

t |2 dt
)]

< ∞, and such that, for any maturity

T ≤ T ∗, the following relation between the drift and the volatilities of

the futures price process (2) is satisfied:

(5) α(t, T ) =
n∑

j=1

σj(t, T )γj
t

(D) There exists a probability measure Q equivalent to P such that for

any self-financing futures trading strategy its discounted portfolio value

Ṽt = B−1
t Vt is a martingale under Q.

For any T ≤ T ∗, given γt as in (C), the martingale (risk-neutral) measure

Q equivalent to P on (Ω,FT ) satisfies

(6)
dQ
dP

= exp(−
n∑

j=1

T∫
0

γj
t dW

j
t −

1

2

n∑
j=1

T∫
0

|γj
t |2dt) P-a.s.

and the processes

(7) W̃ j
t = W j

t +

∫ t

0

γj
sds, t ∈ [0, T ], j = 1, . . . , n

are standard Brownian motions under Q. Thus, under the martingale mea-

sure Q defined by (6), the futures price process F (t, T ) is defined by

(8) dtF (t, T ) = F (t, T )
n∑

j=1

σj(t, T )dW̃ j
t
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To ensure the martingale property of the futures price process F (t, T ) un-

der the measure Q the volatilities σj(t, T ) have to satisfy the condition

EQ
[
exp

(
1
2

∑n
j=1

∫ T

0
σj(t, T )2 dt

)]
< ∞.

As in the Heath, Jarrow and Morton (1992) interest rate model, once a

set of volatility surfaces σj(t, T ) has been specified, absence of arbitrage in

the futures market restricts the drifts α(t, T ) of the real world futures price

processes (2) to those of the form (5), where the only degrees of freedom

are in the specification of the n-dimensional process γt. However, given a

general adapted process γt, futures prices can exhibit a rich set of possible

drifts under the real world measure P.

In the following sections, assuming that the above statements (A)-(D)

are true, we are going to develop an explicit model for energy futures prices.

We will start by postulating the stochastic processes followed by the state

variables ξi
t under the risk-neutral measure Q, which give deterministic volati-

lities σj(t, T ) for the futures price processes (8). This leads to lognormally

distributed futures prices under the risk-neutral measure Q. No further as-

sumptions, besides the regularity conditions necessary for (A)-(D) to be

satisfied, will be imposed on the market price of risk process γt at this stage.

In Section III, however, we shall make the additional, restrictive assumption
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that the process γt defining the change of measure from the physical measure

P to the equivalent martingale measure Q is constant.

II.B State variables and spot price processes

In the framework introduced in the previous subsection we now postulate

the arbitrage-free property of our market model and thus the existence of a

probability measure Q equivalent to the real world measure P under which

all energy futures prices of different maturities follow martingale processes.

Let St denote the spot price of the energy commodity at time t. This is

not assumed to be the observed quoted spot price, in case the correspond-

ing commodity has one, but rather an unobserved variable which serves the

formal role of the underlying asset for derivatives like futures or forward

contracts.

We assume that St can be decomposed as the product of several compo-

nents, one of which might be a seasonality factor. More precisely, introducing

Xt = lnSt

we assume that Xt can be expressed as a sum of the m state variables
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ξ1
t , ξ

2
t , . . . , ξ

m
t , that is:

(9) Xt =
m∑

i=1

ξi
t

The state variables ξi
t are assumed to each follow a stochastic process defined

under the martingale measure Q by the stochastic differential equation:

(10) dξi
t = (α̃i

t − ki
tξ

i
t) dt+

n∑
j=1

σij
t dW̃

j
t

with ki
t,σ

ij
t and α̃i

t deterministic functions of time. For σij
t = σij and ki

t = ki

non-zero constants the above stochastic differential equation for ξi
t defines

an Ornstein-Uhlenbeck mean-reverting process, with mean-reverting rate ki

and mean-reverting level
α̃i

t

ki , while for ki = 0 it reduces to a Brownian mo-

tion process with drift α̃i
t. If the state variable ξi

t represents the seasonality

component we might consider it as a deterministic function of time by tak-

ing ki = σi1 = · · · = σin = 0 and specifying an appropriate time functional

dependence for α̃i
t.

The stochastic differential equation of the state variable ξi
t under the real

world measure P is, using (7) and (10),

(11) dξi
t = (αi

t − ki
tξ

i
t)dt+

n∑
j=1

σij
t dW

j
t ,
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where

(12) αi
t = α̃i

t +
n∑

j=1

σij
t γ

j
t .

Let 0 ≤ t ≤ T ≤ T ∗. Solving the stochastic differential equation (10) we

have:

(13) ξi
T = βi

T

[
(βi

t)
−1ξi

t +

T∫
t

(βi
s)
−1α̃i

sds+
n∑

j=1

T∫
t

(βi
s)
−1 σij

s dW̃
j
s

]
where βi

t is the solution of the ordinary differential equation:

dβi
t

dt
= −ki

t β
i
t , βi

0 = 1

Equation (13) shows that the distribution of the state variables ξ1
T , . . . , ξ

m
T

conditional on Ft is multivariate normal with the ith component mean equal

to

(14) EQ[ξi
T | Ft] = βi

T

[
(βi

t)
−1ξi

t +

T∫
t

(βi
s)
−1α̃i

sds
]

and with covariance matrix

(15) CovQ[ξi
T , ξ

l
T | Ft] =

n∑
j=1

βi
Tβ

l
T

T∫
t

(βi
s)
−1(βl

s)
−1 σij

s σ
lj
s ds

It follows that the distribution of XT = lnST conditional on Ft is normal

with mean and variance:

(16) EQ[XT | Ft] =
m∑

i=1

βi
T

[
(βi

t)
−1ξi

t +

T∫
t

(βi
s)
−1α̃i

sds
]
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(17) VarQ[XT | Ft] =
m∑

i,l=1

n∑
j=1

βi
Tβ

l
T

T∫
t

(βi
s)
−1(βl

s)
−1 σij

s σ
lj
s ds

II.C Futures price process

As in Subsection II.A, F (t, T ) denotes the futures price at time t of an

energy futures contract with maturity date T . The futures price F (t, T ) is a

Q-martingale defined as the expectation under the risk-neutral measure Q,

conditional on Ft, of the spot price ST at the maturity date T :

(18) F (t, T ) = EQ[ST | Ft]

Since XT = lnST is normally distributed under Q, one has:

(19) F (t, T ) = EQ[eXT | Ft] = exp
(
EQ[XT | Ft] +

1

2
VarQ[XT | Ft]

)
This leads to the following expression for the futures price F (t, T ) as a func-

tion of the state variables

(20) F (t, T ) = exp
( m∑

i=1

βi
T (βi

t)
−1ξi

t + A(T, t)
)

where

A(T, t) =
m∑

i=1

βi
T

T∫
t

(βi
s)
−1α̃i

sds +
1

2

m∑
i,l=1

n∑
j=1

βi
Tβ

l
T

T∫
t

(βi
s)
−1(βl

s)
−1 σij

s σ
lj
s ds
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The futures price F (t, T ), has a lognormal distribution under the martingale

measure Q. That is, Φ(t, T ) = lnF (t, T ), conditional on F0, is normally

distributed under Q with mean:

(21)

µΦ(t, T ) = EQ[lnF (t, T )|F0]

=
m∑

i=1

[
βi

T ξ
i
0 + βi

T

T∫
0

(βi
s)
−1α̃i

sds

]
+1

2

m∑
i,l=1

n∑
j=1

βi
Tβ

l
T

T∫
t

(βi
s)
−1(βl

s)
−1 σij

s σ
lj
s ds

and variance:

(22)
σ2

Φ(t, T ) = VarQ[lnF (t, T )|F0]

=
m∑

i,l=1

n∑
j=1

βi
Tβ

l
T

t∫
0

(βi
s)
−1(βl

s)
−1 σij

s σ
lj
s ds

Applying Itô’s Lemma to (20) and using (10), it follows that under the mar-

tingale measure Q the stochastic differential equation for the futures price

process F (t, T ) has the form (8)

(23) dtF (t, T ) = F (t, T )
n∑

j=1

σj(t, T )dW̃ j
t

with the volatility function σj(t, T ) given by the expression:

(24) σj(t, T ) =
m∑

i=1

βi
T (βi

t)
−1 σij

t

Under the initial assumptions regarding the stochastic processes followed by

the state variables (ki
t and σij

t in the stochastic differential equation (10)
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are deterministic functions of time), the resulting model for futures exhibits

deterministic volatilities of futures prices with both time and maturity de-

pendence. If we require that the volatilities σj(t, T ) be time-homogeneous

then it follows that the quantities ki
t and σij

t must be constant and we set

ki
t = ki and σij

t = σij. In this case (24) becomes

(25) σj(t, T ) =
m∑

i=1

σije−ki(T−t)

The total squared instantaneous volatility of the process F (t, T ) is in this

case a deterministic function of T − t:

(26) σ2
F (t,T ) =

n∑
j=1

σj(t, T )2 =
n∑

j=1

[ m∑
i=1

σije−ki(T−t)
]2
.

Its functional form suggests that even under the time-homogeneity assump-

tion on the volatility coefficients of the random factors in the futures price

process, the model is capable of calibration to a wide range of observed

volatility term structures. 1

1An equation similar to (23)-(25) was postulated in Heath (1998) for the process fol-

lowed by interest rate futures prices under the risk-neutral measure. Here, however, we

did not take equation (23) as our starting point, but, as in Schwartz and Smith (1997), we

started by postulating the stochastic multi-factor risk-neutral process (9)-(10) followed by

a spot price underlying the commodity futures price. Our approach allows a direct state
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III Model estimation

III.A Additional model assumptions

In order to obtain estimates of the model parameters, we fit the model fu-

tures prices to the observed time series of prices via the Kalman filter and

maximum likelihood method under additional simplifying assumptions.

(i) The market price of risk process γt = (γ1
t , . . . , γ

n
t ) is constant.

(ii) The number of state variables is m = n+1, with ξ1
t , ξ

2
t , . . . , ξ

n
t stochastic

components and with q(t) = ξ
(n+1)
t the seasonality component, assumed

deterministic and periodic with period set to be equal to one year.

(iii) The quantities from equation (10), ki
t, σ

ij
t and α̃i

t, are constant and we

denote them with ki = ki
t, σ

ij = σij
t and α̃i = α̃i

t. Then, considering (i),

also αi
t from equation (11) is constant, and we set αi = αi

t.

Hence, the class of models we are considering has time-homogeneous in-

stantaneous volatilities for futures prices as given by expression (26).

space representation given by equation (20) for futures prices, which does not depend on

the initial forward curve F (0, T ). We shall use the state space formulation in Section III

to estimate the process parameters using Kalman filtering and maximum likelihood.
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For computational purposes, we introduce the Brownian motion factors

Z1, . . . , Zn, where:

(27) σidZ
i
t =

n∑
j=1

σijdW j
t , i = 1, . . . , n

with correlations dZ i
t · dZ l

t = ρildt, i, l = 1, . . . , n. Thus:

σ2
i =

n∑
j=1

(σij)2

ρilσiσl =
n∑

j=1

σijσlj

With these notations the stochastic differential equation for the state

variables ξi
t is:

(28) dξi
t = (αi − kiξ

i
t)dt+ σidZ

i
t , i = 1, . . . , n

For any T ≥ t, equation (28) has the solution:

(29) ξi
T = e−ki(T−t) ξi

t +
αi

ki

[
1− e−ki(T−t)

]
+

T∫
t

e−ki(T−s) σi dZ
i
s

With the new notations and assumptions, equation (20) for the futures

price F (t, T ) as a function of the state variables ξ1
t , . . . , ξ

n
t and the seasonality

component Q(t) = exp q(t) becomes:

(30) F (t, T ) = Q(T ) exp

(
n∑

i=1

e−ki(T−t)ξi
t + A(T − t)

)
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where

A(T − t) =
n∑

i=1

α̃i

ki

[
1− e−ki(T−t)

]
+

1

2

n∑
i,l=1

ρilσiσl

ki + kl

[
1− e−(ki+kl)(T−t)

]

From (28) and (30) one can derive the expression for the stochastic pro-

cesses followed by futures prices:

(31) dtF (t, T ) = F (t, T )
[ n∑

i=1

(αi − α̃i)e
−ki(T−t)dt+

n∑
i=1

σie
−ki(T−t)dZ i

t

]
In view of (12) and (27), the above stochastic differential equation satisfies

the restriction (5) on the drift of the futures price process.

Let ∆t denote a time period length. Then (31) leads to the following

expressions for the mean and variance of the log returns of futures prices

over the period ∆t:

EP[ln(
F (t,T )

F (t−∆t,T )
)] =

n∑
i=1

αi − α̃i

ki

e−ki(T−t)[1− e−ki∆t](32)

− 1

2

n∑
i,l=1

ρilσiσl

ki + kl

e−(ki+kl)(T−t)[1− e−(ki+kl)∆t]

VarP[ln(
F (t,T )

F (t−∆t,T )
)] =

n∑
i,l=1

ρilσiσl

ki + kl

e−(ki+kl)(T−t)[1− e−(ki+kl)∆t]
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Moreover, the covariance of log returns over the period ∆t for two different

futures contracts is given by:

(33)

CovP[ln(
F (t,T1)

F (t−∆t,T1)
), ln(

F (t,T2)

F (t−∆t,T2)
)] =

n∑
i,l=1

ρilσiσl

ki + kl

e−ki(T1−t)−kl(T2−t)[1−e−(ki+kl)∆t]

III.B State space form representation, Kalman filter

and maximum likelihood method

The futures price model described by equations (29) and (30) can be cast

in state space form which can then be used in conjunction with the Kalman

filter and the maximum likelihood estimation method for the empirical imple-

mentation of the model. A general description of the state space formulation

and of the Kalman filter can be found in Hamilton (1994) or Harvey (1994).

We detail below the state space formulation for our models.

Let yt, t = t0, t1, t2, . . . , tfinal, be the observed multivariate time series

with N elements:

(34) yt =


y1t = Φ(t, t+ τ1)

...

yNt = Φ(t, t+ τN)


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where Φ(t, t+τ) = lnF (t, t+τ) is the logarithm of the futures price at time t

with expiry date at T = t+ τ . We assume that the observations yt are given

at equally spaced time steps and we let ∆t = ti − ti−1 denote the length of

the time step.

From equation (30) it follows that the observables yt are related to the

state vector

(35) ξt =


ξ1
t

...

ξn
t


through the observation equation:

(36) yt = Zξt + dt + εt

where

Zpi = e−kiτp , i = 1, . . . , n, p = 1, . . . , N

(dt)p = A(τp) + q(t+ τp), p = 1, . . . , N

To account for possible errors in the data we introduced in equation (36) a

vector εt of serially uncorrelated, identically distributed disturbances. Each

εt has a multivariate normal distribution, εt ∼ N (0,R), with mean zero and

24



with covariance matrix taken for computational simplicity to be diagonal

R =

(
ω2

1 0

...
0 ω2

N

)
.

According to equation (29), the state vector ξt follows a first order Markov

process defined by the state equation:

(37) ξt = Tξt−∆t + c + ηt

where

Til = (e−ki∆t)δil, i, l = 1, . . . , n

ci =
αi

ki

(
1− e−ki∆t

)
, i = 1, . . . , n

and ηt is a vector of serially uncorrelated, identically distributed distur-

bances, with each ηt drawn from the same multivariate normal distribution,

ηt ∼ N (0,V), with covariance matrix Vil = ρilσiσl

ki+kl

[
1− e−(ki+kl)∆t

]
. The

disturbances εt and ηt are assumed to be uncorrelated with each other in

all time periods. We also assume that the initial state vector ξ0, although

unknown, is non-stochastic and fixed, and its components will be included

among the model parameters to be estimated.

The observation and state equation matrices, Z,dt,R,T, c,V, depend on

the unknown parameters of the model. One of the main goals in the empirical

implementation of the model is to find estimates for these parameters. This
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can be accomplished by maximizing the likelihood function with respect to

the unknown parameters through an optimization procedure.

For notational simplicity, we collect the unknown model parameters in a

vector θ and we denote by Yt = {yt,yt−∆t, . . . ,yt1 ,yt0} the information set

at time t. As usual for time series models, the observations yt0 ,yt1 , . . . ,ytfinal

are not independent. Their joint probability density function (pdf), the

likelihood function, is given by

(38) L(y; θ) =
∏

t

g(yt | Yt−∆t)

where g(yt | Yt−∆t) denotes the pdf of yt conditional on the information set

Yt−∆t available in the previous time period. Under the stated assumptions

regarding ξ0 and the disturbances εt and ηt, the distribution of yt conditional

on Yt−∆t is normal with mean ŷt|t−∆t = EP[yt | Yt−∆t] and covariance matrix

Ct. With νt = yt − ŷt|t−∆t denoting the vector of prediction errors, the

logarithm of the likelihood function is given by:

logL(y; θ) =− N(tfinal − t1)

2∆t
log 2π − 1

2

∑
t

log | det Ct|

− 1

2

∑
t

νtC−1
t νt

(39)

For a given set of parameters θ, the likelihood function can be evalu-

ated through the Kalman filtering procedure. This is a recursive procedure
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for computing the optimal estimate ξ̂t of the state vector ξt based on the

information available at time t, that is, based on the observed time series

yt up to and including time t. This estimate ξ̂t is the conditional mean

ξ̂t = EP[ξt | Yt]. Besides ξ̂t, the Kalman filter yields in each time period t

the prediction error νt and the covariance matrix Ct which enter into the ex-

pression of the likelihood function. The best-fit parameters θ are those which

maximize the logarithm of the likelihood function described in equation (39).

IV Results

We give estimates for two specific models from the class of models formulated

in Subsection III.A, with one and two stochastic factors.

IV.A One-factor model

The model is described by a deterministic seasonality factor and one random

factor. The state vector contains only one stochastic component ξt which

is assumed to follow an Ornstein-Uhlenbeck mean-reverting process, with

mean-reversion rate k, volatility σ, mean reverting level α for the real-world

process and mean-reverting level α̃ for the risk-neutral process. The obser-
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vation and state equations are:

(yt)p = e−kτpξt + (dt)p + (εt)p, p = 1, . . . , N(40)

ξt = e−k∆tξt−∆t +
α

k

(
1− e−k∆t

)
+ ηt(41)

where

εt ∼ i.i.d.N (0,R) R =

(
ω2

1 0

...
0 ω2

N

)

ηt ∼ i.i.d.N (0,V) V =
σ2

2k

(
1− e−2k∆t

)
(dt)p = q(t+ τp) +

α̃

k

(
1− e−kτp

)
+
σ2

4k

(
1− e−2kτp

)
We take the seasonality component q(t) to be a periodic step function

with Q(t) = eq(t) = sm, if time t belongs to the month m (the period is one

year). The convention means that we assign a fixed seasonality factor sm for

each month m of the year. Moreover, these monthly values are normalized

so that
12∏

m=1

sm = 1. The vector of unknown parameters to be estimated is

θ = (k, σ, α, α̃, ξ0, (ω
2
1, . . . , ω

2
N), (s1, . . . , s12)).

IV.B Two-factor model

The model is described by a deterministic seasonality factor and two random

factors. The state vector contains two stochastic components ξt = (ξ1
t , ξ

2
t ).
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Component ξ1
t follows an Ornstein-Uhlenbeck mean-reverting process with

mean-reversion rate k, volatility σ1, mean-reverting level α1 = 0 for the

real-world process and mean-reverting level α̃1 for the risk-neutral process.

Component ξ2
t follows a Brownian motion process with volatility σ2, drift rate

α2 for the real-world process, and drift rate α̃2 for the risk-neutral process.

The initial state vector is taken to be ξ0 = (ξ1
0 = 0, ξ2

0). The observation and

state equations are:

(yt)p = e−kτpξ1
t + ξ2

t + (dt)p + (εt)p, p = 1, . . . , N(42) (
ξ1
t

ξ2
t

)
=
(

e−k∆t 0
0 1

) ( ξ1
t−∆t

ξ2
t−∆t

)
+
(

0
α2∆t

)
+
(

η1
t

η2
t

)
(43)

where

εt ∼ i.i.d.N (0,R) R =

(
ω2

1 0

...
0 ω2

N

)

ηt ∼ i.i.d.N (0,V) V =

 (σ1)2

2k

(
1− e−2k∆t

)
ρ12σ1σ2

k

(
1− e−k∆t

)
ρ12σ1σ2

k

(
1− e−k∆t

)
(σ2)

2∆t


(dt)p = q(t+ τp) +

α̃1

k

(
1− e−kτp

)
+ α̃2τp +

(σ1)
2

4k

(
1− e−2kτp

)
+
ρ12σ1σ2

k

(
1− e−kτp

)
+

1

2
(σ2)

2τp

The assumptions on the seasonality factor are the same as in the case of

the one-factor model. The vector of unknown parameters to be estimated is

θ = (k, σ1, α̃1, σ2, α2, α̃2, ρ12, ξ
2
0 , (ω

2
1, . . . , ω

2
N), (s1, . . . , s12)).

29



IV.C Empirical results for natural gas futures

For the empirical implementation of the models we used a dataset includ-

ing the historical time series of natural gas futures prices, quoted daily from

09/02/97 to 08/31/98, for 15 contracts with times to expiration 1, 2, 3, 4,

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 months (Henry Hub natural gas futures,

Bloomberg data). The main steps we performed towards the estimation of

the model parameters θ were the following. We chose an initial guess for θ.

Then, the following iterative procedure was performed until an appropriate

convergence criterion has been satisfied: for a specified value of θ, we ran the

Kalman filter recursions over the whole time interval of the available time

series data; after each such complete run, the log-likelihood function was

evaluated and an optimization procedure, designed for this particular prob-

lem, was performed in order to get new estimates for the parameters θ. At

each iteration the value of the log-likelihood function was compared against

the values in the previous two iterations and, if the differences between the

current value and the old values were positive and smaller than a specified

amount (we chose 0.001) the iterative procedure was stopped.

Tables 1 and 2 list the results for the parameter estimates and the corre-

sponding standard deviations of the estimation errors for the one-factor and
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the two-factor models. A summary of the results follows.

Mean reversion. For both the one-factor as well as the two-factor model

there is evidence of mean-reversion in the observed time series of futures

prices. The two-factor model yields a mean-reversion rate k for the

mean-reverting component with 1
k

u 2.9 months. In the one-factor

model the value obtained for the mean-reverting rate k is, as expected,

between 0 (the mean-reverting rate for a Brownian motion factor) and

the value of the mean-reverting rate from the two-factor model, with

1
k

u 12 months.

Instantaneous volatility. The two-factor model yields an annualized

volatility for the short-term, mean-reverting component of approxi-

mately 131%, much higher than the volatility of approximately 13%

of the Brownian motion, long-term component. The mean-reverting

component describes short-term price deviations from an equilibrium

price level, while the fluctuations of the equilibrium price level are mod-

eled by the Brownian motion component. For the one-factor model the

estimated annualized volatility of the mean-reverting component has

an intermediate value of approximately 36%.
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Seasonality factor. Both models yield similar estimates for the monthly

seasonality indices s1, s2, . . . , s12, higher for the winter months (∼ 1.0−

1.1) and lower during the summer months (∼ 0.95−0.96). The pattern

of the seasonality indices is triangular with the peak during the month

of January.

Risk premia. The empirical estimation of the risk premia is based on

the state space formulation described in Subsection III.B. The obser-

vation equation (36) describes prices of traded instruments, and thus

involves parameters which enter into the risk-neutral processes. On

the other hand, state equation (37), describes the observed time evolu-

tion of prices of traded instruments, which follows from the real-world

processes. Hence, the approach of using the state space formulation

together with the Kalman filter and maximum likelihood method for

model estimation from the observed time series of futures prices, pro-

vides parameter estimates for both the risk-neutral process and the

real-world process. Thus we are able to obtain estimates of the mar-

ket risk-premia associated with the stochastic factors involved. For the

one-factor model the risk-premium for the underlying mean-reverting

stochastic factor is, according to the results from Table 1, equal to
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α − α̃ u 12% per year. From the results in Table 2, for the two-

factor model, the risk-premium associated to the short-term, strongly

fluctuating mean-reverting factor is α1 − α̃1 u 225% per year, and the

risk-premium for the Brownian motion factor is α2−α̃2 u 24% per year.

However, as the tables show, the standard deviations of the estimation

errors for the risk-premia are high.

Term structure of volatilities and correlations. Table 4 lists the model

implied annualized volatilities of daily log returns of futures prices, de-

rived from expression (32) for the log returns variance using the esti-

mated set of model parameters. It also lists the empirical volatilities

of futures prices computed as the annualized standard deviations of

their observed daily log returns. Figure (2) shows the one-factor and

two-factor model volatilities compared to the empirical volatility esti-

mates. We notice that the fit of the model volatilities to the empirical

ones is rather poor for the short-term contracts, but improves as we

move towards contracts with longer time to expiry. Regarding corre-

lations between price movements of different futures contracts, in the

one-factor model different points on the futures curve are perfectly cor-

related. However, as Table 6 shows, the empirical correlations between
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the log return series for different futures contracts can be far from the

value of 1. This can not be accounted for in a one-factor model. On the

other hand, in the two-factor model one can derive the model implied

correlations between the daily log returns of futures series with different

times to expiry. Using expressions (32) and (33) for the variances and

covariances of log returns, we computed the model implied correlations

for the estimated set of model parameters. The results are listed in

Table 5 and selected results are plotted in Figures 3 and 4 against the

empirical correlation estimates.

Prediction errors. Table 3 shows the mean and the standard deviation of

the daily prediction errors in the futures price for each contract. These

daily prediction errors represent the difference between the observed fu-

tures prices and the model predicted futures prices based upon running

the Kalman filter up to the previous day with the model parameters

set at their estimated values. As illustrated by Figure 1, the two-factor

model yields lower standard deviations for the prediction errors com-

pared to the one-factor model. We also notice that for both models the

short-term contracts have the highest standard deviations of prediction

errors and the contracts with intermediate-to-long time to expiry have
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the lowest.

Comparing the values of the likelihood functions (see Tables 1 and 2)

and the standard deviations of predictions errors (Figure 1) the two-factor

model appears to be a better fit to the observed prices.

Figures 5 and 6 show the observed and the model implied futures price

curve on 8/31/98, the last day of the time series used for the model estima-

tion, for contracts with times to expiry ranging from 1 month to 36 months.

The model implied curve follows from expression (30), with the parameters

set at their estimated value and with the state vector value obtained by

running the Kalman filter up to that day.

V Conclusions

We have described a general multi-factor model of futures prices which can

be used to model the behavior of futures contracts for energy commodities.

The futures prices are defined in terms of a spot price which, in general, does

not represent the price of a tradable asset. Although the spot price does

not correspond to a tradable asset and is not always observable, its intro-

duction provides the link between futures prices and the stochastic factors

35



driving the tradable assets in our market model. We provided a state space

formulation of the model in which futures prices are expressed in terms of

unobserved state variables. Based on the state space formulation we im-

plemented Kalman filter techniques and maximum likelihood estimation to

determine the model parameters.

For the empirical model estimation we considered two cases of the gen-

eral model: (i) a one-factor model with one stochastic state variable driven

by a mean-reverting process and with another deterministic state variable

describing the seasonality dependence of the futures price; (ii) a two-factor

model with two stochastic state variables, one driven by a mean-reverting

process and another by a Brownian motion, and with another deterministic

state variable for seasonality. The data used was a one year time series of

natural gas futures. From both models there is evidence of mean-reversion

in the data. The results regarding the one-day ahead prediction errors in

the futures prices show that the two-factor model performs better than the

model with only one stochastic factor. In addition, the superiority of the

two-factor model is evident in the fact that it is able to capture the observed

correlation structure of futures prices. The class of models we introduced

also allowed us to capture the seasonality pattern present in the data.
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Table 1: Estimated parameters and standard deviations of the estimation errors

for the one-factor model

Model Parameters Value Standard Error

k (years−1) 0.99953 0.00488
σ (annualized) 0.35775 0.01911
ξ0 0.79335 0.02349
α (years−1) 0.90452 0.35929
α̃ (years−1) 0.78939 0.00111
Standard deviations of observed log prices noise ωi

(contract time to expiry)
1 month 0.16183 0.00076
2 months 0.14306 0.00052
3 months 0.11586 0.00028
4 months 0.08419 0.00011
5 months 0.05153 0.00002
6 months 0.02614 0.00000
7 months 0.01222 0.00000
8 months 0.00666 0.00000
9 months 0.00554 0.00000
10 months 0.00661 0.00000
11 months 0.00893 0.00000
12 months 0.01242 0.00000
13 months 0.01441 0.00000
14 months 0.01351 0.00000
15 months 0.01356 0.00000
Seasonality monthly indices
s1 1.10516 0.00071
s2 1.05877 0.00068
s3 1.01174 0.00065
s4 0.96740 0.00062
s5 0.95378 0.00061
s6 0.95223 0.00061
s7 0.95299 0.00061
s8 0.95588 0.00062
s9 0.96032 0.00062
s10 0.97662 0.00064
s11 1.03240 0.00067
s12 1.09000 0.00071

Log Likelihood Function Value: 8511.04
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Table 2: Estimated parameters and standard deviations of the estimation errors

for the two-factor model

Model Parameters Value Standard Error
Mean-reverting component
k (years−1) 4.14604 0.04671
σ1 (annualized) 1.31467 0.03441
ξ1
0 0 (kept constant)

α1 (years−1) 0 (kept constant)
α̃1 (years−1) -2.25214 0.34862
Brownian motion component
σ2 (annualized) 0.13127 0.00597
ξ2
0 1.22649 0.08863

α2 (years−1) 0.20438 0.10515
α̃2 (years−1) -0.03077 0.00135
ρ12 0.62885 0.05525
Standard deviations of observed log prices noise ωi

(contract time to expiry)
1 month 0.06670 0.00006
2 months 0.02654 0.00000
3 months 0.01989 0.00000
4 months 0.02141 0.00000
5 months 0.01950 0.00000
6 months 0.01788 0.00000
7 months 0.01545 0.00000
8 months 0.01255 0.00000
9 months 0.01074 0.00000
10 months 0.00890 0.00000
11 months 0.00766 0.00000
12 months 0.00832 0.00000
13 months 0.00938 0.00000
14 months 0.01030 0.00000
15 months 0.01206 0.00000
Seasonality monthly indices
s1 1.11454 0.00075
s2 1.06652 0.00072
s3 1.01407 0.00068
s4 0.96247 0.00065
s5 0.94533 0.00063
s6 0.94517 0.00063
s7 0.94904 0.00063
s8 0.95475 0.00064
s9 0.96031 0.00064
s10 0.97538 0.00065
s11 1.03460 0.00070
s12 1.09864 0.00074
Log Likelihood Function Value: 10053.94
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Table 3: Results on the daily prediction errors on futures prices

Contract One-factor model Two-factor model
time to expiry Mean Std.Dev. Mean Abs Mean Std.Dev. Mean Abs
(months) Error Error Error Error Error Error
1 -0.007 0.419 0.339 -0.072 0.178 0.140
2 0.030 0.380 0.284 -0.033 0.098 0.076
3 0.046 0.312 0.224 -0.001 0.085 0.063
4 0.040 0.224 0.156 0.010 0.078 0.056
5 0.025 0.133 0.091 0.007 0.063 0.047
6 0.011 0.070 0.050 0.000 0.053 0.039
7 0.002 0.044 0.032 -0.005 0.046 0.035
8 -0.001 0.036 0.025 -0.006 0.039 0.030
9 0.000 0.034 0.023 -0.003 0.035 0.026
10 -0.001 0.032 0.022 -0.004 0.032 0.022
11 -0.001 0.032 0.022 -0.004 0.029 0.020
12 -0.002 0.035 0.025 -0.004 0.030 0.021
13 -0.002 0.037 0.028 -0.004 0.031 0.023
14 0.004 0.034 0.027 0.002 0.031 0.023
15 0.007 0.034 0.026 0.005 0.033 0.024
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Figure 1: One- and Two-factor model standard deviations of daily prediction errors of

futures prices
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Table 4: Empirical and model implied volatilities of daily log returns of futures

prices

Contract Empirical One-factor model Two-factor model
time to expiry Volatility Volatility Estimation Volatility Estimation

(%) (%) std. error(%) (%) std. error(%)
1 month 49.1 34.3 29.1 118.4 48.5
2 months 45.3 31.5 26.8 86.5 36.7
3 months 37.0 29.0 24.6 64.0 28.5
4 months 31.7 26.7 22.7 48.3 22.6
5 months 25.8 24.5 20.9 37.2 18.1
6 months 22.1 22.6 19.2 29.6 14.5
7 months 19.8 20.8 17.7 24.3 11.5
8 months 18.0 19.1 16.3 20.7 9.0
9 months 16.6 17.6 15.0 18.3 7.0
10 months 15.3 16.2 13.8 16.6 5.4
11 months 14.2 14.9 12.7 15.5 4.1
12 months 13.4 13.7 11.7 14.8 3.2
13 months 12.8 12.6 10.8 14.3 2.6
14 months 12.2 11.6 9.9 13.9 2.1
15 months 12.0 10.7 9.1 13.7 1.8
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140%
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Empirical Vol ×
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Figure 2: Empirical and model implied annualized volatilities of daily log returns of

futures prices
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Table 5: Correlations between daily log returns of futures prices for different

contracts, implied by the two-factor model (expressed in %)

Contract

time to 1mo 2mo 3mo 4mo 5mo 6mo 7mo 8mo 9mo 10mo 11mo 12mo 13mo 14mo 15mo

expiry

1mo 100.0 99.9 99.7 99.2 98.1 96.4 94.0 90.9 87.5 83.9 80.7 78.0 75.9 74.1 72.8

2mo 99.9 100.0 99.9 99.5 98.7 97.2 95.0 92.2 88.9 85.6 82.6 80.0 77.8 76.2 74.9

3mo 99.7 99.9 100.0 99.8 99.3 98.1 96.2 93.7 90.8 87.7 84.9 82.4 80.4 78.8 77.6

4mo 99.2 99.5 99.8 100.0 99.7 99.0 97.5 95.4 92.9 90.1 87.6 85.3 83.4 82.0 80.9

5mo 98.1 98.7 99.3 99.7 100.0 99.7 98.7 97.1 95.1 92.7 90.5 88.5 86.8 85.5 84.5

6mo 96.4 97.2 98.1 99.0 99.7 100.0 99.6 98.6 97.1 95.3 93.4 91.7 90.3 89.1 88.2

7mo 94.0 95.0 96.2 97.5 98.7 99.6 100.0 99.6 98.7 97.4 96.0 94.6 93.5 92.5 91.8

8mo 90.9 92.2 93.7 95.4 97.1 98.6 99.6 100.0 99.7 98.9 97.9 96.9 96.0 95.3 94.7

9mo 87.4 88.9 90.8 92.9 95.1 97.1 98.7 99.7 100.0 99.7 99.2 98.5 97.9 97.3 96.9

10mo 83.9 85.6 87.7 90.1 92.7 95.3 97.4 98.9 99.7 100.0 99.8 99.4 99.0 98.6 98.3

11mo 80.7 82.6 84.9 87.6 90.5 93.4 96.0 97.9 99.2 99.8 100.0 99.9 99.6 99.4 99.2

12mo 78.0 80.0 82.4 85.3 88.5 91.7 94.6 96.9 98.5 99.4 99.9 100.0 99.9 99.8 99.6

13mo 75.8 77.8 80.4 83.4 86.8 90.3 93.5 96.0 97.9 99.0 99.6 99.9 100.0 99.9 99.9

14mo 74.1 76.2 78.8 82.0 85.5 89.1 92.5 95.3 97.3 98.6 99.4 99.8 99.9 100.0 99.9

15mo 72.8 74.9 77.6 80.9 84.5 88.2 91.8 94.7 96.9 98.3 99.2 99.6 99.9 99.9 100.0
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Figure 3: Empirical and two-factor model implied correlations of daily log returns be-

tween the 3 months contract and other contracts
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Table 6: Empirical correlations between daily log returns of futures prices for

different contracts (expressed in %)

Contract

time to 1mo 2mo 3mo 4mo 5mo 6mo 7mo 8mo 9mo 10mo 11mo 12mo 13mo 14mo 15mo

expiry

1mo 100.0 99.2 96.8 94.1 90.6 88.7 87.3 85.3 83.2 82.1 82.3 81.6 79.1 78.6 76.0

2mo 99.2 100.0 98.6 96.2 92.8 90.9 89.5 87.4 85.6 84.5 84.6 83.9 81.6 80.8 78.2

3mo 96.8 98.6 100.0 98.7 96.3 94.4 92.7 90.9 88.7 87.5 87.5 86.7 84.9 84.0 81.8

4mo 94.1 96.2 98.7 100.0 98.7 97.0 95.6 93.8 91.9 90.7 90.4 89.5 87.5 86.6 84.8

5mo 90.6 92.8 96.3 98.7 100.0 99.0 97.8 96.3 94.7 93.4 93.0 92.0 90.1 89.1 87.5

6mo 88.7 90.9 94.4 97.0 99.0 100.0 99.3 98.1 96.6 95.5 94.9 93.8 92.0 91.2 89.8

7mo 87.3 89.5 92.7 95.6 97.8 99.3 100.0 99.4 98.3 97.4 96.7 95.5 93.8 92.6 91.3

8mo 85.3 87.4 90.9 93.8 96.3 98.1 99.4 100.0 99.2 98.4 97.7 96.4 94.8 93.4 92.1

9mo 83.2 85.6 88.7 91.9 94.7 96.6 98.3 99.2 100.0 99.4 98.5 97.1 95.5 94.1 92.7

10mo 82.1 84.5 87.5 90.7 93.4 95.5 97.4 98.4 99.4 100.0 99.4 98.2 96.8 95.5 94.1

11mo 82.3 84.6 87.5 90.4 93.0 94.9 96.7 97.7 98.5 99.4 100.0 99.4 98.3 97.1 95.7

12mo 81.6 83.9 86.7 89.5 92.0 93.8 95.5 96.4 97.1 98.2 99.4 100.0 99.1 98.0 96.5

13mo 79.1 81.6 84.9 87.5 90.1 92.0 93.8 94.8 95.5 96.8 98.3 99.1 100.0 99.3 98.3

14mo 78.6 80.8 84.0 86.6 89.1 91.2 92.6 93.4 94.1 95.5 97.1 98.0 99.3 100.0 99.3

15mo 76.0 78.2 81.8 84.8 87.5 89.8 91.3 92.1 92.7 94.1 95.7 96.5 98.3 99.3 100.0
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85 %
90 %
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100 %
105 %
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Empirical ×

× ×
× × × × × × × × × × × × ×

Model rr r r r r r r r r r r r r r r

Figure 4: Empirical and two-factor model implied correlations of daily log returns be-

tween the 6 months contract and other contracts
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Figure 5: Observed futures curve and the one-factor model implied curve on 8/31/98
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Figure 6: Observed futures curve and the two-factor model implied curve on 8/31/98
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Figure 7: Futures curve and deseasonalized curve on 8/31/98 from the two-factor model
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