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ABSTRACT

In this paper, we analyze transition probabilities of regime switching in electricity
prices based on supply and demand using the structural model of Kanamura andŌhashi
(2004). We show that the transition probabilities depend on the demand level and thus
are not constant. This result contrasts sharply with the results of many electricity price
models that assume constant transition probabilities among different regimes. We also
estimate the model using historical data from the PJM market, and empirically analyze
the seasonality of the transition probabilities. The results obtained here are consistent
with the observed characteristics of price spikes in electricity markets where spikes tend
to occur in summer and winter when the demand level is high. These results support
the argument by Lucia and Schwartz (2002) that asserts the importance of seasonality in
modeling electricity prices.
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1. Introduction

Four unique characteristics are often used to describe electricity prices : mean reversion, sea-

sonality, stochastic volatility and spikes. Of these, spikes are the most important characteristic

for risk management in electricity markets. Thus many models have been developed to de-

scribe them.

These models formulate price spikes using jump diffusion processes and/or regime switch-

ing between a non-spike regime (where prices are unlikely to spike) and a spike regime (where

prices are likely to spike). For example, Johnson and Barz (1999) analyze four types of elec-

tricity price jump diffusion models. Deng (2000) proposes more sophisticated mean-reverting

jump diffusion models with deterministic/stochastic volatility and regime switching. Huisman

and Mahieu (2001) develop a regime-switching model with a mean-reversion regime and two

different jump diffusion regimes, and Jong and Huisman (2002) develop a regime-switching

model with a mean-reverting regime and a jump regime without using a jump diffusion pro-

cess. Furthermore, Thompson, Davison, and Rasmussen (2003) formulate electricity prices

using a jump diffusion process with regime switching.

For tractability, most regime-switching models assume constant transition probabilities

from one regime to another, e.g., from a non-spike regime to a spike regime. 1 This simpli-

fication allows the models to incorporate the magnitude and frequency of price spikes easily.

However, it may not necessarily fit the observed facts. In reality, price spikes usually occur in

summer and sometimes in winter when electricity demand is so high that it exceeds the normal

base-load supply capacity due to hot (or cold) weather. The spikes also occur due to supply

shortages caused by the unavailability of certain power generators. Thus, if the demand level

is low compared with the normal supply capacity, prices are unlikely to spike, but as demand

increases and approaches supply capacity, prices become more likely to spike. In this sense,

the transition probability from a non-spike regime to a spike regime cannot be constant, but

depends on the demand level compared to supply capacity.
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In this paper, we explicitly incorporates the relation between demand/supply and price

spikes in electricity markets by using the structural model of Kanamura and Ōhashi (2004),

and obtain the transition probabilities between a non-spike regime and a spike regime. The

result shows that the transition probabilities are not constant, but depend on the current demand

level, the deterministic trend in demand change, and the trend caused by the deviation of

temporary demand fluctuation from its long-term mean. This indicates the importance of

the demand level as a state variable in describing the transition probabilities, and suggests

the direction of further development in current regime-switching models on electricity prices.

We also empirically estimate the model, calculate the transition probabilities, and show how

accurately the model can capture the transition probabilities of regime switching compared

with other models with regard to time dependency and seasonality.

This paper is organized as follows: Section 2 formulates the model of transition probabil-

ities of regime switching based on the structural model of electricity prices by Kanamura and

Ōhashi (2004). Section 3 empirically estimates the model by using historical data from the

PJM market and calculates the regime-switching transition probabilities. Section 4 concludes

and offers further discussions.

2. The Model

The structural model proposed by Kanamura and Ōhashi (2004) is based on a simple economic

idea. Demand and supply determine price. Demand for electricity fluctuates in the short run

as underlying factors, such as temperature, fluctuate, while supply is relatively stable. Since

the supply curve is upward sloping, price rises when demand increases. However, when the

supply reaches a threshold, say the capacity of normal power generation, the marginal cost of

electricity generation, i.e., the slope of the supply curve, suddenly and drastically increases.

Consequently, when demand exceeds that threshold, the equilibrium price of electricity sud-

denly and drastically increases. This causes a spike (or “jump”) in electricity prices. The
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transition probability from a non-spike regime to a spike regime in the structural model is thus

obtained by the probability of demand reaching the threshold of supply.

Below, we first formulate the demand and supply curves for electricity, and obtain the

equilibrium price. We then characterize the price spikes and the transition probabilities from

a non-spike regime to a spike regime.

2.1. The Demand Curve

Electricity demand has two characteristics. First, its fluctuation is strongly affected by tem-

perature, which follows a mean-reverting process around its normal level. Second, in the short

run, it is inelastic to price. As a simple model of demand that satisfies these characteristics,

Kanamura and Ōhashi (2004) formulate electricity demand as follows:

Dt � D̄t �Xt (1)

dXt � �µX �λXXt�dt�σXdwt � (2)

where t denotes the date from the beginning of a given year, Dt denotes the electricity demand

on date t, D̄t denotes the normal level of demand on date t, and Xt denotes the temporary

deviation of Dt from D̄t . Note that the normal level of demand D̄t describes the seasonality of

demand for electricity and can be calculated using the average level of past demand on date t.

2.2. The Supply Curve

We assume that power companies supply electricity competitively. 2 Hence, the supply curve

corresponds to the upward sloping marginal cost curve of power generation.

Figure 1 shows scatter plots between demand (i.e., supply) levels and prices in the PJM

electricity market from January 1, 1999 to December 31, 2000. These scatter plots appear to

3



5 6 7 8 9 10 11

x 10
5

0

50

100

150

200

250

300

350

400

Demand(MWh)

Pr
ic
e(
$/
M
W
h)

Figure 1. Hockey Stick Model

be mapped on two different lines with different slopes. Below 900,000MWh, the line is flat

and the increase in demand (i.e., supply) leads to a small rise in prices. Above that threshold,

however, the line becomes much steeper and increasing demand (i.e., supply) leads to a sudden

and huge price rise.

Such a sudden rise in price occurs due to the increase in the marginal cost of supply. When

the demand level is relatively low, power companies can use their base-load facilities, such

as nuclear and coal-fired plants that have low marginal costs, to generate electricity. When

demand increases and exceeds the capacity of the base-load facilities, the companies have

to start operating their peak-load facilities, such as oil-fired plants that have much higher

and accelerating marginal costs. This causes a kink in the supply curve and hence spikes in

electricity prices.
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Denote by Pt the electricity price and by St the supply. The structural model formulates the

supply curve with a hockey stick shaped line that consists of two lines with different slopes

connected by a quadratic curve, as follows:

Pt � f �St� � α1�β1St � εt �St � z� s� (3)

Pt � f �St� � a�bSt � cS2
t � εt �z� s � St � z� s� (4)

Pt � f �St� � α2�β2St � εt �St � z� s� (5)

where x1 � z� s� x2 � z� s� a � α1�β1x1�bx1� cx2
1

b �
x2β1� x1β2

x2� x1
� c �

β2�b
2x2

� α2 ��β2x2�a�bx2� cx2
2�

The two lines and the quadratic curve are connected at two points z� s and z� s where z

denotes the middle point of the domain of the quadratic curve.

2.3. Equilibrium Price

Equilibrium electricity prices are obtained by setting supply equal to demand. That is, we

set St � Dt on the supply curve and obtain equilibrium prices as Pt � f �St� � f �Dt�. From

equation (3) to (5), we have

Pt � f �Dt� (6)

Dt � Xt � D̄t (7)

dXt � �µX �λXXt�dt�σXdwt (8)

where f denotes the supply function of a hockey stick curve and Dt denotes demand for

electricity.
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2.4. Price Regimes and Transition Probabilities

Recall that in the definition of the supply curve, z� s is the supply level at which the increase

in the marginal cost of power generation starts accelerating. Let P�z� s� be the corresponding

price. We define the non-spike regime of electricity prices using the set of prices less than or

equal to P�z� s�. Also, we define the spike regime of electricity prices using the set of prices

greater than P�z� s�. 3 4

More precisely, we say that prices are in the non-spike regime when they are in the range

of equation (9) and in the spike regime when they are in the range of equation (10) or equation

(11).

Non-spike Regime: Pt � f �Dt� � α1�β1Dt � εt �Dt � z� s� (9)

Spike Regime: Pt � f �Dt� � a�bDt � cD2
t � εt �z� s � Dt � z� s� (10)

Pt � f �Dt� � α2�β2Dt � εt �Dt � z� s� (11)

Roughly, in the non-spike regime, electricity is generated using base-load facilities with low

marginal costs, while in the spike regime, it is generated using peak-load facilities with high

and accelerating marginal costs.

We are interested in the transition probabilities of regime switching in electricity prices

that we define by the probabilities of price at time t � 1 in one regime conditional on the

price at time t in the other regime. Since electricity prices are transformed into demand by a

non-decreasing function, the probabilities can be expressed as the function of demand.
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Proposition 1

Define

µD � Dt ��D̄t�1� D̄t���µX �λXXt�
1� e�λX

λX
(12)

σD � σX

�
1� e�2λX

2λX
� (13)

Then, the transition probability from the non-spike regime to the spike regime

(πNS) from t to t�1 is given by

πNS �
� ∞

z�s

1�
2πσD

e
�

�y�µD�2

2σ2
D dy �Dt � z� s�� (14)

Also, the transition probability from the spike regime to the non-spike regime

(πSN) from t to t�1 is given by

πSN �
� z�s

�∞

1�
2πσD

e
�

�y�µD�2

2σ2
D dy �Dt � z� s�� (15)

The proof is shown in Appendix A.

Note that the transition probabilities from one regime to the other are not constant, but

depend on the current demand level Dt , the deterministic trend of demand change D̄t�1� D̄t ,

and the trend caused by the deviation of the temporary demand fluctuation from its long-term

mean �µX �λXXt�
1�e�λX

λX
. This is natural given the facts that price spikes tend to occur in the

hot summer and the cold winter when the demand level is unusually high, and that whether the

demand reaches the threshold value of supply in a particular period depends on the demand

trend.
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This result shows the importance of the demand level as a state variable in describing the

transition probabilities, and suggests the direction of further developments in current regime-

switching models of electricity prices, many of which assume constant transition probabilities.

3. Empirical Studies

We now empirically estimate the structural model, calculate the transition probabilities, and

show how accurately the structural model can capture the transition probabilities of regime

switching compared with other models with regard to time dependency and seasonality.

3.1. Data

We use daily average prices and daily demand data calculated using the hourly prices and

demand in the PJM electricity market. We do not employ hourly data in this paper because

our objective is not to investigate the intra-daily characteristics of prices, but to analyze the

seasonality of transition probabilities. We use the prices in the PJM Western Hub as a proxy

for the entire PJM market. The data length is from April 1, 1998 to March 31, 2002.

The descriptive statistics are presented in Table 1. We find a large standard deviation,

Electricity Price ($�MWh) Electricity Volume (MWh)
Average 26.8 714770.0
Standard Deviation 25.0 95596.4
Standard Error 0.65 2501.0
Sample Number 1461 1461
Variance 624.2 9.1�109

Skewness 8.0 0.7
Kurtosis 80.8 0.5

Table 1
Descriptive Statistics of Electricity Price and Volume
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skewness, and kurtosis of the electricity prices. On the other hand, the distribution of the

volume has a smaller skewness and kurtosis and is closer to the normal distribution than that

of price.

3.2. Parameter Estimation

3.2.1. Estimation of Demand Process Parameters

In order to estimate the parameters of the demand process, we express the deviation Xt of the

electricity demand from its average using an AR(1) process in the interval of ∆t � 1,

∆Xt � α0�α1Xt �νt (16)

where νt � N�0�σ2
ν� is disturbances. We denote the set of parameters by Θ� �α0�α1�σ2

ν�, and

estimate them using the maximum likelihood method with the initial values obtained from the

least square method. The estimates are presented in Table 2. Both parameters of α1 and σ2
ν

Parameter α0 α1 σ2
ν

Estimate -19.40 -0.33 2�32�109

t-statistic -0.02 -37.72 28.85
Log-likelihood -17813.83
SIC 35633.67
AIC 35649.52

Table 2
Parameter Estimates for PJM Demand

are statistically significant in t-statistics, while α0 is not. This result reveals that the mean-

reverting property (represented by α1) is comparatively strong.
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We transform these estimates in a discrete time model to those in a continuous time model

using the following transformation (e.g., Clewlow and Strickland (2000)). Then, the parame-

ters (µX , λX , σX ) in equation (8) are given by

λX �� log�1�α1�� µX �
α0

α1
log�1�α1�� σX � σν

�
2log�1�α1�

�1�α1�2�1

where σν is the standard deviation of the errors νt in equation (16). From Table 2, we obtain

λX � 0�40� µX � 0� and σX � 58139�83�

3.2.2. Estimation of Supply Curve Parameters

As in Figure 1, the supply curve has different slopes below and above 900,000MWh, reflecting

the constitution of power plants. We employ the hockey stick model to represent such char-

acteristics of the supply curve. We estimate the parameters of the model using a hockey stick

regression, where the data are the PJM daily average price and daily demand from January

1, 1999 to December 31, 2000. Using the short period data for two years so as to keep the

constitution of power plants fixed in the market, we apply a nonlinear least square method to

estimate the parameters. The result is presented in Table 3. Judging from the t-statistics, all

Parameter α1 β1 β2 z s
Estimate -20.31 6�21�10�5 1�53�10�3 9�03�105 3�43�104

t-statistic -2.68 5.77 10.06 124.55 1.89
Log-likelihood -3292.03
SIC 6617.03
AIC 6594.06

Table 3
Estimation of Supply Curve Parameters

parameters except the parameter s are statistically significant.
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Figure 2. Transition Probabilities (D̄t�1� D̄t � 0, �µx�λxXt�
1�e�λX

λX
� 0)

The shape of the hockey stick model shows that the degree of price changes is small in the

low-demand (non-spike) region, while it is large in the high-demand (spike) region. Indeed,

an increase in demand (i.e., supply) from 700,000MWh to 800,000MWh increases price only

by $6�MWh, while an increase in demand from 1,000,000MWh to 1,100,000MWh increases

the corresponding price dramatically by $153�MWh. This large difference leads to the price

spikes.

3.3. Comparative Statics of Transition Probabilities

Figure 2 shows the effect of the current demand level Dt on the transition probabilities. As

estimated, λX � 0�40, µX � 0, and σX � 58139�83. We set the deterministic trend of demand

change D̄t�1� D̄t and the trend caused by the deviation of the temporary demand fluctua-

tion from its long-term mean �µX � λXXt�
1�e�λX

λX
equal to zero, and then plot the transition

probabilities for each demand level Dt .
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Figure 3. Transition Probabilities (Dt � 900�000, D̄t�1� D̄t � 0)

The solid line shows the transition probability πNS from the non-spike regime to the spike

regime and the dotted line shows the transition probability πSN from the spike regime to the

non-spike regime. In this case, since the demand in one period is normally distributed with

zero mean, the maximum value of the transition probabilities is 0.5. As indicated, the demand

level Dt affects both of the transition probabilities significantly.

Figures 3 and 4 show the effects of the trend caused by the deviation of the temporary

demand fluctuation from its long-term mean �µX �λXXt�
1�e�λX

λX
to the transition probabilities

πSN and πNS, respectively. To set the current demand in the spike regime, we set Dt equal to

900,000 MWh in Figure 3, whereas in Figure 4, we set Dt equal to 850,000 MWh, which is in

the non-spike regime.

The increase in the trend caused by the deviation �µX �λXXt�
1�e�λX

λX
decreases the tran-

sition probability πSN from the spike regime to the non-spike regime, and increases the tran-

sition probability πNS from the non-spike regime to the spike regime. Note that both of the

current demand levels 900,000 MWh and 850,000 MWh taken here are close to the threshold
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Figure 4. Transition Probabilities (Dt � 850�000 and D̄t�1� D̄t � 0)

z� s � 868�520 MWh. This is why the effects are significant. One can easily show that the

wider the distance between current demand Dt and the threshold z� s, the less significant the

effect of the trend caused by the deviation on the transition probabilities.

Figures 5 and 6 show the effects of the deterministic trend of demand change D̄t�1� D̄t on

the transition probabilities πSN and πNS, respectively. In Figure 5, we set Dt equal to 900,000

MWh, which is in the spike regime, and in Figure 6, we set Dt equal to 850,000 MWh, which

is in the non-spike regime. Again, the increase in the deterministic trend of demand D̄t�1� D̄t

decreases the transition probability πSN from the spike regime to the non-spike regime, and

increases the transition probability πNS from the non-spike regime to the spike regime.

3.4. Seasonality of Transition Probabilities

We simulate the transition probabilities to see how they vary through time. The probabil-

ities (πNS and πSN) and the corresponding average demand (D̄t) are illustrated in Figure 7
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Figure 7. Transition Probabilities πNS from a Non-spike Regime to a Spike Regime (Transi-
tion threshold value D � z� s)

and Figure 8, respectively, assuming that the time horizon for the calculation is four years.

While these figures are one typical path of 50 time simulations, we can easily notice that the

transition probabilities πNS and πSN are time-varying and have the seasonality characteristic

of being high in summer and winter, which corresponds to the changes in average demand.

This result contrasts sharply with the regime-switching models that assume constant transition

probabilities.
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Figure 8. Transition Probabilities πSN from a Spike Regime to a Non-spike Regime (Transi-
tion threshold value D � z� s)

3.5. Comparison with a Jump Diffusion Model under Non-constant Regime

Switching

We compare the transition probabilities obtained above with those in the jump diffusion model

of Thompson, Davison, and Rasmussen (2003) that does not incorporate the weekly and an-

nual trend of spot prices. Their spot price model is given by the expressions

dP � �4�15sin�
2πt�15�4π

24
��27�P�dt� �2Pdx��J1�P�dq1��J2�P�dq2 (17)

where J1 � N�700�100�, J2 � N�100�10�, dq1 is a Poisson process whose intensity is λup�P�,

and dq2 is a Poisson process whose intensity is λdown�P�. Here, the intensity of upper jumps

and lower jumps depends on the price level. When the price is less than $100�MWh, λup�P�

and λdown�P� are assumed to be �0001P and 0, respectively. On the other hand, they are

otherwise �01P and 0�85, respectively. Note that we calculate the daily transition probabilities

for the jump diffusion model in order to adjust the time intervals for both models.
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We show the sample path of prices for four years and the transition probabilities of their

jump diffusion model in Figure 9. Note that while many price spikes are observed in Figure

0 500 1000 1500
20

40

60

80

100

120

Time (Days)

Pr
ic
e 
($
/M
W
h)

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

Time (Days)

Tr
an
si
tio
n 
Pr
ob
ab
ilit
y

Figure 9. Prices and the Transition Probabilities from a Non-spike Regime to a Spike Regime
for λup�P� � 0�0001P �P� $100�MWh) and 0.01 (P� $100�MWh� Generated by a Jump
Diffusion Model

9, the transition probabilities shown in Figure 9 are almost constant throughout the simulation

period. This result stands in contrast to that of the structural model described in Figure 7 and

Figure 8, and does not fit well the seasonality characteristic of price spikes tending to occur in

summer and winter when the demand level is high.

Since Figure 9 shows the less time-varying transition probabilities and a larger number of

spikes than are observed in reality, we consider the following two cases: In the first case, the

upward jump intensity λup�P� is taken to be 0�0005P when the price is less than $100�MWh,

and 0�05 when the price is greater than $100�MWh. In the other case, λup�P� is taken to be

0�00002P when the price is less than $100�MWh, and 0�002 when the price is greater than

$100�MWh. The results are illustrated in Figure 10 and Figure 11. Compared with Figure 9,

Figure 10 successfully generates time-varying transition probabilities, although there are too
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Figure 10. Prices and the Transition Probabilities from a Non-spike Regime to a Spike Regime
for λup�P� � 0�0005P �P� $100�MWh� and 0�05 �P� $100�MWh�
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Figure 11. Prices and the Transition Probabilities from a Non-spike Regime to a Spike Regime
for λup�P� � 0�00002P �P� $100�MWh� and 0�002 �P� $100�MWh�
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many price spikes. On the other hand, Figure 11 successfully generates an appropriate number

of price spikes, while the corresponding transition probabilities are almost constant. These

experiments tell us that even if the upper jump probability is adjusted, it seems difficult for

the jump diffusion model to generate an appropriate number of price spikes and time-varying

transition probabilities at the same time.

As discussed by Lucia and Schwartz (2002), it is important to incorporate seasonality to

acurately model electricity prices. The results here suggest that the structural model may

be promising in that it can capture the seasonality of not only the price spikes, but also the

transition probabilities of regime switching much more easily than current jump diffusion

models.

4. Conclusions and Further Discussions

We have described the transition probabilities of regime switching in electricity prices based

on the supply and demand of electricity using the structural model of Kanamura and Ōhashi

(2004). We have shown that the transition probabilities are not constant, but depend on the

current demand level, the deterministic trend of demand change, and the trend caused by

the deviation of temporary demand fluctuation from its long-term mean. We have calibrated

the model to historical data from the PJM market, and empirically obtained the seasonality

of the transition probabilities of regime switching. This contrasts with most current regime-

switching models of electricity prices that assume constant transition probabilities. The results

obtained here are consistent with the observed characteristics of price spikes in electricity

markets where the spikes tend to occur in summer and winter when the demand level is high.

These results support the argument by Lucia and Schwartz (2002) that incorporating sea-

sonality is important in modeling electricity prices. Non-constant, time-varying transition

probabilities should be utilized for accurate risk management of electricity prices. This issue

will be examined in our future research.
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Appendix A. Proof of Proposition 1

Since Xt is a mean-reverting process in equation (2), we have

Xs � e�λX �s�t�Xt �
µX

λX
�1� e�λX �s�t���σ

� s

t
e�λX �s�u�dWu� (A1)

Therefore the distribution of demand at time t�1 is given by Dt�1 � N�µD�σ2
D�. The transition prob-

abilities from a non-spike regime to a spike regime is the summation of probabilities of demand from

z� s to ∞ under the condition that at time t demand is less than z� s. The opposite transition probabil-

ities are also obtained in the same way. �

Appendix B. Effect of Changing the Threshold Value

In order to measure the effect of changing the regime boundary, we calculate the transition probabilities

of πNS and πSN by setting D� z. The results are illustrated in Figure 12 and 13, respectively. Comparing
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Figure 12. Transition Probabilities from a Non-spike Regime to a Spike Regime (πNS): Tran-
sition Point D � z
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Figure 13. Transition Probabilities from a Spike Regime to a Non-spike Regime (πSN): Tran-
sition Point D � z

D � z with D � z� s, the transition probabilities with D � z from the non-spike regime to the spike

regime (πNS) are less than those with D � z� s, as in Figure 7 and 12. In the case of those from the

spike regime to the non-spike regime, the results are also the same. In both cases, however, the results

are qualitatively similar to those with the threshold value D � z� s, and the transition probabilities

depend on demand and are not constant.
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Notes

1Thompson, Davison, and Rasmussen (2003) divide two regimes according to electricity

price levels and thus do not assume constant transition probabilities.

2This assumption does not apply to several real electricity markets in which market ma-

nipulation by power companies is a serious problem. However, in some markets, such as the

Nordpool market and the PJM market, where power companies seem to behave competitively,

this assumption seems a good first approximation.

3The definition of the regimes is similar to that in Thompson, Davison, and Rasmussen

(2003). Also, the non-spike regime corresponds to the standard (mean-reverting) regime and

the spike regime to the spike (or jump) regime, respectively, in Jong and Huisman (2002)

4One may change z� s to z or z� s and obtain a qualitatively same result. See Appendix

B.
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