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1 Preliminaries

It is most probable that you have encountered in your studies the term Bayesian. The term
Bayesian, as applied in statistical inference, recognized the contribution of the seventeenth-
century English clergyman Thomas Bayes. Later, econometricians like Arnold Zellner have
adapted Bayesian inference to econometrics. Nowadays, Bayesian econometrics is still not
widely used but yet very promising. Thus I propose in these brief notes to give an introduc-
tion to Bayesian econometrics keeping the notation as simple as possible. One of the major
obstacle of Bayesian econometrics is that it can become very messy and thus requires an ad-
vance technical background. Since I do not have this background, I will rather concentrate
on de…ning as well as possible the basic concept of bayesian econometrics.

These notes were taken mainly from Arthur Van Soest’s lectures on Bayesian Economet-
rics in Tilburg University, Netherlands, in the fall semester of 2001. Also, I have made used
of Part 9 of the book Foundations of Econometrics by Mittlehammer, Judge and Miller
(2000). At times, I will also give references to classical papers (the name may be mislead-
ing) on this topic and provide the reader with various examples drawn from the lectures
and from the book.

2 Illustrations of the Use of Bayes’ Rule

Bayesian statistical inference is mainly based on solving one problem that we call the inverse
problem in order to contrast it from classical statistical inference. According to Mittleham-
mer et al. (now MJM) p646: “In the problem posed by Bayes, we observe data, and thereby
know the values of the data outcomes, and wish to know what probabilities are consistent
with those outcomes.” This is di¤erent from the classical perspective where given the data
we observe the likelihood that observations have been generated from some parameter to
…nd. In the classical framework we thus give probabilities to sample observations that they
have been drawn from a known distribution with parameter µ. In the bayesian framework,
the give probabilities to plausible values of µ that are plausible with the data that has been
observed. In this sense, these probabilities may change once the data is observe and from
these probabilities we may be able to choose one particular value of µ as being the most
plausible value, thus the true value. We verify this intuition by introducing the cornerstone
of Bayesian Analysis, that is not suprisingly, Bayes’ rule or theorem:
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Given two outcomes A and B, we have that

p(A j B) =
p(B j A)p(A)

p(B)
(1)

When dealing with probabily densities we may have accordingly,

f(x j y) =
f (y j x)fx(x)

fy(y)
(2)

where fy(y) =
R
x f(t; y)dt and fx(x) =

R
y f(x; t)dt are the marginal densities and f(x;y)

is the joint density of the variables. Remember that since f(x j y) = f(x;y)
fy(y) and f(x;y)

fx (x) fx(x) =
f(y j x)fx(x) we get the expression in (2). Enough abstract concepts you will say. Let’s
consider an example that uses Bayes’ rule.

2.1 Example 1 Types of Female Workers

We have three types of workers Si ½ S i = 1;2;3 with S1 [ S2 [ S3 = S and Si \ Sj =
f®g8i 6= j . We are given that the probability that we observe w; a female who is working
given that she is of type 1 is p(w j S1) = 0:5, p(w j S2) = 0:1, p(w j S3 ) = 0:2. Further
we know that the probability of observing a type i worker is p(S1) = 0:4, p(S2 ) = 0:4;
p(S3) = 0:2.

Now what is the probability of observing a worker of the …rst type given we observe w.
We have the inverse problem and using Bayes’ rule. Carefully,

p(S1 j w) =
p(S1)p(w j S1)

p(S1)p(w j S1) + p(S2)p(w j S2) + p(S3)p(w j S3)

=
0:2

0:2 +0:04+ 0:04
=

5
7

Thus the probability of observing a …rst type worker given that this worker is a female
is 5

7 . We have solved the inverse problem using Bayes’ rule.

3 Basis Structure of Bayesian Inference

Remember, the philosophy here is that we work with inverse probabilities. Once the drawn
sample is given and observed, what is the probability that we observe µ given the data. The
Bayesian problem format is the following according to MJM.

1. Available sample x = (x1; :::; xn) with f(x j µ) and l(µ j x), µ 2 £
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2. Prior information in the form of a prior distribution or a prior probability
density p(µ) for the parameter vector µ 2 £ in the sampling probability model f(x j
µ).

3. The likelihood function l(µ j x) and prior density combined by Bayes theorem to yield
the posterior density of µ p(µ j x).

The general Structure of Bayesian Inference is shown in the Table 1 (MJM, p648).

3.1 Prior Distribution

You can possibly argue, what is a Prior? Is it objective? Subjective? We will show later
the impact of the choice of a Prior on the estimation and thus characterize di¤erent kinds of
priors. For the moment we will stick to the general interpretation of a prior. It is presumed
that if p(µ) represents subjective information, then the analyst has adhered to the axioms
of probability (whatever that is!) in de…ning p(µ) so that the function is indeed a legitimate
probability measure on µ values. This is pretty loose guidance on the choice of a prior. In
fact there as not been many attemps to improve guidance on the choices of priors. The title
of Kass and Wasserman’s (1996) paper is instructive on the dilemma posed to researchers:
The Selection of Prior Distributions by Formal Rules. The question may well be Where do
prior’s come from? Later we will show that in fact the choice of a prior does not matter
that much after all in large samples!

MJM p651 further add: “By formalizing uncertainty regarding model parameters in the
form of prior probability distributions, the Bayesian approach allows di¤ering beliefs about
the plausible values of these parameters to be incorporated explicitely into inverse problem
solutions.”

3.2 Posterior Distribution

We can de…ne the joint PDF of (Y;£) as,

f (x; µ) = f(x j µ)p(µ) = p(µ j x)fx(x)

thus,

p(µ j x) =
f(x j µ)p(µ)

fx(x)

and since fx(x) is a constant, we can can write

p(µ j x) / f(x j µ)p(µ)
or

p(µ j x) / l(x j µ)p(µ)
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The sign / means proportinal to and since we are talking of distributions, proportion
can be neglected for estimation ( remember in the Maximum likelihood framework the
constant can be dropped without a¤ecting the optimization problem and it’s solution). We
can always retreive this proportion scalar by using the fact that probabilities have to some
up to 1. We call p(µ j x) the posterior distribution. Why? Look at the last expression.
The usual likelihood that assigns probabilities to observations that they are drawn from a
distribution with parameter value µ is present. However each possible value of µ is weighted
by our beliefs about the values it can take.

Right, now we know that given the data we will update our beliefs and de…ne a possible
di¤erent posterior distribution about the values of the parameter. Thus we updated our
beliefs using the data. The distribution itself may change or only the parameter values.
Nothing is restricted in this process of updating. This process of updating is what will
permit latter comparisons between the classical estimators and the bayesian estimators.
It naturally follows that we consider some examples so that we really get a grasp of the
meaning of all those concepts.

3.3 Example 2 Firms and Quality Control

We have the following Prior distribution about the probability of default of the …rms:

p(µ) =
½

0:5 for µ = 0:25
0:5 for µ = 0:5

¾

Implied is that £ = f0:25;0:5g : We have x1 ; x2; :::; xn a random sample of a quality of
product measure from a binomial distribution:

xi » B(1; µ)

So that xi = 1 with probablity µ and 0 with probability (1 ¡ µ). We must compute the
posterior distribution of µ given that µ = µ0, the true value of the parameter vector.

p(µ0 j x) =
p(µ0 )p(x j µ0)

p(x)

=
p(µ0 )p(x j µ0)P
µ2£ p(µ)p(x j µ)

Now we have some calculations to do in order to compute this distribution. We …rst
consider the case µ0 = 0:25:

p(0:25 j x) =
0:5

¡
0:25§xi0:75n¡§xi

¢

0:5 (0:25§xi0:75n§xi) + 0:5 (0:5§xi 0:5n¡§xi )

=
0:5§xi 1:5n¡§xi

0:5§xi1:5n§xi +1
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and consequently p(0:25 j x) = 1 ¡ p(0:25 j x):

p(0:5 j x) = 1 ¡ 0:5§xi1:5n¡§xi

0:5§xi 1:5n§xi + 1

=
1

0:5§xi 1:5n§xi + 1

Then we see that the probability that the …rm is a bad type (µ = 0:5) is small when
the data reveals that there is not many defaults. More interestingly we can interpret that
given our beliefs that this value should be given a probability of 0.5, if the data reveals few
defaults, then this probability will decrease, again as a consequence of the updating. For
the sake of completness, the posterior distribution is

p(µ j x) =

(
0:5§xi1:5n¡§xi

0:5§xi1:5n§xi +1 for µ = 0:25
1

0:5§xi1:5n§xi+1 for µ = 0:5

)

which now depends on the data, so the data was used in a good way after all...

3.4 Example 3 An Uninformative Prior

We have a prior distribution on µ U (0; 1), a uniform distribution on the interval 0,1. This
kind of prior is uninformative because each values of µ are assigned equal probabilities (
we could say the same thing in the preceding example). We have data on n independent
draws from a binomial distribution B(1; µ) and thus x1 ; x2:::; xJ » B(n; µ): ( You could
think of how many defects by …rms.) Recall:

p(x = k j µ) =
µ

n
k

¶
µk(1 ¡ µ)n¡k :

Now, the prior density is,

p(µ) =
½

1 0 · µ · 1
0 µ < 0 or µ > 1

¾

and thus we can compute the posterior density.

p(µ0 j x) =
p(µ0)p(x j µ0)R

µ2£ p(µ)p(x j µ)dµ

since
R

µ2£ p(µ)p(x j µ)dµ is a constant that does not depend on µ0 , we have for 0 ·
µ0 · 1
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p(µ0 j x) / p(µ0 )p(x j µ0)

p(µ0 j x) / 1
µ

n
x

¶
µx(1 ¡ µ)n¡x

and again 1
¡n
x

¢
is some scalar so we forget about it. Therefore,

p(0 · µ0 · 1 j x) / µx(1 ¡µ)n¡x

and

p(µ < 0 [ µ > 1 j x) = 0

Thus the Posterior distribution is

p(µ0 j x) = µx(1 ¡ µ)n¡x if 0 · µ0 · 1
0 if µ < 0 or µ > 1

the …rst part is a Beta distribution if you recall. For such a distribution we have,

E f µg =
p

p + q

V f µg =
pq

(p + q)2(p+ q + 1)

with p = x + 1 and q = n ¡x + 1 we then have that

µ0 » Beta

Ã
x + 1
n+ 2

;
(x + 1)(n¡ x + 1)

(n + 2)2 (n + 3

!

Now recall the prior distribution. We had E f µg = V f µg = 1
12 . Notice that if we

observe no data, the expected value of not updated. As soon as data is used and that we
observe some defects then the expected value of µ will change. If we have few defects, then
the probability of defects is updated downward. If there are many defects, this probability
is increased. We then update our beliefs given the data.

3.5 Example 4 Informative Prior

We have data x1; x2 :::; xn » N(¯;¾2) with ¾2 known. Prior distribution of ¯ is N(¹; ¿ 2)
with ¹; ¿2 known. Working out the posterior density for ¯ we have,
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p(¯ j x) / p(¯)p(x j ¯)

/ exp

(
¡1

2

"
(¯ ¡ ¹)2

¿ 2 +
X

i=1

(xi ¡ ¯)2

¾2

#)

Working the awful expression in the exponential,

X

i=1

(xi ¡¯)2

¾2 =
1
¾2

X

i=1

(xi ¡ ¯)2

=
X

(xi ¡ x)2 + n (x ¡ ¯)2

and since
P

(xi ¡ x)2 is not dependent on ¯ we take it out into the proportionality
constant ( we have the exponential of a sum). We obtain by replacing,

p(¯ j x)

/ exp

(
¡1

2

"
(¯ ¡ ¹)2

¿ 2 +
n (x ¡ ¯)2

¾2

#)

Dividing by n in the second term and then expressing in a common denominator,

/ exp

8
<
:¡1

2

2
4

(¯ ¡ ¹)2
³

¾2

n

´
+

¡
¿ 2¢ (x ¡¯)2

¿ 2 ¾2

n

3
5
9
=
;

since only the term in beta should be keept, the others being again sended to the pro-
portionality condition, we have by working out the polynomials,

/ exp

(
¡ 1

2¿ 2 ¾2

n

·
¯2

µ
¾2

n
+ ¿2

¶
+

µ
¡2¹

¾2

n
¡ 2x¿2

¶
¯
¸)

The attentive reader will see that the term in bracket is nothing else then,

/ exp

8
<
:¡ 1

2¿2 ¾2

n

µ
¾2

n
+ ¿ 2

¶ Ã
¯ ¡ ¹¾2

n + x¿ 2

¾2

n + ¿ 2

!2
9
=
;

which can be rewritten as,
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p(¯ j x) / exp

8
>><
>>:

¡ 1µ
1

¾2
n

+ 1
¿2

¶
0
@¯ ¡

¹ 1
¿2 + x 1

¾2
n

1
¾2
n

+ 1
¿2

1
A

2
9
>>=
>>;

p(¯ j x) / exp

(
(¯ ¡ e¹)2

e¾2

)

with e¹ =
¹ 1

¿2
+x 1

¾2
n

1
¾2
n

+ 1
¿2

and e¾2 =
µ

1
¾2
n

+ 1
¿2

¶
. The Posterior distribution is

p(¯ j x) » N(e¹; e¾2)

We may observe several remarks before going further.

Remark 1 — The prior is normal and so is the posterior. Then the prior is called
a conjugate prior. We say that N(¹; ¿2 ) is conjugate to the data N(¯;¾2) for ¾2 …xed.
Because data is also normal, then the prior is natural conjugate prior. We can use the
posterior as a prior for the next iteration and are garantied that this prior is also conjugate
to the data.

Remark 2 — Posterior only depends on the data through x, the sample mean, which
in this case is a su¢cient statistic for ¯ . We have,

p(¯ j x) = g(¯;x)h(x)
= g(¯;x) ¢ 1

The posterior mean is a natural estimator for ¯ ( minimizes posterior expected quadratic
loss). We call it the Bayes estimator under quadratic loss. ( We will come back to loss
functions later.) What is the Bayes estimator?

e¹ =
1

¿2

1
¾2
n

+ 1
¿2

¹

W:Prior M ean

+

1
¾2
n

1
¾2
n

+ 1
¿ 2

x

W Sample M ean

We see that e¹ !
n!1

x and e¾2 !
n!1

0, So that the estimator is the classical estimator

in large sample as the prior is given little weight ( the likelihood is predominant in the
posterior). We can write,

p
n(¯ ¡ e¹) » N(0; ne¾2) !

n!1
N(0; ¾2 )
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Remark 3 — In general e¾2 !
n!1

0, then the posterior becomes approximately normal
if n ! 1. Posterior does not depend on prior if n ! 1. The likelihood always dominates
in the posterior and thus the prior has no e¤ect on the distribution ( take logs of the general
form of the posterior to see it)

Remark 4 — What if prior information is lousy? Given a prior N(¹; ¿ 2), suppose that
¿ 2 is large and therefore that our beliefs are di¤used ( we call such a prior not suprisingly a
di¤use prior). Most info in this case comes from the data as the weight on the prior mean
decreases. We can see it from the density where when ¿2 ! 1 exp(a) goes to 1 and thus the
prior is uninformative in the posterior. The proportionality factor will be 0 to accomodate
for probability one on each beta ( which have to sum to 1). We call such a prior an improper
prior. The most often used is the following,

p(¯) =
1

2M if -M · ¯0 · M
0 if ¯0 < 0 or ¯0 > 1

Then the posterior is given by

p(¯ j x) =
1

2M exp
n
¡ 1

2

P
i=1

(xi¡¯)2

¾2

o
if -M · ¯0 · M

0 if ¯0 < ¡M or ¯0 > M

If M is large then the posterior is the likelihood. We call these priors, improper priors.

In the last example we have said that the Posterior mean was the Bayesian estimator
under the quadratic loss function. We now look at loss functions, a common tool used both
in classical and bayesian estimation.

4 Bayesian Estimator and Loss Functions

We saw in the last section that the Bayesian estimator is a weighted average of the sample
mean and the prior mean. However we did not establish why such an estimator was the
best. Why not the median or the mode? It turns out that the optimal choice between
the three …rst moment estimators depends on the loss function that we use. Let’s de…ne
the best estimator as one that minimizes a loss function l(µ; m) where µ is the true value
of the parameter and m is our choice variable in order to minimize the function. In the
Bayesian context however we must condition on the data since the bayesian estimator will
be a post-data estimator. We have that

bµ = argmin
m

Efl(µ;m) j xg

Surely, the choice of the estimator will depend on the speci…cation of the loss function.
We typically encounter three types of loss functions:
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l(µ;m) = (µ ¡ m)2

l(µ;m) = jµ ¡ mj
l(µ;m) = 1 fjµ ¡ mj > "g

The …rst one is called the quadratic loss function, the second one, the absolute value loss
function and the turn one as no name but you can probably think of one for yourself. We
will call it the discrete loss function. We look at these three cases alternatively.

4.1 The Quadratic Loss Function

We must …nd an estimator for µ that minimizes the quadratic loss function. The problem
is then,

bµ = argmin
m

Z +1

¡1
(µ ¡ m)2p(µ j x)dµ

Under certain regularity conditions, FOC will be given by

Z +1

¡1

@
@m0(µ ¡ m)2p(µ j x)dµ = 0

which yields,

¡
Z +1

¡1
2(µ ¡ m)p(µ j x)dµ = 0

2m(1) = 2E fµ j xg

which implies that m = E fµ j xg, the posterior mean. Then we say that under the
quadratic loss function, the posterior mean is the Bayes Estimator.

4.2 The Absolute Value Loss Function

We must …nd an estimator for µ that minimizes the Absolute value loss function. The
problem is then,

bµ = argmin
m

Z +1

¡1
jµ ¡ mj p(µ j x)dµ

We …rst partition the integral at µ = m, since we know that this is the value of m for
which the function is not di¤erentiable.
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bµ = argmin
m

Z m

¡1
(m ¡ µ) p(µ j x)dµ +

Z +1

m
(µ ¡ m) p(µ j x)dµ

and furthermore we expand integrals since
R

(a + b) dt =
R

adt +
R

bdt,

argmin
m

m
Z m

¡1
p(µ j x)dµ ¡

Z m

¡1
µ p(µ j x)dµ

+
Z +1

m
µ p(µ j x)dµ ¡ m

Z +1

m
p(µ j x)dµ = bµ

Using Leibniz’s rule for the …rst order condition,

1 ¢ p(µ < m j x) + mp(m j x) ¡ mp(m j x)
¡mp(m j x) ¡1 ¢ p(µ > m j x) + mp(m j x) = 0

which implies,

p(µ < m j x) = p(µ > m j x) =
1
2

which is only possible if m is the median of µ j x. Thus we have that under the absolute
value loss function, the Bayes estimator is the median of the posterior distribution.

4.3 The Discrete Loss Function

We must …nd an estimator for µ that minimizes the Discrete loss function. The problem is
then,

bµ = argmin
m

Z +1

¡1
1 fjµ ¡ mj > "g p(µ j x)dµ

We only need take the integral when the indicator function is 1. Thus we have

bµ = arg min
m

Z m¡"

¡1
p(µ j x)dµ +

Z +1

m+"
p(µ j x)dµ

The Objective function is then nothing else than [1 ¡p (m ¡ " < µ < m + ")] and thus
the problem can be put as to maximize [1 ¡ p (m ¡ " < µ < m +")] by choosing m such
that this probability is the highest. Examining a distribution like the normal density yields
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us to conclude that this area is maximized if we choose the mode of the distribution, the
highest point of the density. Obsiously " ! 0 in order for this to be true. Otherwise we
can always …nd a distribution where this is not true ( + some regularity conditions that we
don’t cover here).

We will mostly use the mean as the Bayes estimator, however the reader should note
that the estimator is the same if the posterior density is a normal symmetric density, the
most encountered density ( Asymptotic relies on convergence to normal distribution so we
should not worry to much about the choice of loss functions.).

5 The Linear Model

We now get our hands dirty with real econometrics, if we can call it that way. Suppose the
linear model,

yi = x0
i¯ + "i

with "i » N(0; ¾2 ) and xi …xed. We formulate an uninformative prior. Denote µ =
(¯;¾2) and assume,

p(¯) / 1

An improper prior and

p(¾) / 1 f¾ > 0g 1
¾

You might ask why this prior for ¾? We follow here the explanation of MJM p654-655
for this speci…cation of the prior. Regarding the choice of a prior for sigma, note that the
purpose of the value of sigma in the regression model is to parametrize or determine the
standard deviation ¾ of the y0s. We need that

p(¾ 2 A) = p(¿¾ 2 A).

Since ¿¾ 2 A i¤ ¾ 2 ¿ ¡1A then the set ¿ ¡1A denotes the element in A each divided by
the positive constant ¿ , such that

Z

A
p(¾)d¾ =

Z

¿ ¡1A
p(¾)d¾ =

Z

A
p(¿ ¡1¾)¿¡1d¾

This implies that the prior PDF must satisfy p(¾) = p(¿¡1¾)¿ ¡1 8¾ . This is satis…ed
by the PDF family p(z) = z¡1, then p(¾) = 1

¾ 1:
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5.1 The Joint Prior Distribution (Uninformative)

In the previous examples we only had one unknown parameter on which we had a prior.
This time however we have two. A natural thing to do is to …nd the Joint Prior Distribution.
Since both are independent then p(¯;¾) = p(¯)p(¾). Thus,

p(¯;¾) / I(¾ > 0)
1
¾

In fact we see that because p(¯) is totally uninformative we get that p(¯;¾) = p(¾) /
1 f¾ > 0g 1

¾ . If is also an improper prior since p(¾) =
R 1
0

1
¾ d¾ = ln¾ j10 = 1. Notice also

that we could use the uninformative prior p(¯;¾) = I(¾ > 0). As MJM note, the choice
between these two priors is negligible even in small sample (n ' 20) as vanishes as the
sample size increases. Thus the choice that we make here is purely of convenience and of
convention.

5.1.1 The Posterior Distribution

We now are familiar with posteriors and thus we have that since p(x) = 1, p(y) = p(y j x).
Thus,

p(¯;¾ j y) = p(¯;¾) £ p(y j ¯;¾):

Now for ¾ > 0,

p(¯; ¾ j y) / 1
¾

µ
1p
2¼¾

¶n

exp

(
¡1

2

nX

i=1

(yi ¡ x0
i¯)2

¾2

)
:

We can rewrite

(y ¡ X¯)0(y ¡ X¯) =
y0y ¡y 0(X¯) ¡ (X¯)0y ¡ (X¯)0X¯:

Now repleace y = Xb+ e and we obtain ( don’t forget that X 0e = 0),

(y ¡ X¯)0(y ¡ X¯) =
(Xb +e)0(Xb + e) ¡ (Xb + e)0X¯
¡(X¯)0Xb ¡ (X¯)0X¯

= (Xb ¡X¯)0(Xb ¡ X¯) + e0e
= (b ¡ ¯)0X 0X(b¡ ¯) + e0e
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Now replacing into the posterior, we obtain ( using the proportionality argument)

p(¯;¾ j y) / 1
¾n+1 exp

½
¡ 1

2¾2 ((b¡ ¯)0X 0X(b ¡ ¯) + e0e)
¾

and using the classical estimator of ¾2, s2 yields

p(¯;¾ j y) / 1
¾n+1 exp

½
¡ 1

2¾2

¡
(b¡ ¯)0X 0X(b ¡ ¯) + (n ¡ k)s2¢¾

Now usually, Bayesians try to …nd the posterior of both parameters to …nd their estimator
and their distribution. Using the Bayesian rule again we have that

p(¯ j y; ¾) =
p(¯; ¾ j y)R
p(¯;¾ j y)d¯

and thus the denominator does not depend on beta anymore ( it is the marginal of ¾).
Thus,

p(¯ j y; ¾) / p(¯; ¾ j y)

and since we have the exponential of a term that does not involve ¯ in the posterior, we
use again the proportionality trick and …nally,

p(¯ j y;¾) / exp
½

¡ 1
2¾2 (b ¡ ¯)0X 0X(b¡ ¯)

¾
:

Then we conclude that ¯ j y; ¾ » Nk(b;¾2 (X 0X)¡1 ): It is a conditional density. We …nd
similarities with the classical estimator but this is not the same,

Classical b » Nk(¯;¾2(X0X)¡1)
Bayesian ¯ j y;¾ » Nk(b;¾2 (X 0X)¡1 )

5.1.2 Marginal Posterior

Now what is the marginal posterior for ¯ ( with estimated ¾)? We have

p(¯ j y) =
Z 1

0
p(¯; ¾ j y)d¾

=
Z 1

0

1
¾n+1 exp

½
¡ 1

2¾2 a
¾

d¾

a =
¡
(b ¡¯)0X 0X(b ¡ ¯) +(n ¡ k)s2¢
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now let z = 1
2¾2 a, then ¾2 = a

2z ! ¾ =
pa

2

q
1
z ! d¾ =

p a
2 £ ¡1

2 z¡3=2dz. Then

=
Z 1

0

1
³pa

2

q
1
z

´n+1 exp(¡z)
r

a
2

£ ¡1
2

r
a
2
z¡3=2dz

=
³a

2

´¡n=2 1
2

Z 1

0
z

n¡2
2 e¡zdz

Now the integral is over z and thus once the integral calculated, it does not depend
anymore on the parameters. Thus this term goes again..... in the proportionality constant
as for 1

2
1¡n=2 and therefore,

p(¯ j y) / a¡n=2

and if we replace this expression we have,

p(¯ j y) /
¡
(b ¡¯)0X 0X(b ¡ ¯) + (n ¡ k)s2¢¡n=2

which we can rewrite as

p(¯ j y) /
µ
1 +

(b ¡ ¯)0X 0X(b ¡ ¯)
(n ¡ k)s2

¶¡n=2

:

Now this is not evident but if you look into a statistic’s book you will …nd that this
expression is the expression of a Multivariate Student distribution ( We have a multivariate
normal on the numerator and a chi-square at the denominator.) Thus if x 2 R, ¯ 2 R then

p(¯ j y) /
µ

1 +
(b¡ ¯)2x0x
(n ¡k)s2

¶¡n=2

with z = ¯¡b
s2(x0x)¡1=2 , z has density p(z j y;¾) /

³
1 + z2

n¡1

´¡n=2
and z » tn¡1. Again we

can interpret the result by comparing the classical estimator and the bayesian estimator,

Classical b¡¯
s(x0 x)¡1=2 » tn¡1

Bayesian ¯¡b
s(x0 x)¡1=2 j y » tn¡1

As MJM note: The marginal posterior can be used to make posterior inferences about
subsets or functions of the parameter vector ¯ without having to consider ¾ which is a nui-
sance parameter in this context. On the impact of the choice of the prior on this distribution,
MJM note that the only di¤erence is that the exponent in the expression of the posterior
marginal distribution is ¡(n¡1)=2 instead of¡n=2. Thus the di¤erence is negligeable when
n is large.
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5.2 An Informative Joint Prior Distribution

Assume the following Joint Prior Distribution,

p(¯;¾) / ¾¡m exp
½

¡ 1
2¾2

¡
´ + (¯ ¡ ¹)0ª¡1(¯ ¡ ¹)

¢¾

with ´ > 0; ª non singular symetric positive de…nite matrix. We call such a prior if you
recall, a conjugate prior. According to MJM we have the following de…nition: A familiy of
prior distributions, that when combined with the likelihood function via Bayes’ theorem,
result in a posterior distribution that is of the same parametric family of distributions as
the prior distribution.

In practice, as MJM note: The analyst must specify the parameters of the prior distri-
bution. This involves setting m; ´;¹; ¾2; ª. In this case, we use empirical Bayes methods
which estimates those parameters from the data.

5.2.1 The Joint Posterior

Combining through Bayes’ theorem the likelihood and the prior,

p(¯;¾ j y) / ¾¡(n+m) exp
½
¡ 1

2¾2

¡
´ + (¯ ¡ ¹)0ª¡1(¯ ¡ ¹)

¢¾
£

exp
½

¡ 1
2¾2

¡
(b ¡ ¯)0X 0X(b¡ ¯) + (n ¡ k)s2¢

¾

and after some manipulation can be rewritten as ( see MJM because I could’nt do it
myself !):

p(¯; ¾ j y) / ¾¡(n+m) exp
½

¡ 1
2¾2

¡
(¯ ¡ ¯¤)0

¡
ª¡1 + X0X

¢
(¯ ¡¯¤) + »

¢¾

with
¯¤ =

¡
ª¡1 + X 0X

¢¡1 (ª¡1¹ + X0Xb)

» = ´ + (n ¡ k)s2 + ¹0ª¡1¹ + b0X0Xb ¡ ¯¤0 ¡
ª¡1 + X0X

¢
¯¤

We don’t go further here because it gets very messy.

6 Asymptotics of Bayesian Estimators

We look at the asymptotic properties of the posterior which is treated in detail at page 673
in MJM. We remember in a classical context that

p
n(µ ¡ bµML) !d N(0; I(µ0)¡1). In a

Bayesian Context, we reverse everything,
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p
n( µ

ran dom
¡ bµML) !d N(0; p lim I(bµML)¡1)

In order to make the proof we need some notation. First denote z =
p

n(µ ¡ bµML) and
then µ = zp

n +bµML and thus pz(z j x) = 1p
n p( zp

n +bµML). Then p(µ j x) = 1p
np( zp

n +bµML j
x) and

p(µ j x) / p(
zp
n

+ bµML)p(x j zp
n

+bµML)

and if x1; x2; :::; xn is i.i.d.

p(
zp
n

+bµML)p(x j zp
n

+ bµML) =

p(
zp
n

+ bµML)
nY

i=1

p(xi j zp
n

+ bµML)

Now notice that if we take logs, we can probably use the mean value theorem ( the
instrument in asymptotics!) and apply the Central Limit theorem on the …rst term. Thus
we concentrate on this expression. We have that

ln
nY

i=1

p(xi j zp
n

+bµML) =
nX

i=1

lnp(xi j zp
n

+ bµML).

Now apply MVT ( in fact Taylor approximation of degree 2 so we work with ¼) around
bµML,

nX

i=1

ln p(xi j zp
n

+ bµML) ¼
nX

i=1

ln p(xi j bµML)

| {z }
does n ot de pen d on µ

+
1p
n

z0
nX

i=1

lnpµ=bµML
(xi j zp

n
+ bµML)

| {z }
Score o f M L evaluated at bµML thu s =0

+
1
2
z0

Ã
1
n

nX

i=1

ln pµµ=bµM L
(xi j zp

n
+bµML)

!
z

The last term converges to the population expectation of the gradient of the ML ( apply-
ing consistency and continuity) thus z’

³
1
n

Pn
i=1 ln pµµ=bµML

(xi j zp
n + bµML)

´
z ! I (bµML)¡1 .

Thus coming back to the posterior,

p(z j x) /
¼

p(
zp
n

+ bµML) exp

(
1
2
z0

Ã
1
n

nX

i=1

lnpµµ=bµML
(xi j zp

n
+ bµML)

!
z

)
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now the …rst part converges to bµML sinceplim (z) = bµML is a consistent estimator. Thus
this expression does not depend anymore on µ and thus again goes into the proportionality
condition.. We have …nally,

p(z j x) /
¼

exp

(
1
2
z0

Ã
1
n

nX

i=1

ln pµµ=bµML
(xi j zp

n
+bµML )

!
z

)

under certain regularity conditions,

z j x » N(0; p lim I(bµML)¡1 )

Again the interpretation is completely di¤erent. Regularity conditions are similar to
those for ML and are listed in MJM p674.

7 Relation between the MSE and the Bayes Estimator

In a classical context, bµ is some estimator of µ. We have that

MSEbµ(µ) = Eµ

n
(bµ ¡ µ)(bµ ¡ µ)0

o
for µ 2 £.

for all µ the estimator has to be small. We choose the one that minimizes this di¤erence.

MSEbµ (µ) =
Z

p(x j µ)(bµ(x) ¡ µ)(bµ(x) ¡ µ)0dx

Expected loss over all possible outcomes of the data and the estimator. For the Bayes
estimator with loss function l(µ; m) = (µ ¡ m)(µ ¡ m)0. Let’s consider the univariate case
setting µ 2 R. Then,

MSEbµ (µ) =
Z

p(x j µ)(bµ(x) ¡ µ)2dx

Then l(µ; m) = (µ ¡ m)2 and we have the Bayes estimator,

bµ = argmin
m

Z

£
p(µ j x)(bµ ¡ µ)2dµ:

Here the bayes estimator can always be computed. In the classical case, uniqueness of
the estimator is not garantied. For some subset of the parameter space, one estimator may
be superior while it is not the case for another subset where another estimator minimizes the
MSE. Then instead of minimizing the MSE of each value of µ we can also …nd an estimator
that minimizes the Expected MSE weighting each µ using the prior distribution.
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We then …nd bµ that minimizes
R
£ MSEbµ(µ)p(µ)dµ,

Z

£
MSEbµ (µ)p(µ)dµ =

Z

£

Z

X
px(x j µ)p(µ)(bµ ¡ µ)2dxdµ

We see that the posterior is used up to a proportionality constant. Then minimizing
Expected MSE in the classical sense gives the Bayes Estimator,

=
Z

X
c(x)

Z

£
p(µ j x)(bµ ¡µ)2dµdx

where c(x) =
¡R

£ p(µ)p(x j µ)dµ
¢¡1 (Recall Bayes’s theorem, divide by the marginal and

goes into the proportionality constant). How to minimize? We see immidiately that the
Bayes Estimator solve this problem. Thus the Bayes estimator is a powerful estimator when
the classical estimators do not uniformaly minimize the MSE over the whole parameter
space. Then minimizing the Expected MSE amounts to using the Bayes’ estimator under a
quadratic loss ( the posterior mean).

8 Bayesian Inference

With Bayesian estimation we have the explicit form of the posterior and so we can proceed
without test statistics to make inference. Then we don’t talk of con…dence interval but of
credible region in the bayesian language. Indeed, we have that the µ is random and follows
a distribution given the data. Thus using the CDF of this distribution we can specify
credibility region.

8.1 Credible Region

We may want to de…ne three types of credible region. First is an upperbound on some
parameter while the second is de…ning a lower bound. Obviously we may also want to have
both. We look at these three types sequentially.

Upper Bound — Let µ 2 £ ½ R for simplicity. Then a credibility region (¡1; u) with
u an upper bound is chosen by setting a credibility level 1¡ ®.

p fµ 2 (¡1; u) j xg ¸ 1 ¡ ®

Since µ follows a distribution ( the posterior!), then we choose u such that we get the
smallest interval with a probability 1 ¡ ®. Let’s consider an example. Suppose µ j x »
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N(¹p; ¾2
p), then µ¡¹p

¾p
j x » N(0;1) and thus using the CDF of the standard normal choose

u such that p
n

µ¡¹p
¾p

< u j x
o

= 1 ¡ ®. Then the credible region is (¡1; ¹p + ¾pu).

Lower Bound — Let µ 2 £ ½ R for simplicity. Then a credibility region (l;+1) with
l an lowerbound is chosen by setting a credibility level 1 ¡®.

p fµ 2 (l;+1) j xg ¸ 1¡ ®

Since µ follows a distribution ( the posterior!), then we choose u such that we get the
smallest interval with a probability 1 ¡ ®. Let’s consider an example. Suppose µ j x »
N(¹p; ¾2

p), then µ¡¹p
¾p

j x » N(0;1) and thus using the CDF of the standard normal choose

u such that p
n

µ¡¹p
¾p

> l j x
o

= 1 ¡ ®. Then the credible region is (¹p ¡¾pl;+1).

Bounded Credible region — We want a credible region of the form (l; b). Bayesian
don’t do it the classical way. They choose the interval such that

1. p fµ 2 (l; b) j xg ¸ 1 ¡ ®

2. b ¡ l is as small as possible.

For a symmetric distribution the second criteria is of no use since no amelioration can be
made by displacing the interval to the right or to the left on the normal density. However,
for an asymetric distribution, this second criteria tells us that the usual symetric interval
may not be the one that is the smallest. Thus Bayesian credible region may be asymetric
as we will see.

The su¢cient condition for these two criteria to be respected is that the height of the
probability distribution at the boundaries must be the same. Thus we choose the region
sich that f(b) = f(l) = c and thus we de…ne the region as,

CR = fµ 2 £ j p(µ j x) ¸ cg

for the values of c giving p fp(µ j x) ¸ cg = 1¡ ®.

8.2 Hypothesis Testing

We have H0 : µ ¸ 0, Ha : µ < 0 with µ 2 £ ½ R for simpli…cty. Thus H0 is true with
probability

p fµ 2 H0 j xg = p fµ ¸ 0 j xg

Then reject H0 if p fµ ¸ 0 j xg < ®. Bayesian however like minimizing loss functions.
De…ne
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LI : = loss from type 1 error
LII : = loss from type 2 error

What is the test procedure then? We want to minimize expected loss. We compute,

Reject H0 LI £ p fµ ¸ 0 j xg
Don’t reject H0 LII £ p fµ < 0 j xg

Then we reject H0 , LI £ p fµ ¸ 0 j xg < LII £p fµ < 0 j xg

reject H0 , p fµ ¸ 0 j xg
p fµ < 0 j xg <

LII

LI

We call the ratio of type 1 to type 11 errors as the Posterior odds ratio. This is typicall
of Decision theory. In the symetric case, LII = LI then reject if p fµ ¸ 0 j xg < 1

2 . We can
rewrite

p fµ ¸ 0 j xg <
LII

LI
p fµ < 0 j xg

,
p fµ ¸ 0 j xg <

LII

LI
(1¡ p fµ ¸ 0 j xg)

p fµ ¸ 0 j xg <
LI I
LI

1 + LII
LI

we can think of
LII
LI

1+LII
LI

as the ® which implies for ® = 0:05 a ratio LII
LI

= 1=19. Thus we

see that this type of testing is not very di¤erent but still implies another philosophy about
the testing of hypothesis.

9 Conclusion

These notes are very sketchy but still present the main ideas of Bayesian econometrics.
The main disadvantage is that analytically it become quite messy and requires a torough
knowledge of statistical theory. Before it becomes widely used by economist and practition-
ners, there is a long way to go. The classical paradigm is still dominent. We have seen
that computing posterior is quite cumbersome. However, with the recent development of
computers, many algorythms have been proposed to at least …nd the posterior distribution
numerically. It remains however in the domain of the unknown for many practitioners with
limited knowledge of statistical theory.
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