ARMA modeling in practice

Model Specification (Identification)

Parameter Estimation

Diagnostics
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' USE OF THE MODEL |




Model Specification (Identification)

1) Plot the series
2) Perform transformations to achieve stationarity (if necessary)
3) Compute sample ACF and PACF

4) Make a guess on p and g and go to next stage (Estimation)
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Sample ACF

Given an observed time series (C,, C,, ..., C,, Ciiqs -, Cq) with sample
mean [T | the sample autocorrelation of order j is defined as the ratio between
the sample autocovariance and the sample variance:




Partial Autocorrelation Function (PACF)

With the sample ACF alone it is difficult to discriminate among AR(p) processes.

For example AR(2) vs. AR(3) or AR(3) vs. AR(4). =3 PACF

In order to introduce the partial autocorrelation function we start with a very simple
AR(1) example: X, =f X, + &

In the AR(1) model, X;_; has all the information relevant to explain X;. Once we
have X, ; we do not care about X, , ,X 3, X4 .-

If we run a linear regression of X, on X, , the OLS coefficient it will converge f

If we run a linear regression of X, on X,_, the OLS coefficient it will converge f 2

However if we run a linear regression of X, on X_; and X,_, the OLS coefficient

of X,_, will converge to 0 as X,_; “does all the job” in predicting X,

The correlation coefficient of X, , and X, (netof X, ,) is zero.
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The partial correlation coefficient of order p (f IS defined as the

PP )
coefficient of X, in the linear regression of X; on X, 1,X;,, ... X

t-p:

In AR(p) processes only the first p partial autocorrelations are different from 0.

Since a MA(g) can be written as AR(¥ ), the partial correlations of MA models
converge to O in the limit.

oS

n ' :..d‘ Safet




Simulated AR(1): f =-0.8
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Simulated AR(1):

f =-0.8

Sample ACF T=1000
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Simulated AR(1):

f

-0.8

Sample PACF
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Simulated MA(1): (= 0.7
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Simulated MA(1):

q=0.7

Sample ACF T=1000
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Simulated MA(1): g =0.7

Sample PACF
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Simulated ARMA(1): T =0.8 @ =0.9
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Simulated ARMA(1): f =0.8 (=0.9
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Sample ACF T=1000
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Simulated ARMA(1): f =0.8 (=0.9 Sample PACF T=1000
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Simulated seasonal AR(1),. f4 = 0.8 Sample ACF T=1000
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Simulated seasonal AR(1),. f,=0.8
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