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ABSTRACT

This paper proposes a new, structural model for electricity prices. We show that un-

like other electricity price models, such as the jump diffusion model and the Box-Cox

transformation model, the structural model can directly and accurately incorporate the

relationship between electricity demand and price spikes. We also illustrate the useful-

ness of the structural model for optimal power generation and risk management using

the example of a pump-storage hydropower plant. The structural model can describe

the probability of price spikes easily in terms of electricity demand, and provides more

realistic optimal operation policies than the jump diffusion model.
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1. Introduction

The deregulation of electricity markets has caused electricity prices to spike (i.e., to increase

suddenly and drastically). The risk of price spikes affects power companies in both positive

and negative ways. On one hand, price spikes may provide profitable opportunities to com-

panies if they can sell electricity at high “spiked” prices in spot markets. On the other hand,

the price spikes may be a burden if the companies have contracts to supply electricity at low,

predetermined prices. Power companies are now required to manage such risks.

For the purpose of risk management, two types of model have been developed so far to

describe price spikes. One is the jump diffusion-type model (e.g., Johnson and Barz (1999),

Deng (2000)) that formulates electricity prices as jump diffusion processes1. Jump diffusion

models are successful at generating relatively easy pricing formulae for electricity derivatives.

However, to keep the calculation simple, they focus only on prices and ignore the relationship

between demand/supply and prices. Consequently, jump diffusion models do not capture the

fact that the price tends to spike in summer (and sometimes in winter) because electricity

demand is high and sometimes hits supply capacity.

The other type of model tries to relate electricity prices to supply and demand. The idea

behind these models is simple. Demand and supply determine price: these models just need to

describe this relationship. Skantze, Gubina, and Ilic (2000) formulates the electricity demand

using a mean-reverting stochastic process and describes price as the exponential function of

demand. Barlow (2002) employs the inverse function of the Box-Cox transformation, instead

of the exponential function. These models are on the right track to accommodate the economic

background of the electricity market more carefully than naı̈ve jump diffusion models. How-

ever, their results are not completely satisfactory. For example, the former cannot generate

price spikes large enough to match actual data owing to the small curvature of the exponential

function. The latter improves the size of the price spikes with the inverse Box-Cox function,

but its curvature is still too small to capture the drastic price increase. Moreover, it does not
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use actual demand data in its analysis, thereby obscuring the importance of the seasonality of

electricity demand in describing price spikes, although Barlow (2002) mentions incorporating

the demand seasonality as one important extension of the model.

This paper shares the same theoretical idea as these preceeding papers, but extends the

model to explicitly incorporate the actual relationship between the electricity price and sup-

ply/demand. We call this model a structural model for electricity prices. We estimate the

structural model using actual demand and price data from the PJM electricity market2 and

show that it can exhibit a more realistic demand-price relationship than the preceeding models

at least for the PJM market. We also show that the seasonality of demand is an important

factor for describing the price spikes accurately in the inverse Box-Cox model. Moreover, we

show that the structural model can describe the timing and size of price spikes more accurately

than the other models.
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Figure 1. Electricity Prices and Demand (=Supply)

The idea behind the structural model is based on a simple observation of the electricity

market. Figure 1 plots electricity demand (=supply) against price in the PJM electricity market

from January 1, 1999 to December 31, 2000. Since electricity demand is inelastic to price in
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Figure 2. Supply-Demand Curve

the short run, the demand curve is depicted as a vertical line. The supply curve can be depicted

as in Figure 2. The supply curve has this shape because in the short run, the number of power

generating facilities is almost fixed, and because power companies have to start operating

more costly facilities beyond the threshold level of supply. As a result, the slope of the supply

curve suddenly becomes steeper.

The demand curve, which is a vertical line in the short run, stochastically fluctuates in

parallel, as in Figure 2. When the demand is in the region where the slope of the supply curve

is flat (the left side ofD0D0), demand fluctuation does not affect the price much. But when it

enters the region where the slope is steep (the right side ofD0D0), the price increases suddenly

and drastically. This is how an increase in demand causes a price spike. It is also easy to see

that the price tends to spike when the demand level is high, which explains why price spikes

tend to occur in summer (and sometimes in winter).

To incorporate the relationship between demand (= supply) and price explicitly, it is im-

portant to specify the supply and demand curves. Like Skantze, Gubina, and Ilic (2000) and
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Barlow (2002), we assume that short-run electricity demand is inelastic to price and thus de-

scribe it using a stochastically moving vertical line, as in Figure 2. However, unlike Skantze,

Gubina, and Ilic (2000), which employs the exponential function, or Barlow (2002), which

employs the inverse Box-Cox transformation, we assume that the supply curve has a hockey

stick shape and consists of two lines - one flat and the other steep - linked by a quadratic

curve, as in Figure 2. We estimate the supply curve using the hockey stick regression. Note

that the intersection of the demand and supply curves gives the equilibrium electricity price.

The hockey stick shape of the supply curve allows the structural model to generate sudden and

large price changes more easily than the models with the exponential supply function or the

inverse Box-Cox transformation supply function.

In the following, we first estimate the models using the data from the PJM electricity

market. We then use the estimated models and show by simulation that the structural model

can capture the characteristics of the price spikes - especially their timing - more accurately

than the jump diffusion models and the Box-Cox transformation model. We also point out

the importance of demand seasonality in describing the price spikes not only for the structural

model, but also for the Box-Cox transformation model. Finally, we compare the optimal

operation strategies for a pump-storage hydropower generator using the structural model and

the advanced jump diffusion model of Thompson, Davison, and Rasmussen (2003). The result

shows that the structural model can provide realistic optimal operation strategies based on

demand levels in a much simpler way than the jump diffusion model.

The paper is organized as follows: Section 2 formulates the structural model. Section 3

compares the structural model with other models. Section 4 examines the optimal operation

strategies for a pump-storage facility using the structural model and the jump diffusion model.

Section 5 offers concluding remarks and sketch directions for future research.
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2. The Structural Model

2.1. Demand Curve

Casual observation tells us that electricity demand is on average high in summer and even

higher on hotter days. This leads us to decompose electricity demand into two parts: the

seasonality part that represents the seasonal trend of demand and the fluctuation part that

changes stochastically day by day. Thus, we formulate electricity demand using the sum of

the deterministic seasonal term and the stochastic daily term in the following way. We denote

by Dt and D̄t daily electricity demand and its average for several years on the same day,

respectively.Xt is calculated using the deviation ofDt from D̄t as

Xt = Dt − D̄t . (1)

We assume thatXt follows an Ornstein-Uhlenbeck process

dXt = (µX−λXXt)dt+σXdw1t . (2)

The mean-reversion ofXt implies that when demand deviates from the average, it tends to

return to the average. Note that electricity demand is strongly affected by the temperature.

The mean-reversion property of demand is a reflection of that of the temperature.

Since electricity demand is inelastic to price in the short term, we suppose the demand

curve to be independent of price and paralleled to the price axis. In this formulation, the

demand curve shifts from side to side as it fluctuates stochastically (Figure 2).
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Figure 3. Hockey Stick Regression Model

2.2. Supply Curve

Power companies start operating their generating facilities with the lowest marginal costs.

As the electricity supply increases, they utilize these facilities with higher marginal costs to

generate more electricity. The historical data from the PJM market from January 1, 1999 to

December 31, 2000 are illustrated in Figure 3. The figure shows that the electricity price

increases as the supply increases.

Figure 3 exhibits the most significant characteristics of the supply curve i.e., the slope.

Although the slope of the supply curve is flat until 900,000MWh, it suddenly becomes steep

above 900,000MWh. This is because when the standard facilities cannot supply sufficient

electricity, other power plants with high marginal costs must be put into operation to keep

up with demand. This occurs when demand exceeds about 900,000MWh. As a result, the

electricity price suddenly increases and exhibits spikes.
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To describe such price spikes accurately, we introduce a supply curve with a hockey stick

shape that incorporates the two different slope lines and connects them with a quadratic curve.

At the two end points, the tangential line of the curve is equal to the slope of the connecting

line. The model is shown as the solid line in Figure 3. The model requires that we estimate the

two slopes ofβ1 andβ2, the intercept on the left-hand side line ofα1, and the two connecting

points ofz−sandz+s. zdenotes the middle point of the domain of the quadratic curve. The

connecting points deviate from the middle point with the distance of±s (Figure 3).

In sum, the electricity supply curve with price (Pt) and supply (St) is given by the following

functions

Pt = f (St) = α1 +β1St + εt (St ≤ z−s) (3)

Pt = f (St) = a+bSt +cS2
t + εt (z−s< St < z+s) (4)

Pt = f (St) = α2 +β2St + εt (St ≥ z+s) (5)

where

x1 = z−s, x2 = z+s, a = α1 +β1x1−bx1−cx2
1

b =
x2β1−x1β2

x2−x1
, c =

β2−b
2x2

, α2 =−β2x2 +a+bx2 +cx2
2.

2.3. Equilibrium Price

In the structural model, the electricity price is obtained as the equilibrium price of supply and

demand. Since demand is inelastic to price, the equilibrium price is given from the supply

curve by setting supply equal to demand. That is, we setSt = Dt on the supply curve and

obtain the equilibrium pricePt = f (St) = f (Dt). From equation (3) to (5), we have

Pt = f (Dt) (6)
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Dt = Xt + D̄t (7)

dXt = (µX−λXXt)dt+σXdw1t . (8)

3. Empirical Analysis of Electricity Price

3.1. Data

We use daily average price and daily demand data calculated from the hourly price and demand

of the PJM electricity market. We do not employ hourly data because our aim is not to analyze

high frequency data. We use the prices at the PJM Western Hub as a proxy for the whole PJM

market. The data length is from April 1, 1998 to March 31, 2002.

The basic statistics are presented in Table 1. Here, we can find the large standard deviation,

Electricity Price ($/MWh) Electricity Volume (MWh)
Average 26.8 714770.0
Standard Deviation 25.0 95596.4
Standard Error 0.65 2501.0
Sample Number 1461 1461
Variance 624.2 9.1×109

Skewness 8.0 0.7
Kurtosis 80.8 0.5

Table 1
Basic Statistics of Electricity Price and Volume

skewness, and kurtosis of the electricity prices. In comparison, the distribution of the volumes

has a smaller skewness and kurtosis than that of the prices. The distribution of the volumes is

closer to a normal distribution than that of the prices.
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3.2. Parameter Estimation

3.2.1. Estimation of the Demand Process

To estimate demand, we model the deviationXt of the electricity demand from its average by

an AR(1) process,

∆Xt = α0 +α1Xt +νt (9)

whereνt ∼ N(0,σ2
ν) is disturbance. We denote the set of parameters byΘ = (α0,α1,σ2

ν).

We estimate them by a maximum likelihood method with the initial values obtained by a

least square method. We present the estimates in Table 2. Both parameters ofα1 andσ2
ν are

Parameter α0 α1 σ2
ν

Estimate -19.40 -0.33 2.32∗109

t-statistic -0.02 -37.72 28.85
Log-likelihood -17813.83
SIC 35633.67
AIC 35649.52

Table 2
Parameter Estimates for PJM Demand

significant int-statistics, whileα0 is not significant. This result reveals that the mean-reverting

property (represented byα1) is comparatively strong.

We transform these estimates in a discrete time model to those in a continuous time model

by the following transformation (Clewlow and Strickland (2000)). The parameters (µX, λX,

σX) in equation (14) are given by

λX =− log(1+α1), µX =
α0

α1
log(1+α1), σX = σν

√
2log(1+α1)
(1+α1)2−1
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whereσν is the standard deviation of the errorsνt in equation (9). From Table 2, we obtain

λX = 0.40, µX = 0, σX = 58139.83.

3.2.2. Estimation of Supply Curve Parameters

As in Figure 3, the supply curve has different slopes below and above 900,000MWh. This

reflects the constitution of power plants. Low marginal cost plants, such as nuclear and coal-

fired plants, are operated when the supply is low, while the high marginal cost plants, such

as oil-fired plants and other resources, are operated when the supply is high. We employ the

hockey stick shaped model to represent such characteristics of the supply curve. We estimate

this model using hockey stick regression. The data are the PJM daily average price and daily

demand from January 1, 1999 to December 31, 2000. We use the data with the shorter period

of two years to keep the constitution of power plants fixed. We use a nonlinear least square

method to estimate the parameters. The result is presented in Table 3. Judging from the

Parameter α1 β1 β2 z s
Estimate -20.31 6.21∗10−5 1.53∗10−3 9.03∗105 3.43∗104

t-statistic -2.68 5.77 10.06 124.55 1.89
Log-likelihood -3292.03
SIC 6617.03
AIC 6594.06

Table 3
Estimation of Supply Curve Parameters

t-statistics, all parameters except the parameters are statistically significant.

In equilibrium, supply equals demand. Thus, the hockey stick regression model shows

that the price change is small in the low-demand region and large in the high-demand region.

For example, an increase in demand (i.e., supply) from 700,000MWh to 800,000MWh in-
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creases price by only$6/MWh. In contrast, an increase in demand from 1,000,000MWh to

1,100,000MWh increases the corresponding price dramatically, by$153/MWh.

3.3. Comparison with Other Models

We compare the structural model with two existing models: a jump diffusion model and a

Box-Cox transformation model.

3.3.1. Existing Models

Jump Diffusion Model

As a jump diffusion model, we consider the geometric mean-reverting process with jumps

in which the logarithm of the price is mean-reverting and has an independent Poisson jump

whose jump size is normally distributed. The daily average electricity price, denote byPt is

defined by the following stochastic differential equation :

d logPt = α(β− logPt)dt+vdw+Jdπ(h), P0 = P0 (10)

wherev is constant,π is a Poisson process with the parameterh representing the number of

jumps per annum, andJ ∼ N(µJ,σ2
J) representing the jump size. This is one of the jump

diffusion models of electricity prices analyzed by Johnson and Barz (1999). As in Johnson

and Barz (1999),w, J, andπ are usually assumed to be independent. This is for calculation

ease. Most jump diffusion models are aimed at pricing derivatives written on electricity prices

and the assumption of independence makes this task relatively easy. However, because of

this assumption, the jump diffusion models cannot capture the relationship between electricity

demand and price, and hence cannot incorporate the timing of jump occurrences.

Box-Cox Transformation Model

Barlow (2002) proposes a Box-Cox transformation model in which the electricity pricePt is
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transformed intoYt , the normalized demand for electricity with a Box-Cox transformation.Yt

is assumed to follow an Ornstein-Uhlenbeck process

Pt ≡ fα(Yt) =
{

(1+αYt)
1
α α 6= 0

eYt α = 0
(11)

dYt = (µB−λBYt)dt+σBdwt (12)

where the inverse function offα(Yt) is the Box-Cox transformation.

f−1
α (x)≡ gα(x) =

{ xα−1
α α 6= 0, x > 0

logx α = 0, x > 0

In this model, as normalized demandYt increases, the corresponding price also increases. In

this sense, it captures the relationship between the electricity demand and price.

Note that Barlow (2002) also suggests the possibility of incorporating seasonality in the

variableYt as a possible extension. However in the actual analysis, Barlow (2002) does not

indeed incorporate seasonality in the variableYt .

Extended Box-Cox Transformation Model with Seasonality

To study the importance of demand seasonality in predicting price spikes, we extend a Box-

Cox transformation model to incorporate seasonality. For this purpose, we model electricity

demand, as in the structural model, using equations (13) and (14) whereD̄t represents the

demand seasonality, or the average demand, andXt represents the deviation. Then, we model

the relationship between price and demand using the Box-Cox transformation.

Dt = Xt + D̄t (13)

dXt = (µX−λXXt)dt+σXdw1t (14)

Pt ≡ fα(Dt) =
{

(1+αDt−b
c )

1
α α 6= 0

e
Dt−b

c α = 0
(15)
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3.3.2. Comparison of Price Spikes

Like Das (2002), we estimate the parameters of the jump diffusion model using a maximum

likelihood method, assuming that in the time interval∆t the jump occurs once or not at all. We

use the same data for the estimation of these models as for that of the structural model. We

estimate the parameters ofα, β, andv2 of the mean-reverting process and ofq, µJ, andσJ of

the Poisson jump process using the discrete AR(1) model

∆ logpt = α(β− logpt)∆t +v∆z+J(µJ,σ2
J)∆π(q) (16)

of equation (10). Here,q denotes the jump probability.µJ and σJ denote the mean and

standard deviation of the jump size. We set∆t = 1
365. ∆π(q) is the increment of the discrete

time Poisson process (Das (2002)) and is approximated by the Bernoulli distribution whose

parameter isq = h∆t +O(∆t). The estimation methods and the results are given in Appendix

A.

We follow Barlow (2002) in order to estimate the parameters of a Box-Cox transformation

model. The data is the same as that used in the structural model. We assume that the variable

Yt transformed from the pricePt with the Box-Cox transformation is governed by an AR(1)

process

Yk = b+ρYk−1 +θ
1
2 ηk, 0≤ k≤ n (17)

whereηk ∼ i.i.d.N(0,1). We estimate the parameters ofα in equation (11) and ofb, ρ, andθ

in equation (17). The estimation methods and the results are given in Appendix A.

We also estimate the parameters of the extended Box-Cox transformation model with the

demand seasonality. We employ the Box-Cox inverse transformation function to represent the

supply curve. Again, the data is the same as in the structural model. The model is expressed

as

Pt = fα(Dt) = (1+α
Dt −b

c
)

1
α + εt . (18)
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We use a nonlinear least square method to estimate the parameters (α, b, andc in equation

(18). The estimation methods and the results are given in Appendix A.

We implement the simulations of the jump diffusion model, the Box-Cox transformation

model (without demand seasonality), and the extended Box-Cox transformation model with

demand seasonality by using the above estimates. We generate the sample paths of four years’

worth of prices using the models 50 times. We select one of the electricity price paths from

the four-year period and compare it with that of the structural model. The historical data is

also presented in Figure 4.

Figure 4 shows that the jump diffusion model and the Box-Cox transformation model

generate random spikes and do not fit the historical data well. The extended Box-Cox trans-

formation model with demand seasonality shows much improvement. It generates the spikes

in the same time intervals as the historical data. This result suggests the importance of demand

seasonality in describing price spikes based on supply and demand.

However, close inspection shows that the extended Box-Cox transformation model with

demand seasonality exhibits a greater number of small size spikes than the historical data, say,

about$50/MWh. This is because the curvature of the Box-Cox transformation function is

too small to accommodate the sudden change in slope of the actual electricity supply curve.

In contrast, the structural model exhibits spikes in the same time intervals and of almost the

same size as those in historical data. This is because it uses the hockey stick regression model

to capture the sudden slope change in the supply curve more accurately. This result suggests

that the structural model describes the historical data better than the other three models: the

jump diffusion model, the Box-Cox transformation model, and even the extended Box-Cox

transformation model with demand seasonality.

We also simulate the electricity prices with these models by generating 500 years’ worth

of sample paths and compare the number of spikes in each season3. The result is presented in

Table 4. We show the number of spikes4 for four years in order to correspond to the length of

the historical data where we define prices above$70/MWhas the price spikes.

14
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Spring Summer Autumn Winter
Historical Data 1 22 0 2
Structural Model 0 23 0 2
Jump Diffusion Model 7 8 8 8
Box-Cox Model 6 7 7 6
Extended Box-Cox Model with Seasonality 0 20 0 1

Table 4
The Number of Spikes in Every Season

Table 4 shows that the structural model and the Box-Cox transformation model with de-

mand seasonality generate more spikes in summer when electricity demand increases, while

the jump diffusion model and the Box-Cox transformation model generate spikes indepen-

dently of the seasons. This result again shows the importance of demand seasonality in accu-

rately modeling electricity prices and price spikes.
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To compare the structural model and the extended Box-Cox transformation model with

demand seasonality, we illustrate, in Figure 5, the number of spikes in summer per annum of

the structural model, the extended Box-Cox transformation model with seasonality, and the

historical data by changing the minimum size of the spikes from$50/MWh to $300/MWh.

As we have already discussed, at around$50/MWh, the extended Box-Cox transformation

model with demand seasonality exhibits twice as many spikes as the historical data and the

structural model. This is due to the curvature of the Box-Cox transformation function. In con-

trast, above$70/MWh, fewer price spikes are generated by the extended Box-Cox model than

by the historical data and the structural model. This is because the slope of the supply curve

generated by the extended Box-Cox model is much flatter than that generated by the struc-

tural model and the actual supply curve. While somewhat fewer spikes are generated in the

structural model than in the historical data in the region between$100/MWhand$300/MWh,

the number of spikes generated by the structural model is closer to that of the historical data

than that generated by the Box-Cox model, especially in the region between$50/MWh and

$100/MWh.

These results suggest that while demand seasonality is essential to describe the price spikes

accurately, the structural model can generate price spikes much closer to the actual data than

can the Box-Cox transformation model, even when the Box-Cox transformation model is ex-

tended to explicitly incorporate demand seasonality.

4. Application to Optimal Power Generation

4.1. Price Spikes and Optimal Operation

It is important for profitable power generation to take account of the possibility of price spikes.

Thompson, Davison, and Rasmussen (2003) is an attempt to analyze optimal power generation

in such a situation. Using the jump diffusion model of electricity prices, it considers a pump-
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storage hydropower plant, which controls the generating and pumping rates of various water

flows, and derives an optimal water flow policy.

In this section, we derive an optimal operating policy for a pump-storage hydropower plant

based on the structural model of electricity prices, and compare the result with that based on

the jump diffusion model. The structural model relates electricity price with demand, which

can be well described by a simple diffusion process. Thus, it can describe price spikes in terms

of demand much more easily than the jump diffusion model. This simplicity of the structural

model enables us to obtain an intuitive optimal policy to pump-up water when the demand

level goes up, or when the probability of price spikes goes up. It also enables us to detect the

trade-off between pumping-up water to speculate on the possibility of generating electricity at

the high “spiked” prices and releasing water to sell electricity at the current price. This result

turns out to be qualitatively very different from the optimal policy obtained by Thompson,

Davison, and Rasmussen (2003) with the jump diffusion model.

4.2. The Jump Chance

To obtain the optimal operating policy, it is important to know how probable it is that price

spikes will occur. We denote byJC(Pt , ṔT) the probability that the pricePT atT is higher than

ṔT conditional on the pricePt at t. That is,

JC(Pt , ṔT)≡ Prob(PT ≥ ṔT | Pt).

We call JC(Pt , ṔT) the Jump Chance atPt . In the structural model, since electricity prices

are linked to demand through the supply curve, the Jump Chance is given by the probability

that demandDT at timeT exceedsD́T whereD́T corresponds to the pricéPT . Note that we

formulateDT = XT + D̄T , X follows an O-U process, and that

18
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Figure 6. Jump Chance

XT = e−λX(T−t)Xt +
µX

λX
[1−e−λX(T−t)]+σX

Z T

t
e−λX(T−u)dw1u, (19)

where we haveXT ∼ N(µX1,σ2
X1) with

µX1 = e−λX(T−t)Xt +
µX

λX
[1−e−λX(T−t)] (20)

σ2
X1 =

σ2
X

2λX
[1−e−2λX(T−t)]. (21)

Thus, in the structural model, the Jump ChanceJC(Pt , ṔT) has the following simple expression

JC(Pt , ṔT) = Prob(PT ≥ ṔT | Pt) = Prob(DT ≥ D́T | Dt) = 1−Φ(
X́T −µX

σX
) (22)

whereΦ is the cumulative standard normal distribution function.
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Figure 7. A Pump-Storage Facility

4.3. Optimal Operation of a Pump-Storage Hydropower Generator

Next, we set up the problem of the optimal operation of a pump-storage hydropower facility.

To calculate the present value of future revenues, we need the electricity prices, the quantity of

electricity generated by the facility, and the discount factor. We calculate the electricity price

Ps ats from the structural model.

For the electricity generated by the facility, we consider the following hydropower facility

considered by Thompson, Davison, and Rasmussen (2003) (See Figure 7). This facility can

generate power by dropping water from a height while it also can pump water up using elec-

tricity. We denote byhs the height of the water level in the upper reservoir ats, by cs the flow

rate of water for generation or pumping ats5, and byH(hs,cs) the amount of electricity gen-

erated by the facility ats. The revenue ats is thus given byH(hs,cs)Ps. Finally, we denote by

Λs the stochastic discount factor ats. We chooseΛs using the “Minimal Martingale Measure”

of Schweizer (1991), which implies in our setting that the price of the risk not spanned by the

stock market is zero6.

20



The optimal operational problem of generating or pumping water flow ratescs (t ≤ s≤T)

to maximize the total present value of the revenues from timet to T is obtained by

Ct = max{cs,t≤s≤T}Et [
Z T

t

Λs

Λt
H(hs,cs)Psds]. (23)

We assume that the stock is traded and its price follows equation (24).

dSt

St
= µsdt+σsdwt (24)

The PDE for the total present value of future revenuesC is given by equation (25). The

details are in Appendix B.

PtHt(cmax)+
dh(cmax)

dt
∂C
∂h
− rC +

∂C
∂t

+
1
2

σ2
sS2∂2C

∂S2 +
1
2

σ2
X

∂2C
∂X2 +ρσsσXSt

∂2C
∂X∂S

=−rS
∂C
∂S

+(φρσX−µX +λXX)
∂C
∂X

(25)

The operation strategycmax is given by the solution of the maximization problem (See also

Appendix B).

max
{ct}

(PtHt(ct)+
dh(ct)

dt
∂C
∂h

) (26)

s.t. cmin(h, t)≤ ct ≤ cmax(h, t) (27)

where the terminal condition is given by

C(S,X,h,T) = 0, (28)

andcmin(h, t) andcmax(h, t) are exogenously given by the law of physics.
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4.4. Simulation of the Optimal Operation

We simulate the optimal operation of the generating or pumping flow rates to maximize the

total present value of the revenue. To calculate the electricity prices, we choose the period that

corresponds to that beginning on July 1 and ending on July 30. For the power generation, we

use the same model as Thompson, Davison, and Rasmussen (2003) (See Figure 7). According

to them, the daily powerHt(h,c) of the facility for generation and pumping is given by

Ht(c,h) = .0098hcη(h,c) ·24, 0≤ c≤
√

2gh, 100< h≤ 150 (29)

or

=−15·24, c =
−15· .75

.0098(2h−100)
, 100≤ h < 150 (30)

where the generation efficiency is assumed to be a quadratic function whose upper limit is

0.85.

η(h,c) =−0.85(
.0098hc

60
−1)2 + .85 (31)

By the law of physics, we have
dh
dt

=−4.32c. (32)

The present value is obtained by the solution of the PDE in equation (25) with these con-

ditions (from (29) to (32)) in Appendix B. The optimal control is given by

max
{ct}

(PtHt(ct)−4.32ct
∂C
∂h

) (33)

s.t. ct =
−15(0.75)

.0098(2ht −100)
or 0≤ ct ≤

√
2ght . (34)

As in Thompson, Davison, and Rasmussen (2003), the boundary condition is

C(S,X,h,T) = 0. (35)
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Furthermore, the stock prices (S) and demand deviations (X) satisfy the following Neumann

conditions. On the upper and lower bounds of the calculation area, the derivatives are zeros.

On the water level (h), the facility can only generate the electricity (c≥ 0) if the water level is

the highesth = 150. If the water level is the lowest, i.e.,h = 100, the facility can only pump

up water (c < 0).

We employ the closing prices of the S&P500 as stock prices for the PDE calculation. The

stock price is assumed to follow equation (24). We estimate the parameters using a maximum

likelihood method and obtainµS = 8.54∗10−5 andσS = 1.31∗10−2. We assume that the risk

free rate is 0.03 per annum, the correlation between stock prices and demand deviations is 0.5,

and average daily demand (D̄t) is a constant 900,000MWhduring this month. In making the

valuation of the pump-storage facility, we select the SDF so that it is equal to the Minimal

Martingale Measure.

The present values and the optimal operation policies at time 0 are shown in Figure 8 and

Figure 9. Figure 8 describes the present value with two initial values: one is the height of

the water level in the upper reservoir, the other is the demand for electricity ranging from

200,000MWh to 1,200,000MWh. Figure 9 shows the optimal operation policy at time 0 with

the same initial value. The plus sign indicates power generation and the minus sign indicates

pumping up water. Figure 8 shows that the present value increases as the water level rises.

Figure 9 shows that the optimal strategy is to pump when both the water level and the demand

for electricity are low. These results are consistent with Thompson, Davison, and Rasmussen

(2003).

Figure 9 also reveals that the optimal strategy is to pump up water when the demand for

electricity is between 850,000MWh and 950,000MWh, except when the water level of the

upper reservoir is close to 150m, the upper limit. This result, however, shows the complex-

ity of the optimal operation policy. Indeed, when the initial water level is relatively high,

betweenh = 120 and140, as the initial demand increases from the minimum, the optimal

policy becomes to release water and generate electricity, but once the demand reaches the
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Figure 8. The Present Value of a Facility ($)
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Figure 9. Optimal Operation (m3/s)
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level of 850,000MWh, the probability of price spike becomes so high that it is optimal to stop

dropping water and to start pumping up. This trade-off is in sharp contrast with Thompson,

Davison, and Rasmussen (2003) in which the optimal policy is not much affected by the level

of demand.

The difference may owe partly to the fact that the parameter values in the structural model

are estimated from the actual data while those in the jump diffusion model are arbitrarily set.

However, we suspect that it is mainly due to the characteristics of the structural model and the

jump diffusion model. Let us think of the case with the initial water level between 120m and

140m in the structural model. A price spike is highly probable in the demand range between

850,000MWhand 950,000MWh, where the slope of the supply curve suddenly increases. As

the demand increases gradually from the minimum level, while dropping water down gener-

ates the revenue, the probability of price spikes (i.e., the potential profit of pumping up water

and speculating on price spikes) increases gradually. Such gradual change of the trade-off be-

tween dropping water and pumping up water generates a complex optimal policy as depicted

in Figure 9. On the other hand, in the regime-switching jump diffusion model of Thompson,

Davison, and Rasmussen (2003), the probability of a price jump suddenly increases from al-

most 0 to close to 1, once price (or demand) exceeds a threshold value. Though, presumably,

gradual increase in price (or demand) from the minimum level gradually increases the proba-

bility of price spikes, the sudden increase in the jump probability at the threshold value seems

too dominant to generate the trade-off between dropping water and pumping up water. This

leads to a simple optimal policy in Thompson, Davison, and Rasmussen (2003).

Recall that the jump diffusion model of Thompson, Davison, and Rasmussen (2003) re-

quires a complicated combination of two jump processes in order to generate a realistic price

spike. In contrast, the structural model needs only a simple diffusion setup as explained above.

It is now clear that the simple structural model easily incorporates the relationship between

the demand and the possibility of price spikes to describe a complex optimal strategy. The

complicated jump diffusion model, however, seems to generate a simple optimal policy that
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directs the operation of the power facility to be almost independent of the price (or demand)

level, which may be misleading for the actual use.

Finally, the structural model enables us to characterize easily the relationship between the

Jump Chance - the possibility of price spikes - and the optimal strategy. We depict it in Figure

10, where the Jump Chance is taken to be the probability of exceeding$100/MWhtomorrow.

Figure 10 shows that generation is optimal when the Jump Chance is less than 10% or more
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Figure 10. Jump Chance and Optimal Operation (m3/s)

than 40% and pumping is optimal when the Jump Chance is between 10% and 40% 7.

5. Conclusion and Further Discussion

In this paper, we develop the structural model for price spikes in the electricity market. Using

the data from the PJM markets, we compare the performance of the structural model with that

of other models, such as the jump diffusion model and the Box-Cox transformation model.
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The structural model can describe the occurrence of price spikes more accurately than the

jump diffusion model. This is because the former directly captures the relationship between

electricity demand and price spikes, while the latter does not.

The Box-Cox transformation model shares with the structural model the spirit of deter-

mining price by supply and demand. We show that the Box-Cox transformation model with

demand seasonality describes price spikes more accurately than that without demand season-

ality. That is, for accurate prediction of price spikes, it is important to treat explicitly the

seasonality of demand in the model. However, even though it explicitly includes seasonality,

the Box-Cox transformation model cannot describe price spikes as accurately as the structural

model at least for the PJM market. This is because the curvature of the assumed functional

form of the supply curve in the Box-Cox transformation is too small to capture the sudden

change in slope of the actual supply curve at the threshold of the supply. The change is due

to the constitution of generating facilities. The structural model can describe this change in

slope much better than the Box-Cox model.

We solve the optimal operation problem of a hypothetical pump-storage hydropower gen-

erator. The optimal strategy includes to pump water up to the upper reservoir in order to

prepare for a possible profit opportunity when the probability of the price spikes is high. This

complicates the optimal operation policy. Indeed, the result obtained by the structural model

estimated from the actual data reveals the complex trade-off between dropping water and

pumping up water in the optimal policy. This is in sharp contrast with the simple optimal pol-

icy shown by Thompson, Davison, and Rasmussen (2003) based on the jump diffusion model

with the hypothetical parameters. While this result can be taken as a caveat against using

the jump diffusion model without fitting the actual data, it also shows that the simple struc-

tural model can easily incorporate the relationship between the demand and the probability of

the price spikes to describe the complex optimal policy, whereas the complex jump diffusion

model can generate only the simple optimal policy, which may be misleading for the actual

use.
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Finally, several issues are left for future investigation. First, although we assume that the

supply curve is fixed, the curve may actually change due to fluctuations in the cost of energy,

availability of resources, and changes in the facility constitution. Indeed, in the Nord Pool

where hydropower generators are dominant, the supply curve fluctuates depending on the

amount of rainfall. For more accurate risk management, it may be desirable to incorporate the

shift of supply curve into the model. Moreover, in the model above, we ignore the weekend

effect of electricity demand, which is found in the historical data. The incorporation of such

effect may improve the accuracy of the model.
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Appendix A. Parameter Estimation

Parameter Estimation of a Jump Diffusion Model

We show the method of estimating the parameters of a jump diffusion model and the results of the

estimation. The transition density of the jump diffusion model is given by equation (A1).

f [Pt | Pt−1] = q·exp(
−(log(Pt)− log(Pt−1)−α(β− log(Pt−1))∆t−µJ)2

2(v2∆t +σ2
J)

)
1√

2π(v2∆t +σ2
J)

+(1−q) ·exp(
−(log(Pt)− log(Pt−1)−α(β− log(Pt−1))∆t)2

2v2∆t
)

1√
2πv2∆t

(A1)

The maximum likelihood method is implemented by solving the maximization problem of equation

(A2) with equation (A1).

max
Θ

T

∑
t=1

log( f [Pt | Pt−1]) (A2)

whereΘ = {α,β,v2,q,µJ,σ2
J}. The results of the estimates are presented in Table 5. According to

Parameter α β v2 q µJ σ2
J

Estimate 139.69 3.06 25.99 0.06 0.55 0.64
t-statistics 9.49 102.55 12.25 2.74 2.49 10.64
Log-likelihood -183.51
SIC 367.02
AIC 379.02

Table 5
Parameter Estimation by MLE (Jump Diffusion Model)

t-statistics, all parameters are significant. The probability of jumps is 6% per day.
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Parameter Estimation of a Box-Cox Transformation Model

We show the method of estimating the parameters of a Box-Cox transformation model and the

results of the estimation. The transition densityq(x,y) of Y is given by

q(x,y) =
1√
2πθ

e−
(y−xρ−b)2

2θ . (A3)

With Jacobian, the transition densityp(x,y) of P leads to

p(x,y) = |g′α(y)| 1√
2πθ

e−
(gα(y)−gα(x)ρ−b)2

2θ . (A4)

Therefore the log-likelihood is

L̃ =
n

∑
i=1

log|g′α(Pi)|− n
2

log(2πθ)− 1
2θ

n

∑
i=1

(gα(Pi)−gα(Pi−1)ρ−b)2. (A5)

By maximizing the log-likelihood̃L, we have the parameters ofα, b, ρ, andθ. The results are presented

in Table 6. According tot-statistics, all parameters are significant.

Parameter α b ρ θ
Estimate -0.66 0.44 0.66 1.47∗10−3

t-statistics -16.57 11.43 27.71 3.80
Log-likelihood -2460.81
SIC 4947.98
AIC 4929.61

Table 6
Parameter Estimation by MLE (Box-Cox Transformation Model)
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Parameter Estimation of an Extended Box-Cox Transformation Model with Seasonality

We use a nonlinear least square method to estimate the parameters. The result is presented in Table

7. Judging from thet-statistics, all parameters are statistically significant.

Parameter α b c
Estimate -0.53 −1.23∗106 1.28∗106

t-statistic -10.17 -3.56 4.28
Log-likelihood -3295.89
SIC 6611.56
AIC 6597.77

Table 7
Estimation of an Extended Box-Cox Transformation Model with Seasonality
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Appendix B. Optimal Operation of a Pump-Storage Facility

Derivation of PDE

We assume that the stochastic discount factor (SDF:Λs) is selected as the Mimimal Martingale Measure,

which means that only the marketed risk is priced.

dΛt

Λt
=−rdt−φdwt (B6)

We consider the optimal operation problem for a pump-storage hydropower plant whose total present

value is maximized by selecting the generating or pumping water flowcs (t ≤ s≤ T).

Ct = max
{cs,t≤s≤T}

Et [
Z T

t

Λs

Λt
H(hs,cs)Psds] (B7)

Then, we have

0 = max
{ct}

(
H(ht ,ct)Pt

Ct
dt+

Et [d(ΛCt)]
ΛCt

). (B8)

By Ito’s Lemma, we have

0 = max
{ct}

(Et [
dCt

Ct
]+

H(ht ,ct)Pt

Ct
dt− rdt +Et [

dΛ
Λ

dCt

Ct
]). (B9)

It is assumed thatC follows
dC
C

= µCdt+σCwdwt +σCzdzt . (B10)

Then, we have

0 = max
{ct}

(µC +
H(ht ,ct)Pt

Ct
− r−φσCw). (B11)

Ito’s Lemma gives the PDE ofC.

PtHt(cmax)+
dh(cmax)

dt
∂C
∂h
− rC +

∂C
∂t

+
1
2

σ2
sS2 ∂2C

∂S2 +
1
2

σ2
X

∂2C
∂X2 +ρσsσXSt

∂2C
∂X∂S

=−rS
∂C
∂S

+(φρσX−µX +λXX)
∂C
∂X

(B12)

Thus, the equation (25) is derived.

32



Physical Conditions of Generating and Pumping and Water Level Change

We show the physical conditions of the flow rates (c) of generating and pumping and water level change

(dh). The conditions follow Thompson, Davison, and Rasmussen (2003).

We present physical conditions ofc required in equation (26).The flow velocities on the surface of

the upper reservoir and the turbine center of the generator are denoted byv1 andv2, the heights byh1

andh2, and the pressures byP1 andP2. ρ is the density of the water. Bernoulli’s law is applied. We

have 1
2ρv2

2 + ρgh2 + P2 = 1
2ρv2

1 + ρgh1 + P1. We set the rate of flow asc(m3/s). The conservation of

mass leads toc = a1v1 = a2v2. We assume that the surface area of the upper reservoir isa1 = 20,000

(width 100m and length 200m), that of the generator at the turbine center isa2 = 1, and the difference

between the water levels ish = h1−h2. The condition is given bycmax≈
√

2gh. In contrast, the power

required to pump is assumed to be 15MWhand its efficiency is assumed to be 75%. In order to pump

water up, potential energy of2h−100is needed with the physical condition.75= .0098(2h−100)c
−15 . With

these assumptions and conditions, we describe the daily power in the following way

Ht(c,h) = .0098hcη(h,c) ·24, 0≤ c≤
√

2gh, 100< h≤ 150

or

=−15·24, c =
−15· .75

.0098(2h−100)
, 100≤ h < 150. (B13)

We assume that the inflow to the upper reservoir is 0.

Finally, we formulate the changedh in the water level required to calculate equation (26). We

indicate the relationship between the water levelh and the flow rate of waterc

dh·a1 =−c·dt. (B14)

Converting it to the daily amount, we get

dh
dt

=
−60·60·24

200·100
c =−4.32c. (B15)
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Notes

1Johnson and Barz (1999) compares four models: the normal process, the mean-reverting

model, the lognormal process, and the lognormal mean-reverting process with jump processes.

Deng (2000) compares three models: the constant volatility, the stochastic volatility, and the

regime switching volatility with jump processes.

2PJM is a U.S. electricity market opened in 1997, which originally covered Pennsylvania,

New Jersey, Maryland, Delaware, Virginia, and Washington. From April 2002, it also covers

West Virginia.

3We identify four seasons. Spring is from March to May, summer is from June to August,

autumn is from September to November, and winter is from December to February.

4We use round off in the first decimal place in consistency with the historical data.

5cs≥ means generating electricity.cs < 0 means pumping water up using electricity.

6Cochrane and Saa-Requejo (2000) gives one method, called the Good-Deal Bounds, to

price the risks that are not spanned by existing securities. Setting the exogenous Sharpe ratio

equal to the security market price of riskφ, the stochastic discount factor from the Good-Deal

Bounds is equivalent to that from the Minimal Martingale Measure.

7At first glance, one may wonder why the optimal strategy does not imply pumping up

water at a very high Jump Chance, say 70% or 80%. To understand the reason, note that we

define the Jump Chance as the probability of the price tomorrow being more than$100/MWh.

Due to this definition, today’s price, whose Jump Chance is more than 40%, is already very

high. Since it is very costly to pump up water by consuming electricity at such a high price,

it is optimal for the company not to pump up water. This is why the optimal strategy is not to

pump up water when the Jump Chance is more than 40%.
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