
2. Multivariate Time Series

2.1 Background

Example. Consider the following monthly observa-
tions on FTA All Share index, the associated dividend
index and the series of 20 year UK gilts and 91 day
Treasury bills from January 1965 to December 1995
(372 months)
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Potentially interesting questions:

1. Do some markets have a tendency to lead

others?

2. Are there feedbacks between the mar-

kets?

3. How about contemporaneous movements?

4. How do impulses (shocks, innovations)

transfer from one market to another?

5. How about common factors (disturbances,

trend, yield component, risk)?
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Most of these questions can be empirically

investigated using tools developed in multi-

variate time series analysis.

Time series models

AR(p)-model

yt = µ+ φ1yt−1 + φ2yt−2 + · · ·+ φpyt−p+ 6t

φ(L)yt = µ+ 6t,

where 6t ∼WN(0,σ26 ) (White Noise), i.e.

E(6t) = 0,

E(6t6s) =

l
σ26 if t = s

0 otherwise,

and φ(L) = 1− φ1L− φ2L2− · · ·− φpLp is the
lag polynomial of order p with

Lkyt = yt−k
being the Lag operator (L0yt = yt).
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The so called (weak) stationarity condition

requires that the roots of the (characteristic)

polynomial

φ(L) = 0

should lie outside the unit circle, or equiva-

lently the roots of

zp − φ1zp−1 − · · ·− φp−1z − φp = 0

are less than one in absolute value.

Note. Usually the series are centralized such

that µ = 0.

MA(q)-model

yt = µ+ 6t − θ16t−1 − . . .− θq6t−q
= µ+ θ(L)6t,

where θ(L) = 1 − θ1L − θ2L
2 − · · · − θqLq is

again a polynomial in L, this time, of order

q, and 6t ∼ WN(0,σ26 ).
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Note. An MA-process is always stationary.

But the so called invertibility condition re-

quires that the roots of the characteristic

polynomial θ(L) = 0 lie outside the unit cir-

cle.

ARMA(p, q)-process

Compiling the two above together yields an

ARMA(p, q)-process

φ(L)yt = µ+ θ(L)6t.

ARIMA(p, d, q)-process

A series is called integrated of order d, de-

noted as yt ∼ I(d), if it becomes stationary

after di®erencing d times. Furthermore, if

(1− L)dyt ∼ ARMA(p, q),

we say that yt ∼ ARIMA(p, d, q), where p de-

notes the order of the AR-lags, q the order

of MA-lags, and d the order of di®erencing.
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Example. Univariate time series models for the above
(log) series look as follows. All the series prove to be
I(1).

Sample: 1965:01 1995:12 
Included observations: 372 

FTA       

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.992 0.992 368.98 0.000
       .|********        .|.      | 2 0.983 -0.041 732.51 0.000
       .|*******|        .|.      | 3 0.975 0.021 1090.9 0.000
       .|*******|        .|.      | 4 0.966 -0.025 1444.0 0.000
       .|*******|        .|.      | 5 0.957 -0.024 1791.5 0.000
       .|*******|        .|.      | 6 0.949 0.008 2133.6 0.000
       .|*******|        .|.      | 7 0.940 0.005 2470.5 0.000
       .|*******|        .|.      | 8 0.931 -0.007 2802.1 0.000
       .|*******|        .|.      | 9 0.923 0.023 3128.8 0.000
       .|*******|        .|.      | 10 0.915 -0.011 3450.6 0.000

Dividends 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.994 0.994 370.59 0.000
       .|********        .|.      | 2 0.988 -0.003 737.78 0.000
       .|********        .|.      | 3 0.982 0.002 1101.6 0.000
       .|********        .|.      | 4 0.976 -0.004 1462.1 0.000
       .|*******|        .|.      | 5 0.971 -0.008 1819.2 0.000
       .|*******|        .|.      | 6 0.965 -0.006 2172.9 0.000
       .|*******|        .|.      | 7 0.959 -0.007 2523.1 0.000
       .|*******|        .|.      | 8 0.953 -0.004 2869.9 0.000
       .|*******|        .|.      | 9 0.947 -0.006 3213.3 0.000
       .|*******|        .|.      | 10 0.940 -0.006 3553.2 0.000

T-Bill 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.980 0.980 360.26 0.000
       .|*******|      **|.      | 2 0.949 -0.301 698.79 0.000
       .|*******|        .|.      | 3 0.916 0.020 1014.9 0.000
       .|*******|        .|.      | 4 0.883 -0.005 1309.5 0.000
       .|*******|        .|.      | 5 0.849 -0.041 1583.0 0.000
       .|****** |       *|.      | 6 0.811 -0.141 1833.1 0.000
       .|****** |        .|.      | 7 0.770 -0.018 2059.2 0.000
       .|****** |        .|.      | 8 0.730 0.019 2263.1 0.000
       .|*****  |        .|.      | 9 0.694 0.058 2447.6 0.000
       .|*****  |        .|.      | 10 0.660 -0.013 2615.0 0.000

Gilts 

Autocorrelation Partial Correlation  AC   PAC  Q-Stat  Prob 

       .|********           .|******** 1 0.984 0.984 362.91 0.000
       .|*******|       *|.      | 2 0.962 -0.182 710.80 0.000
       .|*******|        .|.      | 3 0.941 0.050 1044.6 0.000
       .|*******|        .|.      | 4 0.921 0.015 1365.5 0.000
       .|*******|        .|.      | 5 0.903 0.031 1674.8 0.000
       .|*******|        .|.      | 6 0.885 -0.038 1972.4 0.000
       .|*******|        .|.      | 7 0.866 -0.001 2258.4 0.000
       .|*******|        .|.      | 8 0.848 0.019 2533.6 0.000
       .|****** |        .|.      | 9 0.832 0.005 2798.6 0.000
       .|****** |        .|.      | 10 0.815 -0.014 3053.6 0.000
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Formally, as is seen below, the Dickey-Fuller (DF) unit
root tests indicate that the series indeed all are I(1).
The test is based on the augmented DF-regression

¢yt = ρyt−1 + α+ δt+

43
i=1

φi¢yt−i+ 6t,

and the hypothesis to be tested is

H0 : ρ= 0 vs H1 : ρ < 0.

Test results:

Series ρ̂ t-Stat
FTA -0.030 -2.583
DIV -0.013 -2.602
R20 -0.013 -1.750
T-BILL -0.023 -2.403
¢FTA -0.938 -8.773
¢DIV -0.732 -7.300
¢R20 -0.786 -8.129
¢T-BILL -0.622 -7.095

ADF critical values

Level No trend Trend
1% -3.4502 -3.9869
5% -2.8696 -3.4237
10% -2.5711 -3.1345
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Provided that the series are not cointegrated

an appropriate modeling approach is VAR for

the di®erences.

2.2 Vector Autoregression (VAR)

Suppose we havem time series yit, i = 1, . . . ,m,

and t = 1, . . . , T (common length of the time

series). Then a vector autoregression model

is de¯ned as

 y1t
y2t
...
ymt

 =

 µ1
µ2
...
µm

+

 φ(1)11 φ(1)12 · · · φ(1)1m
φ(1)21 φ(1)22 · · · φ(1)2m
...

...
. . .

...

φ(1)m1 φ(1)m2 · · · φ(1)mm


 y1,t−1

y2,t−1
...
ym,t−1

+

· · ·+

 φ(p)11 φ(p)12 · · · φ(p)1m
φ(p)21 φ(p)22 · · · φ(p)2m
...

...
. . .

...

φ(p)m1 φ(1)m2 · · · φ(p)mm


 y1,t−p

y2,t−p
...
ym,t−p



+

 61t
62t
...
6mt

 .

In matrix notations

yt = µ+©1yt−1 + · · ·+©pyt−p+ 6t,
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which can be further simpli¯ed by adopting

the matric form of a lag polynomial

©(L) = I−©1L− . . .−©pLp.
Thus ¯nally we get

©(L)yt = 6t.

Note that in the above model each yit de-

pends not only its own history but also on

other series' history (cross dependencies). This

gives us several additional tools for analyzing

causal as well as feedback e®ects as we shall

see after a while.

A basic assumption in the above model is

that the residual vector follow a multivariate

white noise, i.e.

E(6t) = 0

E(6t6
I
s) =

l
§6 if t = s
0 if t W= s
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The coe±cient matrices must satisfy certain

constraints in order that the VAR-model is

stationary. They are just analogies with the

univariate case, but in matrix terms. It is

required that roots of

|I−©1z −©2z2 − · · ·−©pzp| = 0

lie outside the unit circle. Estimation can be

carried out by single equation least squares.

Example. Let us estimate a VAR(1) model for the

equity-bond data. First, however, test whether the

series are cointegrated. As is seen below, there is no

empirical evidence of cointegration (EViews results)

Sample(adjusted): 1965:06 1995:12
Included observations: 367 after adjusting end points
Trend assumption: Linear deterministic trend
Series: LFTA LDIV LR20 LTBILL
Lags interval (in first differences): 1 to 4

Unrestricted Cointegration Rank Test
===================================================================
Hypothesized Trace 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value
===================================================================
None 0.047131 46.02621 47.21 54.46
At most 1 0.042280 28.30808 29.68 35.65
At most 2 0.032521 12.45356 15.41 20.04
At most 3 0.000872 0.320012 3.76 6.65
===================================================================
*(**) denotes rejection of the hypothesis at the 5%(1%) level
Trace test indicates no cointegration at both 5% and 1% levels
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VAR(1) Estimates:

Sample(adjusted): 1965:04 1995:12
Included observations: 369 after adjusting end points
Standard errors in ( ) & t-statistics in [ ]
===========================================================

DFTA DDIV DR20 DTBILL
===========================================================
DFTA(-1) 0.102018 -0.005389 -0.140021 -0.085696

(0.05407) (0.01280) (0.02838) (0.05338)
[1.88670][-0.42107] [-4.93432] [-1.60541]

DFTA(-2) -0.170209 0.012231 0.014714 0.057226
(0.05564) (0.01317) (0.02920) (0.05493)
[-3.05895] [0.92869] [0.50389] [1.04180]

DDIV(-1) -0.113741 0.035924 0.197934 0.280619
(0.22212) (0.05257) (0.11657) (0.21927)
[-0.51208] [0.68333] [1.69804] [1.27978]

DDIV(-2) 0.065178 0.103395 0.057329 0.165089
(0.22282) (0.05274) (0.11693) (0.21996)
[0.29252] [1.96055] [0.49026] [0.75053]

DR20(-1) -0.359070 -0.003130 0.282760 0.373164
(0.11469) (0.02714) (0.06019) (0.11322)
[-3.13084] [-0.11530] [4.69797] [3.29596]

DR20(-2) 0.051323 -0.012058 -0.131182 -0.071333
(0.11295) (0.02673) (0.05928) (0.11151)
[0.45437][-0.45102] [-2.21300] [-0.63972]

DTBILL(-1) 0.068239 0.005752 -0.033665 0.232456
(0.06014) (0.01423) (0.03156) (0.05937)
[1.13472] [0.40412] [-1.06672] [3.91561]

DTBILL(-2) -0.050220 0.023590 0.034734 -0.015863
(0.05902) (0.01397) (0.03098) (0.05827)
[-0.85082] [1.68858] [1.12132] [-0.27224]

C 0.892389 0.587148 -0.033749 -0.317976
(0.38128) (0.09024) (0.20010) (0.37640)
[2.34049] [6.50626] [-0.16867] [-0.84479]

===========================================================
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Continues . . .

===========================================================
DFTA DDIV DR20 DTBILL

===========================================================
R-squared 0.057426 0.028885 0.156741 0.153126
Adj. R-squared 0.036480 0.007305 0.138002 0.134306
Sum sq. resids 13032.44 730.0689 3589.278 12700.62
S.E. equation 6.016746 1.424068 3.157565 5.939655
F-statistic 2.741619 1.338486 8.364390 8.136583
Log likelihood -1181.220 -649.4805 -943.3092 -1176.462
Akaike AIC 6.451058 3.569000 5.161567 6.425267
Schwarz SC 6.546443 3.664385 5.256953 6.520652
Mean dependent 0.788687 0.688433 0.052983 -0.013968
S.D. dependent 6.129588 1.429298 3.400942 6.383798
===========================================================
Determinant Residual Covariance 18711.41
Log Likelihood (d.f. adjusted) -3909.259
Akaike Information Criteria 21.38352
Schwarz Criteria 21.76506
===========================================================

As is seen the number of estimated parame-

ters grows rapidly very large.

De¯ning the order of a VAR-model

In the ¯rst step it is assumed that all the se-

ries in the VAR model have equal lag lengths.

To determine the number of lags that should

be included, criterion functions can be uti-

lized the same manner as in the univariate

case.
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The underlying assumption with BIC and re-

lated criteria is that the residuals follow a

multivariate normal distribution, i.e.

6 ∼ Nm(0,§6).

In the original forms AIC and BIC are de¯ned

as

AIC = −2 logL+2s

BIC = −2 logL+ s logT

where L stands for the Likelihood function,

and s denotes the number of estimated pa-

rameters.

The best ¯tting model is the one that mini-

mizes the criterion function.

For example in a VAR(j) model with m equa-

tions there are s = m(1+ jm)+m(m+1)/2

estimated parameters.
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Under the normality assumption BIC can be

simpli¯ed to

BIC(j) = log
eee§̂6,j

eee+ 1

T
m2j logT , j = 0, . . . , p

and AIC to

AIC(j) = log
eee§̂6,j

eee+2
j

T
, j = 0, . . . , p,

where

§̂6,j =
1

T

T3
t=j+1

6̂t,j 6̂
I
t,j =

1

T
ÊjÊ

I
j

with 6̂t,j the OLS residual vector of the VAR(j)

model (i.e. VAR model estimated with j

lags), and

Êj =
�
6̂j+1,j, 6̂j+2,j, · · · , 6̂T,j

=
an m× (T − j) matrix.
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The likelihood ratio (LR) test can be also

used in determining the order of a VAR. The

test is generally of the form

LR = T(log |§̂k|− log |§̂p|),
where §̂k denotes the maximum likelihood

estimate of the residual covariance matrix of

VAR(k) and §̂p the estimate of VAR(p) (p >

k) residual covariance matrix. If VAR(k) (the

shorter model) is the true one, then

LR ∼ χ2df ,

where the degrees of freedom, df , equals the
di®erence of in the number of estimated pa-

rameters between the two models.

In an m variate VAR(k)-model each series has

p − k lags less than those in VAR(p). Thus
the di®erence in each equation is m(p − k),
so that in total df = m2(p− k).

Note that often, when T is small, a modi¯ed

LR

LR∗ = (T −mp)(log |§̂k|− log |§̂p|)
is used to correct possible small sample bias.
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Example Let p = 12 then in the equity-bond data dif-

ferent VAR models yield the following results. Below

are EViews results.

VAR Lag Order Selection Criteria
Endogenous variables: DFTA DDIV DR20 DTBILL
Exogenous variables: C
Sample: 1965:01 1995:12
Included observations: 359
=========================================================
Lag LogL LR FPE AIC SC HQ
---------------------------------------------------------
0 -3860.59 NA 26324.1 21.530 21.573 21.547
1 -3810.15 99.473 21728.6* 21.338* 21.554* 21.424*
2 -3796.62 26.385 22030.2 21.352 21.741 21.506
3 -3786.22 20.052 22729.9 21.383 21.945 21.606
4 -3783.57 5.0395 24489.4 21.467 22.193 21.750
5 -3775.66 14.887 25625.4 21.502 22.411 21.864
6 -3762.32 24.831 26016.8 21.517 22.598 21.947
7 -3753.94 15.400 27159.4 21.560 22.814 22.059
8 -3739.07 27.018* 27348.2 21.566 22.994 22.134
9 -3731.30 13.933 28656.4 21.612 23.213 22.248
10 -3722.40 15.774 29843.7 21.651 23.425 22.357
11 -3715.54 12.004 31443.1 21.702 23.649 22.476
12 -3707.28 14.257 32880.6 21.745 23.865 22.588
=========================================================
* indicates lag order selected by the criterion
LR: sequential modified LR test statistic

(each test at 5% level)
FPE: Final prediction error
AIC: Akaike information criterion
SC: Schwarz information criterion
HQ: Hannan-Quinn information criterion

Criterion function minima are all at VAR(1) (SC or

BIC just borderline). LR-tests suggest VAR(8). Let

us look next at the residual autocorrelations.
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To investigate whether the VAR residuals are

White Noise, the hypothesis to be tested is

H0 : ¨1 = · · · =¨h = 0

where ¨k = (ρij(k)) is the autocorrelation

matrix (see later in the notes) of the residual

series with ρij(k) the cross autocorrelation

of order k of the residuals series i and j. A

general purpose (portmanteau) test is the Q-

statistic††

Qh = T
h3

k=1

tr( ^̈ Ik ^̈
−1
0
^̈ k ^̈

−1
0 ),

where ^̈ k = (ρ̂ij(k)) are the estimated (resid-

ual) autocorrelations, and ^̈ 0 the contempo-

raneous correlations of the residuals. Alter-

natively (especially in small samples) a mod-

i¯ed statistic is used

Q∗h = T2
h3

k=1

(T − k)−1tr( ^̈ Ik ^̈−10 ^̈ k ^̈
−1
0 ).

††See e.g. LÄutkepohl, Helmut (1993). Introduction to
Multiple Time Series, 2nd Ed., Ch. 4.4
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The asymptotic distribution is χ2 with df =

p2(h − k). Note that in computer printouts

h is running from 1,2, . . . h∗ with h∗ speci¯ed
by the user.

VAR(1) Residual Portmanteau Tests for Autocorrelations
H0: no residual autocorrelations up to lag h
Sample: 1966:02 1995:12
Included observations: 359
================================================
Lags Q-Stat Prob. Adj Q-Stat Prob. df
------------------------------------------------
1 1.847020 NA* 1.852179 NA* NA*
2 27.66930 0.0346 27.81912 0.0332 16
3 44.05285 0.0761 44.34073 0.0721 32
4 53.46222 0.2725 53.85613 0.2603 48
5 72.35623 0.2215 73.01700 0.2059 64
6 96.87555 0.0964 97.95308 0.0843 80
7 110.2442 0.1518 111.5876 0.1320 96
8 137.0931 0.0538 139.0485 0.0424 112
9 152.9130 0.0659 155.2751 0.0507 128
10 168.4887 0.0797 171.2972 0.0599 144
11 179.3347 0.1407 182.4860 0.1076 160
12 189.0256 0.2379 192.5120 0.1869 176
================================================
*The test is valid only for lags larger than the
VAR lag order. df is degrees of freedom for
(approximate) chi-square distribution

There is still left some autocorrelation into

the VAR(1) residuals. Let us next check the

residuals of the VAR(2) model
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VAR Residual Portmanteau Tests for Autocorrelations
H0: no residual autocorrelations up to lag h
Sample: 1965:01 1995:12
Included observations: 369
==============================================
Lags Q-Stat Prob. Adj Q-Stat Prob. df
----------------------------------------------
1 0.438464 NA* 0.439655 NA* NA*
2 1.623778 NA* 1.631428 NA* NA*
3 17.13353 0.3770 17.26832 0.3684 16
4 27.07272 0.7143 27.31642 0.7027 32
5 44.01332 0.6369 44.48973 0.6175 48
6 66.24485 0.3994 67.08872 0.3717 64
7 80.51861 0.4627 81.63849 0.4281 80
8 104.3903 0.2622 106.0392 0.2271 96
9 121.8202 0.2476 123.9049 0.2081 112
10 136.8909 0.2794 139.3953 0.2316 128
11 147.3028 0.4081 150.1271 0.3463 144
12 157.4354 0.5425 160.6003 0.4718 160
==============================================
*The test is valid only for lags larger than
the VAR lag order.
df is degrees of freedom for (approximate)
chi-square distribution

Now the residuals pass the white noise test.

On the basis of these residual analyses we can

select VAR(2) as the speci¯cation for further

analysis. Mills (1999) ¯nds VAR(6) as the

most appropriate one. Note that there ordi-

nary di®erences (opposed to log-di®erences)

are analyzed. Here, however, log transforma-

tions are preferred.
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Vector ARMA (VARMA)

Similarly as is done in the univariate case

one can extend the VAR model to the vector

ARMA model

yt = µ+
p3
i=1

©iyt−i+ 6t −
q3

j=1

£j6t−j

or

©(L)yt = µ+£(L)6t,

where yt, µ, and 6t are m × 1 vectors, and

©i's and £j's are m×m matrices, and

©(L) = I−©1L− . . .−©pLp
£(L) = I−£1L− . . .−£qLq.

Provided that £(L) is invertible, we always

can write the VARMA(p, q)-model as a VAR(∞)
model with ¦(L) = £−1(L)©(L). The pres-
ence of a vector MA component, however,

complicates the analysis somewhat.
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Autocorrelation and Autocovariance Matrices

The kth cross autocorrelation of the ith and

jth time series, yit and yjt is de¯ned as

γij(k) = E(yit−k − µi)(yjt − µj).
Although for the usual autocovariance γk =

γ−k, the same is not true for the cross auto-
covariance, but γij(k) W= γij(−k). The corre-
sponding cross autocorrelations are

ρi,j(k) =
γij(k)�

γi(0)γj(0)
.

The kth autocorrelation matrix is then

¨k =


ρ1(k) ρ1,2(k) . . . ρ1,m(k)
ρ2,1(k) ρ2(k) . . . ρ2,m(k)
... . . . ...
ρm,1(k) ρm,2(k) . . . ρm(k)

.
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Note: ¨k =¨I−k.

The diagonal elements, ρj(k), j = 1, . . . ,m of

¨ are the usual autocorrelations.

Example. Cross autocorrelations of the equity-bond
data.

^̈ 1 =

Divt Ftat R20t Tblt
Divt−1
Ftat−1
R20t−1
Tblt−1

X
0.0483 −0.0099 0.0566 0.0779
−0.0160 0.1225∗ −0.2968∗ −0.1620∗
0.0056 −0.1403∗ 0.2889∗ 0.3113∗
0.0536 −0.0266 0.1056∗ 0.3275∗

~
Note: Correlations with absolute value exceeding 2× std err =

2 × /√371 ≈ 0.1038 are statistically signi¯cant at the 5% level

(indicated by ∗).

Example. Consider individual security returns and port-

folio returns. For example French and Roll‡‡ have

found that daily returns of individual securities are

slightly negatively correlated. The tables below, how-

ever suggest that daily returns of portfolios tend to

be positively correlated!

‡‡French, K. and R. Ross (1986). Stock return vari-
ances: The arrival of information and reaction of
traders. Journal of Financial Economics, 17, 5{26.
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One explanation might be that the cross au-

tocorrelations are positive, which can be par-

tially proved as follows: Let

rpt =
1

m

m3
i=1

rit =
1

m
ιIrt

denote the return of an equal weighted index,

where ι = (1, . . . ,1)I is a vector of ones, and
rt = (r1t, . . . , rmt)

I is the vector of returns of
the securities. Then

cov(rpt−1, rpt) = cov

^
ιIrt−1
m

,
ιIrt
m

�
=

ιI¡1ι
m2

,

where ¡1 is the ¯rst order autocovariance

matrix.

Therefore

m2cov(rpt−1, rpt) = ιI¡1ι =
D
ιI¡1ι− tr(¡1)

i
+ tr(¡1),

where tr(·) is the trace operator which sums
the diagonal elements of a square matrix.

Consequently, because the right hand side

tends to be positive and tr(¡1) tends to be

negative, ιI¡1ι − tr(¡1), which contains only
cross autocovariances, must be positive, and

larger than the absolute value of tr(¡1), the

autocovariances of individual stock returns.
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2.3 Exogeneity and Causality

Consider the following extension of the VAR-

model (multivariate dynamic regression model)

yt = C+
p3
i=1

AIiyt−i+
p3
i=0

BIixt−i+ 6t,

where p + 1 ≤ t ≤ T , yIt = (y1t, . . . , ymt), C

is an m × 1 vector of constants, A1, . . . ,Ap
are m ×m matrices of lag coe±cients, xIt =
(x1t, . . . , xkt) is a k × 1 vector of regressors,

B0,B1, . . . ,Bp are k×m coe±cient matrices,

and 6t is an m×1 vector of errors having the
properties

E(6t) = E{E(6t|Yt−1,xt)}= 0

and

E(6t6
I
s) = E{E(6t6Is|Yt−1,xt)}=

l
§6 t = s
0 t W= s,
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where

Yt−1 = (yt−1,yt−2, . . . ,y1).

We can compile this in matrix form

Y = XB+U,

where

Y = (yp+1, . . . ,yT)
I

X = (Xp+1. . . . ,XT)
I

Xt = (1,yt−1, . . . ,yt−p,x1, . . . ,xt−p)
U = (6p+1, . . . , 6T)

I,
and

B= (CI,AI1, . . . ,AIp,B0, . . . ,BIp).

The estimation theory for this model is ba-

sically the same s for the univariate linear

regression. For example the LS and (approx-

imate) ML estimator of B is
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B̂= (XIX)−1XIY,

and the ML estimator of §6 is

§̂6 =
1

T
ÛIÛ, Û = Y −XIB̂.

We say that xt is weakly exogenous∗ if the
stochastic structure of x contains no infor-

mation that is relevant for estimation of the

parameters of interest, B, and §6

If the conditional distribution of xt given the

past is independent of the history of yt then

xt is said to be strongly exogenous.

∗For a through discussion of Exogeneity see Engle,
R.F., D.F. Hendry and J.F. Richard (1985). Exo-
geneity. Econometrica, 51, 277{304.
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Granger-causality and measures of feedback

One of the key questions that can be ad-

dressed to VAR-models is how useful some

variables are for forecasting others.

If the history of x does not help to predict

the future values of y, we say that x does

not Granger-cause y.∗ Usually the predic-

tion ability is measured in terms of the MSE

(Mean Square Error). Hence, x fails to Granger-

cause y, if for all s > 0

MSE(ŷt+s|yt, yt−1, . . .)
= MSE(ŷt+s|yt, yt−1, . . . , xt, xt−1, . . .),

where (e.g.)

MSE(ŷt+s|yt, yt−1, . . .)
= E

p
(yt+s − ŷt+s)2|yt, yt−1, . . .

Q
.

∗Granger, C.W. (1969). Econometrica 37, 424{438.
Sims, C.A. (1972). American Economic Review, 62,
540{552.
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Note. This is essentially the same that y is

strongly exogenous to x.

In terms of VAR models this can be expressed

as follows:

Consider the g = m + k dimensional vector

zIt = (yIt,xIt), which is assumed to follow a

VAR(p) model

zt =
p3
i=1

¦izt−i+ νt,

where

E(νt) = 0

E(νtν
I
s) =

l
§ν, t = s
0, t W= s.
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Partition the VAR of z as

yt =
�p
i=1C2ixt−i+

�p
i=1D2iyt−i+ ν1t

xt =
�p
i=1E2ixt−i+

�p
i=1F2iyt−i+ ν2t

where νIt = (νI1t, νI2t) and §ν are correspond-

ingly partitioned as

§ν =

X
§11 §21
§21 §22

~
with E(νitν

I
jt) = §ij, i, j = 1,2.

Now x does not Granger-cause y if and only if

C2i ≡ 0, or equivalently, if and only if |§11| =
|§1|, where §1 = E(η1tη

I
1t) with η1t from the

regression

yt =
p3
i=1

C1iyt−i+ η1t.

Changing the roles of the variables we get

the necessary and su±cient condition of y

not Granger-causing x.
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It is also said that x is block-exogenous with
respect to y.

Testing for the Granger-causality of x on y
reduces to testing for the hypothesis

H0 : C2i = 0.

This can be done with the likelihood ratio

test by estimating with OLS the restricted∗
and non-restricted† regressions, and calculat-
ing the respective residual covariance matri-

ces:

Unrestricted:

§̂11 =
1

T − p
T3

t=p+1

ν̂1tν̂
I
1t.

Restricted:

§̂1 =
1

T − p
T3

t=p+1

η̂1tη̂
I
1t.

∗Perform OLS regressions of each of the elements in
y on a constant, p lags of the elements of x and p
lags of the elements of y.
†Perform OLS regressions of each of the elements in
y on a constant and p lags of the elements of y.
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The LR test is then

LR = (T − p)
p
ln |§̂1|− ln |§̂11|

Q
∼ χ2mkp,

if H0 is true.

Example. Granger causality between pairwise equity-

bond market series

Pairwise Granger Causality Tests
Sample: 1965:01 1995:12
Lags: 12
================================================================

Null Hypothesis: Obs F-Statistic Probability
================================================================
DFTA does not Granger Cause DDIV 365 0.71820 0.63517
DDIV does not Granger Cause DFTA 1.43909 0.19870

DR20 does not Granger Cause DDIV 365 0.60655 0.72511
DDIV does not Granger Cause DR20 0.55961 0.76240

DTBILL does not Granger Cause DDIV 365 0.83829 0.54094
DDIV does not Granger Cause DTBILL 0.74939 0.61025

DR20 does not Granger Cause DFTA 365 1.79163 0.09986
DFTA does not Granger Cause DR20 3.85932 0.00096

DTBILL does not Granger Cause DFTA 365 0.20955 0.97370
DFTA does not Granger Cause DTBILL 1.25578 0.27728

DTBILL does not Granger Cause DR20 365 0.33469 0.91843
DR20 does not Granger Cause DTBILL 2.46704 0.02377
==============================================================

The p-values indicate that FTA index returns Granger

cause 20 year Gilts, and Gilts lead Treasury bill.
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Let us next examine the block exogeneity between the

bond and equity markets (two lags). Test results are

in the table below.

===================================================================
Direction LoglU LoglR 2(LU-LR) df p-value
--------------------------------------------------------------------
(Tbill, R20) --> (FTA, Div) -1837.01 -1840.22 6.412 8 0.601
(FTA,Div) --> (Tbill, R20) -2085.96 -2096.01 20.108 8 0.010
===================================================================

The test results indicate that the equity markets are

Granger-causing bond markets. That is to some ex-

tend previous changes in stock markets can be used

to predict bond markets.
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2.4 Geweke's∗measures of Linear Dependence

Above we tested Granger-causality, but there

are several other interesting relations that are

worth investigating.

Geweke has suggested a measure for linear

feedback from x to y based on the matrices

§1 and §11 as

Fx→y = ln(|§1|/|§11|),
so that the statement that "x does not (Granger)

cause y" is equivalent to Fx→y = 0. Similarly

the measure of linear feedback from y to x

is de¯ned by

Fy→x = ln(|§2|/|§22|).

∗Geweke (1982) Journal of the American Statistical
Association, 79, 304{324.
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It may also be interesting to investigate the

instantaneous causality between the variables.

For the purpose, premultiplying the earlier

VAR system of y and x byX
Im −§12§−122

−§I12§−111 Ik

~
gives a new system of equations, where the

¯rst m equations become

yt =
p3
i=0

C3ixt−i+
p3
i=1

D3iyt−i+ ω1t,

with the error ω1t = ν1t −§12§−122 ν2t that is
uncorrelated with v2t

∗ and consequently with
xt (important!).

∗cov(ω1t, ν2t) = cov(ν1t − §12§
−1
22 ν2t, ν2t) = cov(ν1t, ν2t) −

§12§
−1
22 cov(ν2t, ν2t) = §12 − §12 = 0. Note further that

cov(ω1t) = cov(ν1t −§12§
−1
22 ν2t) = §11 −§12§

−1
22§21 =: §11.2.

Similarly cov(ω2t) = §22.1.
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Similarly, the last k equations can be written

as

xt =
p3
i=1

E3ixt−i+
p3
i=0

F3iyt−i+ ω2t.

Denoting §ωi = E(ωitω
I
it), i = 1,2, there is

instantaneous causality between y and x if

and only if C30 W= 0 and F30 W= 0 or, equiva-

lently, |§11| > |§ω1| and |§22| > |§ω2|. Anal-
ogously to the linear feedback we can de¯ne

instantaneous linear feedback

Fx·y = ln(|§1|/|§ω1|) = ln(|§2|/|§ω2|).
A concept closely related to the idea of lin-

ear feedback is that of linear dependence, a

measure of which is given by

Fx,y = Fx→y+ Fy→x+ Fx·y.

Consequently the linear dependence can be

decomposed additively into three forms of

feedback. Absence of a particular causal or-

dering is then equivalent to one of these feed-

back measures being zero.
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Using the method of least squares we get

estimates for the various matrices above as

§̂i = (T − p)−1
T3

t=p+1

η̂itη̂
I
it,

§̂ii = (T − p)−1
T3

t=p+1

ν̂itν̂
I
it,

§̂ωi = (T − p)−1
T3

t=p+1

ω̂itω̂
I
it,

for i = 1,2. For example

F̂x→y = ln(|§̂1|/|§̂11|).
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With these estimates one can test the par-

ticular dependencies,

No Granger-causality: x→ y, H01 : Fx→y = 0

(T − p)F̂x→y ∼ χ2mkp.

No Granger-causality: y→ x, H02 : Fy→x = 0

(T − p)F̂y→x ∼ χ2mkp.

No instantaneous feedback: H03 : Fx·y = 0

(T − p)F̂x·y ∼ χ2mk.

No linear dependence: H04 : Fx,y = 0

(T − p)F̂x,y ∼ χ2mk(2p+1).

This last is due to the asymptotic indepen-

dence of the measures Fx→y, Fy→x and Fx·y.

There are also so called Wald and Lagrange

Multiplier (LM) tests for these hypotheses

that are asymptotically equivalent to the LR

test.
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Note that in each case (T − p)F̂ is the LR-

statistic.

Example. The LR-statistics of the above measures

and the associated χ2 values for the equity-bond data

are reported in the following table with p= 2.

[y = (¢logFTAt,¢logDIVt) and xI = (¢ logTbillt,¢log r20t)]

==================================
LR DF P-VALUE

----------------------------------
x-->y 6.41 8 0.60118
y-->x 20.11 8 0.00994
x.y 23.31 4 0.00011
x,y 149.83 20 0.00023
==================================

Note. The results lead to the same inference as in

Mills (1999), p. 251, although numerical values are

di®erent [in Mills VAR(6) is analyzed and here VAR(2)].
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2.5 Variance decomposition and innovation

accounting

Consider the VAR(p) model

©(L)yt = 6t,

where

©(L) = I−©1L−©2L2 − · · ·−©pLp

is the (matric) lag polynomial.

Provided that the stationary conditions hold

we have analogously to the univariate case

the vector MA representation of yt as

yt = ©−1(L)6t = 6t+
∞3
i=1

ªi6t−i,
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where ªi is an m×m coe±cient matrix. Now

6t's represent shocks in the system. Suppose

we have a unit change in 6t then its e®ect in

y s periods ahead is

∂yt+s
∂6t

=ªs.

Accordingly the interpretation of the ª ma-

trices is that they represent marginal e®ects,

or the model's response to a unit shock (or

innovation) at time point t in each of the

variables. Economists call such parameters

are as dynamic multipliers.
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For example if we were told that the ¯rst el-

ement in 6t changes by δ1 at the same time

that the second element changed by δ2, . . . ,

and the mth element by δm, then the com-

bined e®ect of these changes on the value of

the vector yt+s would be given by

¢yt+s =
∂yt+s
∂61t

δ1 + · · ·+ ∂yt+s
∂6mt

δm =ªsδ,

where δI = (δ1, . . . , δm).

The response of yi to a unit shock in yj is

given the sequence, known as the impulse

multiplier function,

ψij,1,ψij,2,ψij,3, . . .,

where ψij,k is the ijth element of the ma-

trix ªk (i, j = 1, . . . ,m). Generally an im-

pulse response function traces the e®ect of a

one-time shock to one of the innovations on

current and future values of the endogenous

variables.
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What about exogeneity (or Granger-causality)?

Suppose we have a bivariate VAR system

such that xt does not Granger cause y. Then

we can writeX
yt
xt

~
=

 φ
(1)
11 0

φ
(1)
21 φ

(1)
22

X yt−1
xt−1

~
+ · · ·

+

 φ
(p)
11 0

φ
(p)
21 φ

(p)
22

X yt−p
xt−p

~
+

X
61t
62t

~
.

Then under the stationarity condition

(I−©(L))−1 = I+
∞3
i=1

ªiL
i,

where

ªi =

 ψ
(i)
11 0

ψ
(i)
21 ψ

(i)
22

.
Hence, we see that variable y does not react

to a shock of x.
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Generally, if a variable, or a block of vari-

ables, are strictly exogenous, then the im-

plied zero restrictions ensure that these vari-

ables do not react to a shock to any of the

endogenous variables. Nevertheless it is ad-

vised to be careful when interpreting the pos-

sible (Granger) causalities in the philosophi-

cal sense of causality between variables.

Othogonalized impulse response function

Noting that E(6t6
I
t) = §6, we observe that

the components of 6t are contemporaneously

correlated, meaning that they have overlap-

ping information to some extend.
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Example. For example in equity-bond data the con-

temporaneous VAR(2)-residual correlations are

=================================
FTA DIV R20 TBILL

---------------------------------
FTA 1
DIV 0.123 1
R20 -0.247 -0.013 1
TBILL -0.133 0.081 0.456 1
=================================

Many times, however, it is of interest to know

how "new" information on yjt makes us re-

vise our forecasts on yt+s. To single out

the individual e®ects the residuals must be

¯rst orthogonalized, such that they become

contemporaneously uncorrelated (they are al-

ready serially uncorrelated).
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Unfortunately orthogonalization, however, is

not unique in the sense that changing the or-

der of variables in y chances the results. Nev-

ertheless there are some guidelines (based on

the economic theory) how the ordering might

be done in a speci¯c situation.

Whatever the case, if we de¯ne a lower tri-

angular matrix S such that SSI = §6, and

νt = S−16t,

then I = S−1§6SI−1, implying
E(νtν

I
t) = S−1E(6t6It)SI

−1 = S−1§6SI−1 = I.

Consequently the new residuals are both un-

correlated over time as well as across equa-

tions. Furthermore, they have unit variances.

The new vector MA representation becomes

yt =
∞3
i=0

ψ∗i νt−i,
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where ψ∗i = ψiS
−1 (m×m matrices) so that

ψ∗0 = S−1. The impulse response function of
yi to a unit shock in yj is then given by

ψ∗ij,0,ψ∗ij,1,ψ∗ij,2, . . .

Variance decomposition

The uncorrelatedness of νts allow the error

variance of the s step-ahead forecast of yit to
be decomposed into components accounted

for by these shocks, or innovations (this is

why this technique is usually called innova-

tion accounting). Because the innovations

have unit variances (besides the uncorrelat-

edness), the components of this error vari-

ance accounted for by innovations to yj is
given by

s3
k=0

ψ∗2ij,k.

Comparing this to the sum of innovation re-

sponses we get a relative measure how im-

portant variable js innovations are in the ex-

plaining the variation in variable i at di®erent

step-ahead forecasts, i.e.,
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R2ij,s = 100

�s−1
k=0ψ

∗2
ij,k�m

h=1
�s−1
k=0ψ

∗2
ih,k

.

Thus, while impulse response functions traces

the e®ects of a shock to one endogenous

variable on to the other variables in the VAR,

variance decomposition separates the varia-

tion in an endogenous variable into the com-

ponent shocks to the VAR.

Letting s increase to in¯nity on gets the por-

tion of the total variance of yj that is due to

the disturbance term 6j of yj.

On the ordering of variables

As was mentioned earlier, when there is con-

temporaneous correlation between the resid-

uals, i.e., cov(6t) = §6 W= I the orthogo-

nalized impulse response coe±cients are not

unique. There are no statistical methods to

de¯ne the ordering. It must be done by the

analyst!
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It is recommended that various orderings should

be tried to see whether the resulting interpre-

tations are consistent. The principle is that

the ¯rst variable should be selected such that

it is the only one with potential immediate

impact on all other variables. The second

variable may have an immediate impact on

the last m − 2 components of yt, but not

on y1t, the ¯rst component, and so on. Of

course this is usually a di±cult task in prac-

tice.

Selection of the S matrix

Selection of the S matrix, where SSI = §6,

actually de¯nes also the ordering of variables.

Selecting it as a lower triangular matrix im-

plies that the ¯rst variable is the one a®ecting

(potentially) the all others, the second to the

m− 2 rest (besides itself) and so on.
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One generally used method in choosing S

is to use Cholesky decomposition which re-

sults to a lower triangular matrix with posi-

tive main diagonal elements.

Example. Let us choose in our example two orderings.
One according to the feedback analysis

[(I: FTA, DIV, R20, TBILL)],

and an ordering based upon the relative timing of the
trading hours of the markets

[(II: TBILL, R20, DIV, FTA)].

In EViews the order is simply de¯ned in the Cholesky

ordering option. Below are results in graphs with I:

FTA, DIV, R20, TBILL; II: R20, TBILL DIV, FTA,

and III: General impulse response function.
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Impulse responses:
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Impulse responses continue:
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The general impulse response function are
de¯ned as‡‡

GI(j, δi,Ft−1) = E[yt+j|6it = δi,Ft−1]−E[yt+j|Ft−1].

That is di®erence of conditional expectation

given an one time shock occurs in series j.

These coincide with the orthogonalized im-

pulse responses if the residual covariance ma-

trix § is diagonal.

‡‡Pesaran, M. Hashem and Yongcheol Shin (1998).
Impulse Response Analysis in Linear Multivariate
Models, Economics Letters, 58, 17-29.
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Variance decomposition graphs of the equity-bond data
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On estimation of the impulse response coe±cients

Consider the VAR(p) model

y = ©1yt−1 + · · ·+©pyt−p+ 6

or

©(L)y = 6.

Then under stationarity the vector MA rep-

resentation is

y = 6+ª16t−1 +ª26t−2 + · · ·
When we have estimates of the AR-matrices

©i denoted by ©̂i, i = 1, . . . , p the next prob-

lem is to construct estimates for MA matrices

ªj. It can be shown that

ªj =
j3
i=1

ªj−i©i

with ª0 = I, and ©j = 0 when i > p. Conse-

quently, the estimates can be obtained by re-

placing ©i's by the corresponding estimates.
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Next we have to obtain the orthogonalized

impulse response coe±cients. This can be

done easily, for letting S be the Cholesky de-

composition of §6 such that

§6 = SSI,

we can write

yt =
�∞
i=0ªi6t−i

=
�∞
i=0ªiSS

−16t−i
=
�∞
i=0ª

∗
i νt−i,

where

ª∗i =ªiS

and νt = S−16t. Then

Cov(νt) = S−1§6S
I−1 = I.

The estimates for ª∗i are obtained by replac-
ing ªt with its estimates and using Cholesky

decomposition of §̂6.
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2.6 Cointegration

(Engle and Granger (1987). Econometrica.)

Let yt = (y1t, y2t, . . . , ymt)
I, where yit ∼ I(1),

i = 1, . . . ,m, i.e., ¢yt = yt − yt−1 is sta-

tionary. Suppose one wants to ¯t a VAR(1)

model. Should yt be di®erenced or not?∗

To answer this question, consider

yt = µ+©1yt−1 +©2yt−2 + 6t,

where 6 ∼ NID(0,§) Which we can rewrite

into the VECM (Vector Error Correction Model)

form

¢yt = µ+¦yt−1 + ¡¢yt−1 + 6t,

where ¦ = −(I − ©1 − ©2), and ¡ = −©2.
Note that the left hand side of the equation

is stationary! If ¦ W= 0 and the model holds,
then ¦yt−1 must be stationary. As a conse-
quence, ¯tting purely the di®erenced model,

¢yt = µ+©¢yt−1 + vt leads to a misspesi-
¯cation!
∗Recall that, if xt and yt are I(1), and zt is stationary
then for any a, b(W= 0) (i) axt+ bzt ∼ I(1) (ii) usually
axt+ byt ∼ I(1).
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Under what conditions is ¦yt stationary?

De¯nition of cointegration: Let xt and yt be

I(1). Then xt and yt are cointegrated if there

exist a W= 0 such that yt − axt ∼ I(0) (i.e.

yt−axt is stationary.∗ I.e., (xt, yt)I ∼ CI (1,1).

It can be noted that in this simple case the

cointegration parameter a is unique. Further-

more, it is a very special relationship, be-

cause, generally, any linear combination of

two integrated series is integrated!

It is also important to note that if xt and

yt are integrated but not cointegrated then

estimation of the regression model

yt = β0 + β1xt+ ut

yields nonsense results!

∗Generally: Let yt = (y1t, . . . ,ymt)I with yit ∼ I(d).
Then yit are cointegrated of order b > 0 if there exist
a vector a = (a1, . . . , am)I such that aIyt ∼ I(d − b).
We denote yt ∼ CI (d, b).
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In the general case we can decompose ¦ =

αβI, where α and β are m× r matrices r ≤ m
is the rank of ¦. Matrix β contains the long

run relationships between variables in yt and

α contains the short run adjusting parameters

towards the long run steady state relationship

βIyt.

If r = m then ¦ is of full rank, and the vari-

ables in yt are stationary, i.e. I(0). If r = 0

then ¦ = 0, and the variables are not coin-

tegrated.

The interesting case is when 0 < r ≤ m −
1. Then ¦ has a reduced rank, and there

are r cointegrating vectors (equilibrium con-

ditions). In testing cointegration, the ¯rst

step is to ¯nd the cointegration order, r.

In the general case this can be accomplished

with the Johansen's (1988) procedure, where

also estimates of α and β are obtained.
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Example. Consider Helsinki, Oslo and Stockholm stock
indexes (see ¯gure).

Stock Indexes of Helsinki, Stockholm and Oslo

August 29, 1993 to August 9, 1996

250 500

6.84

6.96

7.08

7.20

7.32

7.44
Helsinki

Stockholm

Oslo

We observe that especially Stockholm and Oslo seem

to follow each other rather closely.

Generally certain economic series are such

that they should not drift too far apart from

each other. This means that the variables

may depart from each other in short run, but

there is certain mechanism that forces them

back to a common path after some periods.

examples of such series are prices and wages,

price of a certain commodity sold in two dif-

ferent locations, wages and expenditure, etc.
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Testing for cointegration

The testing procedure is carried out in two

phases. Using, e.g. ADF, in the ¯rst step

we test whether both of the series are I(1).

In the second step the cointegration of the

series is tested.

Note that several other tests also exist for

testing the unit root. E.g. Phillips-Perron

test is one which is frequently used. Further-

more, modi¯cations for the testing procedure

must be carried out if there is trend in the

series.
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Example. Test the integration of the three stock in-

dexes shares price series. (EViews output). ADF with

four lags.

--------------------
Stock ADF Test
Exchange Statistic
--------------------
Finland -2.51
Norway -1.07
Sweden -1.35
--------------------

1% Critical Value* -3.4418
5% Critical Value -2.8658
10% Critical Value -2.5691

*MacKinnon critical values for rejection
of hypothesis of a unit root.
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None of the test statistics are statistically

signi¯cant. Hence all (logarithmic) stock in-

dexes are integrated, and a further check of

di®erences reveals that each index is inte-

grated of order one.

If the series are integrated of the same order.

Then the next step is to test whether the

series are cointegrated.
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Example. Test pair wise possible cointegration of the

three stock index series

Included observations: 737
Test assumption: Linear deterministic trend in the data

Lags interval: 1 to 4
----------------------------------------------------------

Likelihood Critical Values Hypothesized
Eigenvalue Ratio 5 Percent 1 Percent No. of CE(s)
----------------------------------------------------------
Series: LFIN LNOR
0.011019 8.818672 15.41 20.04 None
0.000885 0.652729 3.76 6.65 At most 1
Series: LFIN LSWE
0.009158 7.464918 15.41 20.04 None
0.000928 0.684529 3.76 6.65 At most 1
Series: LNOR LSWE
0.026201 20.76955 15.41 20.04 None **
0.001629 1.201820 3.76 6.65 At most 1
----------------------------------------------------------
*(**) denotes rejection of the hypothesis
at 5%(1%) significance level

Normalized Cointegrating Coefficients: Norway and Sweden

LNOR LSWE C
1.000000 -0.938233 -0.381887

(0.04471)
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The test results suggest that Sweden and Norway are

cointegrated.

Note.

• In testing the unit root of the individual
series, acceptance of the null hypothesis

led the conclusion that the series are in-

tegrated.

• In testing for cointegration with ADF or

PP tests, rejection of the hypothesis leads

to the conclusion that the residuals are

not integrated, which implies that the

xt and yt series are cointegrated. Jo-

hansen's procedure test the number of

cointegration vectors.
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Properties of cointegrated series

Granger's representation theorem:

Let xt ∼ I(1) and yt ∼ I(1) then xt and yt
are cointegrated if and only if there exist the

error correction model (ECM) such that

¢xt = −γ1zt−1 + lagged(¢xt,¢yt) + δ(L)61t

¢yt = −γ2zt−1 + lagged(¢xt,¢yt) + δ(L)62t,

where

zt = yt −Axt ∼ I(0),

δ(L) = 1+ δ1L+ · · ·+ δpL
p.

is the same in both equations, and |γ1| +
|γ2| W= 0 (Engle and Granger 1987).
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The relation

yt = β0 + β1xt

can be interpreted as the equilibrium state

between xt and yt. The residual term zt is

called the equilibrium error.

One implication of the theorem is that if

xt, yt ∼ CI(1,1) then there exist so called

Granger causality at least in one direction,

meaning that the one of the series can be

predicted by the history of the other.

Note. On e±cient markets there should not

exist cointegration between for share prices,

otherwise one could predict the values of one

share by the historical values of the other

series.
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Further properties∗

(i) If xt, yt are cointegrated, so will be xt
and byt−k + wt, for any k where wt ∼ I(0),

with a possible change in cointegrating pa-

rameter. Formally, if xt is I(1) then xt and

xt−k will be cointegrated for any k, but this
is not an interesting property as it is true for

any I(1) process and so does not suggest a

special relationship, unlike cointegration of a

pair of I(1) series. It follows that if xt and yt
are cointegrated but are only observed with

measurement error, then the two series will

also be cointegrated if all measurement er-

rors are I(0).

(ii) If xt is I(1) and fn,h(Jn) is the optimal

forecast of xn+h, based on the information

set Jn available at time n, then xt+h, ft,h(Jt)

∗C.W.J. Granger (1986). Developments in the study
of cointegrated economic variables. Oxford Bulletin
of Economics and Statistics, 48:3, 213{228.
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are cointegrated if Jn is a proper information

set, that is if it includes xn−j, j ≥ 0. If Jn

is not a proper information set, xt+n and its

optimum forecast are only cointegrated if xt
is cointegrated with variables in Jt.

(iii) If xn+h, yn+h are cointegrated series with

parameter A and are optimally forecast using

the information set Jn : xn−j, yn−j, j ≥ 0,

then the h-step forecast fxn,h, f
y
n,h will obey

fxn,h = Af
y
n,h as h → ∞. Thus, long-term

forecast of xt, yt will be tied together by the

equilibrium relationships. Forecasts formed

without cointegration terms such as univari-

ate forecasts will not necessarily have this

property.

(iv) If Tt is an I(1) target variable and xt is an

I(1) controllable variable, then Tt, xt will be

cointegrated if optimum control is applied.
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(v) If xt, yt are I(1) and cointegrated, there

must be Granger causality in at least one di-

rection, as one variable can help forecast the

other. This follows directly from the condi-

tion |ρ1| + |ρ2| W= 0, as zt must occur in at

least one equation and thus knowledge of zt
must improve forecastability of at least one

of xt, yt. Here causality is respect informa-

tion set Jt de¯ned in (iii).

(vi) If xt, yt are a pair of prices from a jointly

e±cient, speculative market, they cannot be

cointegrated. This follows directly from (v)

as if the two prices are cointegrated, one can

be used to forecast the other and this would

contradict the e±cient market assumption.

Thus, for example, cold and silver prices,

if generated by an e±cient market, cannot

move closely together in the long-run.
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Example. Vector Error Correction Model (VECM) for

Norway and Sweden (EViews)

Sample(adjusted): 4 742
Included observations: 739 after adjusting end points
t-statistics in parentheses

Cointegrating Eq: CointEq1
LNOR(-1) 1.000000
LSWE(-1) -0.936439

(0.04354)
(-21.5059)

C -0.394794

Error Correction: D(LNOR) D(LSWE)
CointEq1 -0.027201 0.032955

(-2.15480) (2.25424)

D(LNOR(-1)) -0.020720 -0.038613
(-0.47054) (-0.75717)

D(LNOR(-2)) 0.017904 -0.045137
(0.40970) (-0.89189)

D(LSWE(-1)) 0.099523 0.087900
(2.60472) (1.98651)

D(LSWE(-2)) 0.038129 0.032427
(0.99712) (0.73224)

C 0.000417 0.000546
(1.37480) (1.55140)

R-squared 0.023823 0.011391
Adj. R-squared 0.017165 0.004648
S.E. equation 0.008220 0.009519
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Trend and Intercept

Consider the following ECM

¢xt = αβIxt−1 + ¡1¢xt−1 + · · ·+¡p¢xt−p+ µ+ δt+ 6t.

Then we can write

δ = αδ1 + α⊥δ2
µ = αµ1 + α⊥µ2,

where α⊥ is a m × (m − r) matrix such that
αIα⊥ = 0 (orthogonal complement of the col-

umn space spanned by the columns of α),

δ1 = (αIα)−1αIδ is a r dimensional vector of
linear trend coe±cients in the cointegrations

relations,

δ2 = (αI⊥α⊥)−1αI⊥δ is an (m− r)-dimensional
vector of quadratic trend coe±cients in the

data,

µ1 = (αIα)−1αIµ is a r-dimensional vector of
intercepts in the cointegration relations

µ2 = (αI⊥α⊥)−1αI⊥µ is an (m − r)-vector of
linear trend coe±cients in the data.
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Using this decomposition, we can write

¢xt = α

w
β
µI1
δI1

WI
~xt−1 + ¡1¢xt−1 + · · ·+¡p¢xt−p+ α⊥µ2 + α⊥δ2t+ 6t.

where ~xt = (xIt,1, t)I.

As a consequence discussion of determinis-

tic trend and constants must be related to

cointegration space as well.

Case 1. No restrictions on δ and µ: Then

the model is consistent with linear trend in

di®erences, ¢xt, and quadratic tend in xt.

Case 2. δ2 = 0, δ1, µ1 and µ2 unrestricted:

When δ2 = 0 the model is restricted to ex-

clude quadratic trends in data. δ1 W= 0 implies

that the cointegration relations may have lin-

ear trends, and µ2 W= 0 implies that the coin-

tegration relation has an intercept as well.

µ1 W= 0 implies that there is a linear trend in

also in xt.
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Case 3. δ = 0, µ1 and µ2 unrestricted:

This implies that there may be linear trend

in xt (µ2 W= 0), but no trend in the cointegra-

tion relations. There may also be intercepts

(µ1 W= 0) in the cointegration relations.

Case 4. δ = 0, µ2 = 0 and µ1 unrestricted:

No trend in data (δ2 = 0, µ2 = 0), and no

trend in cointegration relation (δ1 = 0), but

there may be intercepts in the cointegration

relations (µ1 W= 0).

Case 5. δ = 0 and µ = 0: No determin-

istic components in the data, and all inter-

cepts in the cointegration relations are zero.

This is an unlikely case, for the intercepts in

cointegration relations are usually needed to

account for the units of measurements.

Note: Probably the most common cases in

practice are the cases 3 and 4.
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Testing hypotheses

An important aspect in cointegration analysis

is testing hypotheses about the cointegration

relations and the adjustment coe±cients.

Hypotheses about β can be presented in the

form di®erent forms. In EViews the hypothe-

ses are spci¯ed by imposing restriction for-

mulas between the parameters.

Example. Let m = 4, r = 2 and

β =

 β11 0
−β11 β22
0 β32
β41 0


then we can write set in EViews B(1,2) = 0, B(2,1) =

−B(1,1), B(3,1) = 0, B(4,2) = 0.
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Special cases:

Consider zt = (y1t, y2t, xt)
Iw

¢y1t
¢y2t
¢xt

W
= ¡1

w
¢y1t−1
¢y2t−1
¢xt−1

W

+

w
α11 α12
α21 α22
α31 α32

Wp
β11 β21 β31
β12 β22 β32

Qw y1t−1
y2t−1
xt−1

W
+

w
61t
62t
63t

W
.

Exclusion of variables in the long-run relations

If we assume that xt−1 is not needed in the
stationary long-run relations, then β31 = β32 =

0.
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Example. Consider the (log) indexes of Helsinki, Stock-

holm, Oslo and Copenhagen. Using CATS the Jo-

hansen's test give

Trend assumption: Linear deterministic trend
Series: LFIN LSWE LNOR LDEN
Lags interval (in first differences): 1 to 4

Unrestricted Cointegration Rank Test
=================================================================
Hypothesized Trace 5 Percent 1 Percent
No. of CE(s) Eigenvalue Statistic Critical Value Critical Value
-----------------------------------------------------------------
None ** 0.0498 56.54 47.21 54.46
At most 1 0.0137 18.92 29.68 35.65
At most 2 0.0097 8.78 15.41 20.04
At most 3 0.0022 1.62 3.76 6.65
=================================================================
*(**) denotes rejection of the hypothesis at the 5%(1%) level
Trace test indicates 1 cointegrating equation(s)
at both 5% and 1% levels

There is possibly one signi¯cant cointegration rela-

tion, as already found earlier.

Estimating β under this restriction yields.

Cointegration equation
LFIN LSWE LNOR LSWE C
1.00 109.02 -126.73 21.20 -35.78

Test next whether Helsinki is needed in the cointegra-

tion relation. In EViews this can be accomplished by

setting B(1,1) = 0 in the estimation.
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Imposing this restriction yields

Cointegration Restrictions:
B(1,1)=0

Convergence achieved after 3 iterations.
Not all cointegrating vectors are identified
LR test for binding restrictions (rank = 1):
Chi-square(1) 0.027825
Probability 0.867520
========================================
Cointegrating Eq:
LFIN LSWE LNOR LDEN C
----------------------------------------
0.00 46.77 -54.01 8.872722 -13.22640
========================================

Hence, the data support the hypothesis that Helsinki

is not needed in the cointegration relation.

Restriction on α

Restrictions on α (in EViews) can be speci-

¯ed in the same manner as in the β matrix.

Weak exogeneity

In ¦ = αβI the matrix α represents the speed
of adjustment to the disequilibrium. If all

αij in row i of α are equal to zero, then the

corresponding cointegration vector does not

117



enter the equation determining the ith ele-

ment of ¢xt. In this case the variable is

weakly exogenous to the system.

Example. If xt above is weakly exogenous then α31 =
α32 = 0. This also implies that we can model the
system as

¢yt = ¡0¢xt+ ~¡1¢zt−1 + ~αβzt+~6,

where ¢yt = (y1t, y2t)I, ¡0 = (γ01, γ02)I, ~¡1 is a (2× 3)
matrix, and ~α is a (2× 2) matrix.

Example. Test just for illustration purposes, whether

Copenhagen is weakly exogenous (under the restric-

tion on β). The EViews results are
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Vector Error Correction Estimates
Sample(adjusted): 6 742
Included observations: 737 after adjusting endpoints
Standard errors in ( ) & t-statistics in [ ]
=====================================================
Cointegration Restrictions:

B(1,1)=0,A(4,1)=0
Convergence achieved after 5 iterations.
Not all cointegrating vectors are identified
LR test for binding restrictions (rank = 1):
Chi-square(2) 0.747561
Probability 0.688128
===========================================
Cointegrating Eq:
LFIN LSWE LNOR LDEN C
-------------------------------------------
0.00 46.56 -53.33 7.88 -9.69
===========================================

=========================================================
Error Correction: D(LFIN) D(LSWE) D(LNOR) D(LDEN)
---------------------------------------------------------
CointEq1 -0.001286 -0.000699 0.000834 0.000000

(0.00041) (0.00031) (0.00027) (0.00000)
[-3.14380] [-2.23172] [ 3.07083] [ NA ]

=========================================================

The hypothesis can be accepted.

Conditioning the model with weakly exogenous vari-

ables sometimes improve stochastic properties of the

model. This can be done by ¯rst saving the ci-relation

and continuing the analysis with traditional system

equation econometrics.
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Residual analysis

Residual analysis provides the user various

descriptive statistics and misspesi¯cation tests.

Johansen suggests using residuals from the

unrestricted model, to decide whether the

model is acceptable or not. Following this

the residual analysis of CATS yields

RESIDUAL ANALYSIS

Correlation matrix
DLFIN DLSWE DLNOR DLDEN

1.000000
0.478891 1.000000
0.424876 0.550324 1.000000
0.338403 0.442204 0.444650 1.000000

Standard deviations of residuals
0.011727 0.009371 0.008113 0.007387

MULTIVARIATE STATISTICS

LOG(DET(SIGMA)) = -38.65190
INFORMATION CRITERIA: SC = -38.04059

HQ = -38.30229
TRACE CORRELATION = 0.04519

TEST FOR AUTOCORRELATION
L-B(183), CHISQ(2864)= 2770.503, p-val = 0.89
LM(1), CHISQ(16) = 25.555, p-val = 0.06
LM(4), CHISQ(16) = 22.791, p-val = 0.12
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TEST FOR NORMALITY
CHISQ(8) = 634.572, p-val = 0.00

UNIVARIATE STATISTICS

MEAN STD.DEV SKEWNESS KURTOSIS MAXIMUM MINIMUM
0.000000 0.011727 -0.329214 6.375007 0.054239 -0.073806
0.000000 0.009371 0.153852 4.673587 0.048026 -0.036842
-0.000000 0.008113 -0.049348 5.237731 0.043042 -0.035961
0.000000 0.007387 -0.097416 3.905279 0.023646 -0.030046

ARCH(4) Normality R-squared
37.094 161.390 0.062
22.496 59.313 0.034
50.391 96.711 0.041
17.333 22.013 0.050

As is seen normality of residuals cannot be

accepted. There is obvious ARCH-e®ect in

the residuals. All have kurtosis larger than 3

(the kurtosis of a normal distribution). Hence,

the analysis results may not be fully reliable.

Nevertheless, we do not try to improve the

stochastic properties of the model here for

now.
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Estimates of the short run dynamics

The main focus in cointegration analysis is in

the matrices α and β, but the programs also

give estimates for the short run matrices ¡i.

Interpreting them includes the same di±cul-

ties as in the usual VAR-analysis. Especially

if there are many variables.

Structural equation modeling (SEM) can also

be applied in cointegration frame work.

A general approach in modeling cointegrated

systems may be done as follows:

• Use Johansen approach to obtain the long-
run cointegration relationships.

• Estimate the VECM with the cointegra-

tion relationships explicitly included to ob-

tain a parsimonious representation of the

system.

122



• Condition on any (weakly) exognous vari-
ables thus obtaining a conditional VECM.

• Model any simultaneous e®ects between
tha variables in the (conditional) model

and test to ensure that the resulting re-

stricted model parsimoniously encompasses

the VECM.
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