

Model Specification (Identification)

1) Plot the series

2) Perform transformations to achieve stationarity (if necessary)

3) Compute sample ACF and PACF

4) Make a guess on p and q and go to next stage (Estimation)

Sample ACF

Given an observed time series $(X_1, X_2, ..., X_t, X_{t+1}, ..., X_T)$ with sample mean $\hat{\mathbf{M}}$, the sample autocorrelation of order \mathbf{j} is defined as the ratio between the sample autocovariance and the sample variance:

$$\hat{\boldsymbol{r}}(j) = \frac{\sum_{t=j+1}^{T} (\boldsymbol{X}_{t} - \hat{\boldsymbol{m}}) (\boldsymbol{X}_{t-j} - \hat{\boldsymbol{m}})}{\sum_{t=1}^{T} (\boldsymbol{X}_{t} - \hat{\boldsymbol{m}})^{2}}$$

Partial Autocorrelation Function (PACF)

With the sample ACF alone it is difficult to discriminate among AR(p) processes. For example AR(2) vs. AR(3) or AR(3) vs. AR(4). \rightarrow **PACF**

In order to introduce the partial autocorrelation function we start with a very simple AR(1) example: $X_t = \mathbf{f} X_{t-1} + a_t$

In the AR(1) model, X_{t-1} has all the information relevant to explain X_t . Once we have X_{t-1} we do not care about X_{t-2} , X_{t-3} , X_{t-4} , ...

If we run a linear regression of X_t on X_{t-1} the OLS coefficient it will converge fIf we run a linear regression of X_t on X_{t-2} the OLS coefficient it will converge f^2 However if we run a linear regression of X_t on X_{t-1} and X_{t-2} the OLS coefficient of X_{t-2} will converge to 0 as X_{t-1} "does all the job" in predicting X_t

The correlation coefficient of X_{t-2} and X_t (net of X_{t-1}) is zero.

The partial correlation coefficient of order p (\mathbf{f}_{pp}) is defined as the coefficient of X_{t-p} in the linear regression of X_t on $X_{t-1}, X_{t-2}, \ldots, X_{t-p}$.

$$X_{t} = \mathbf{f}_{11} X_{t-1} + \mathbf{e}_{t}$$

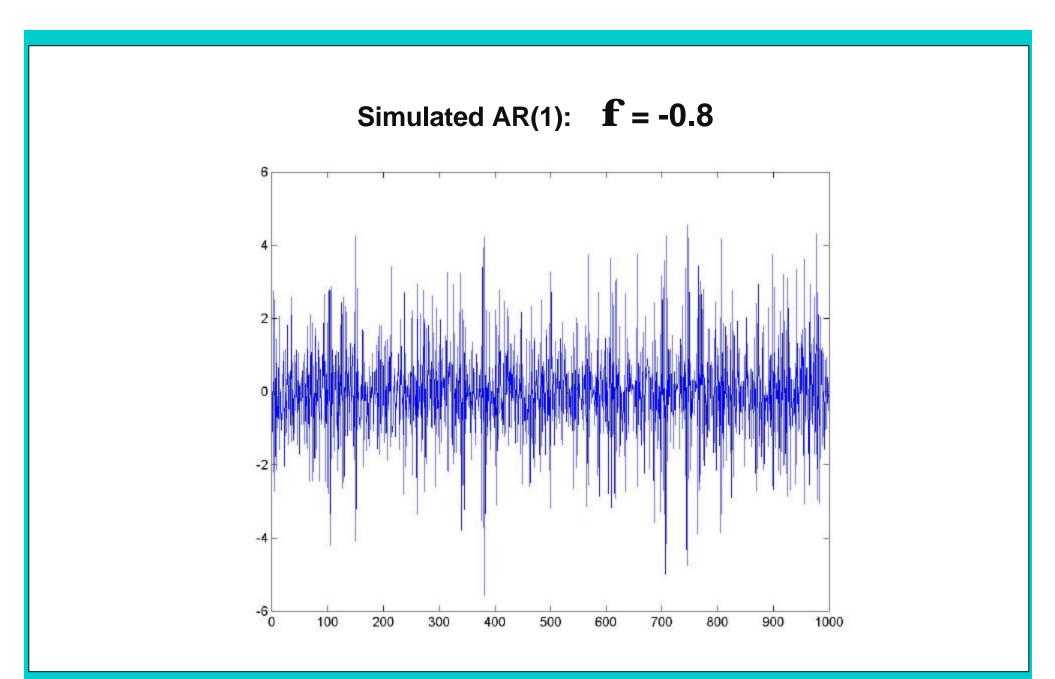
$$X_{t} = \mathbf{f}_{12} X_{t-1} + \mathbf{f}_{22} X_{t-2} + \mathbf{e}_{t}$$

$$X_{t} = \mathbf{f}_{13} X_{t-1} + \mathbf{f}_{23} X_{t-2} + \mathbf{f}_{33} X_{t-3} + \mathbf{e}_{t}$$

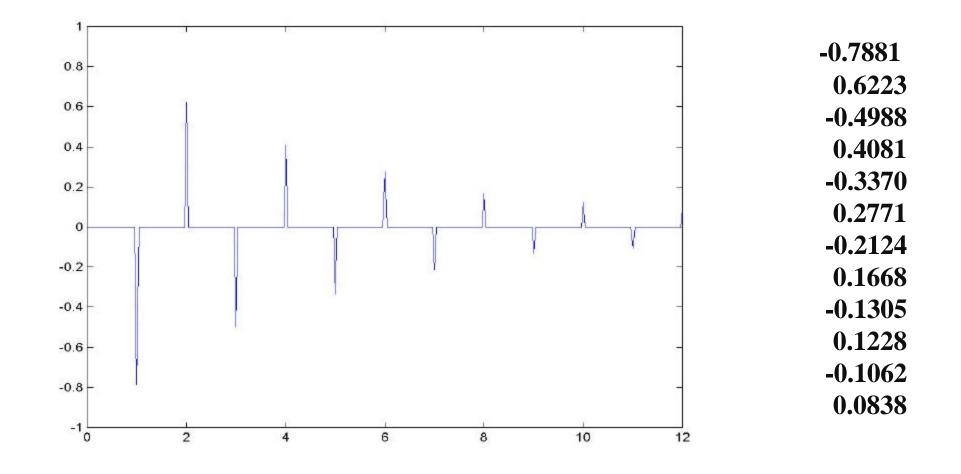
$$\overset{\bullet}{\cdot}$$

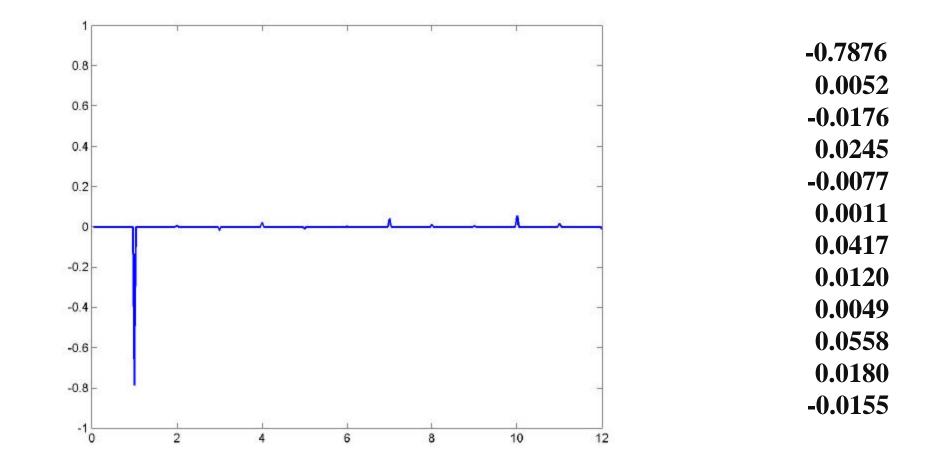
$$X_{t} = \mathbf{f}_{1p} X_{t-1} + \mathbf{f}_{2p} X_{t-2} + \dots + \mathbf{f}_{pp} X_{t-p} + \mathbf{e}_{t}$$

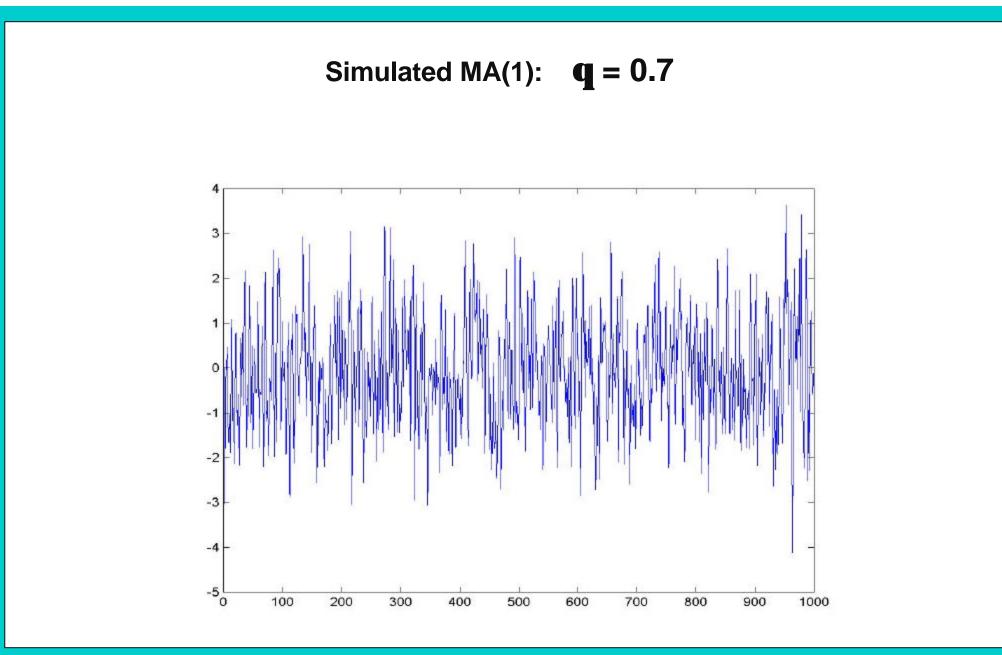
In AR(p) processes only the first p partial autocorrelations are different from 0. Since a MA(q) can be written as AR(∞), the partial correlations of MA models converge to 0 in the limit.

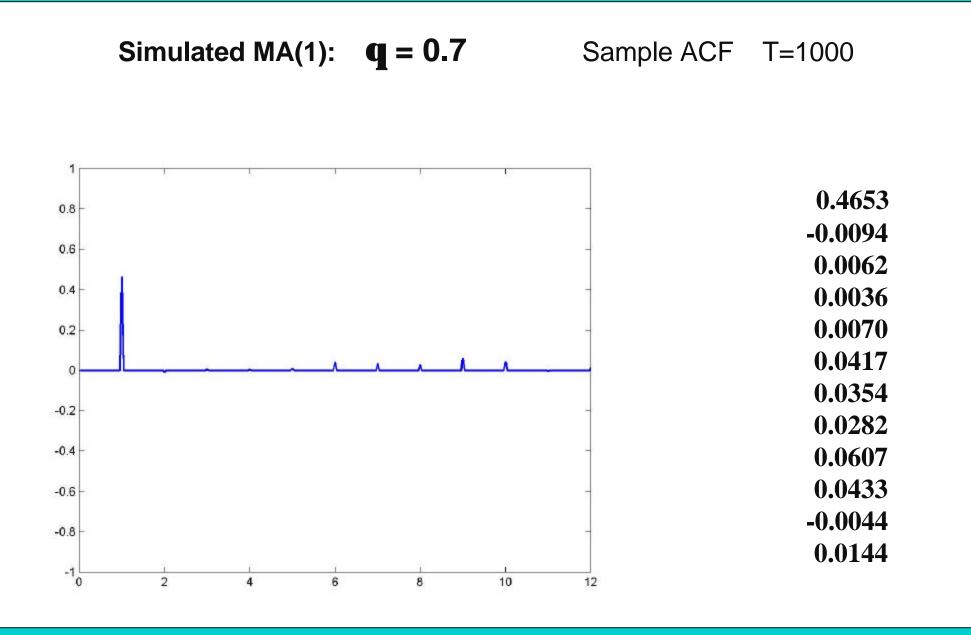


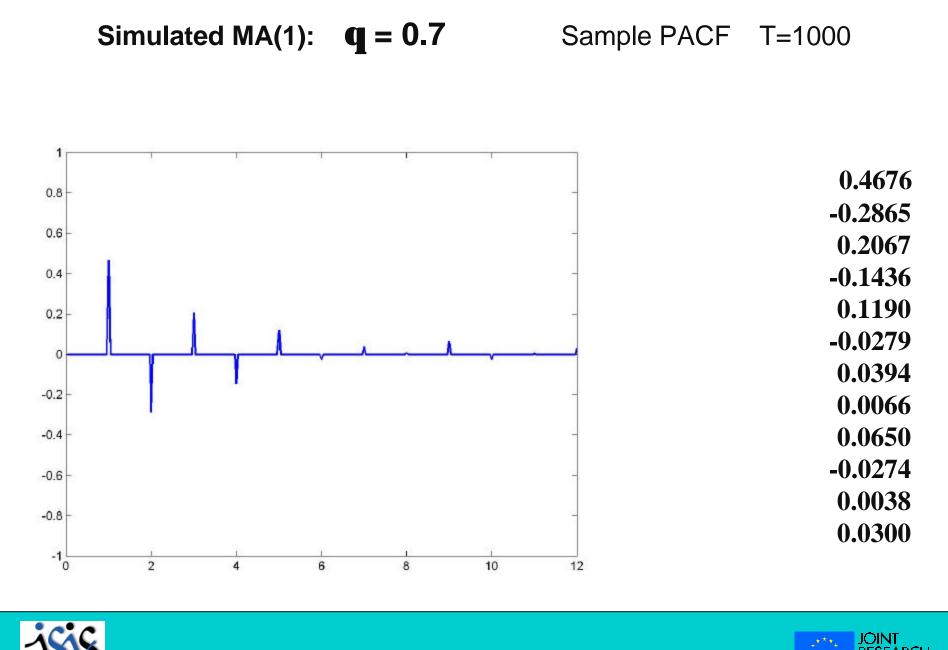
Simulated AR(1): $\mathbf{f} = -0.8$ Sample ACF T=1000



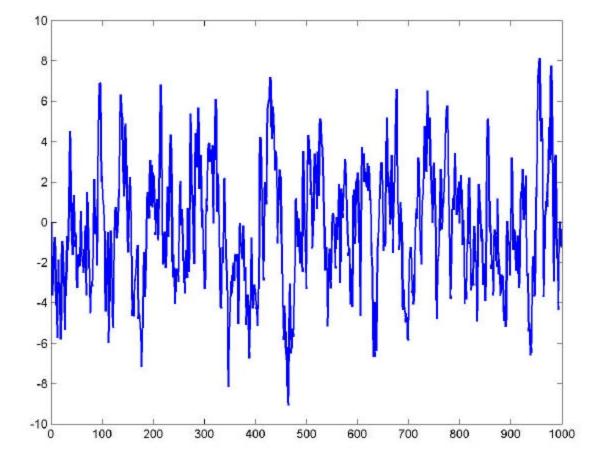




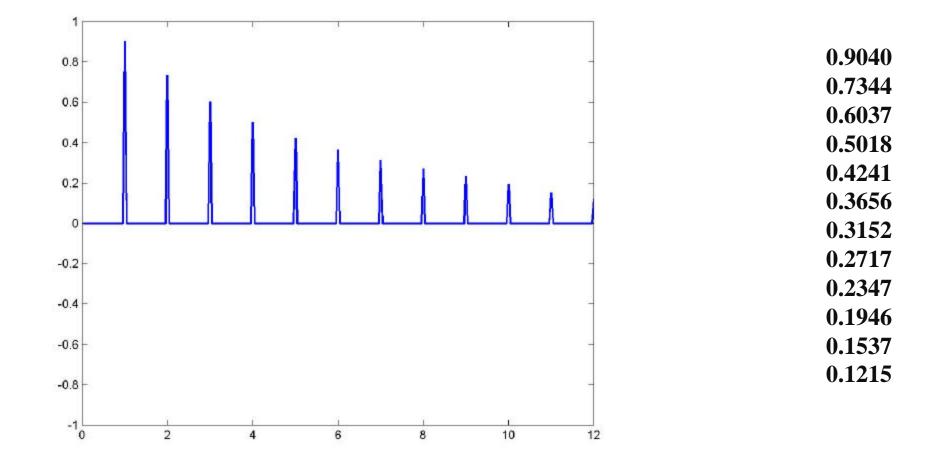




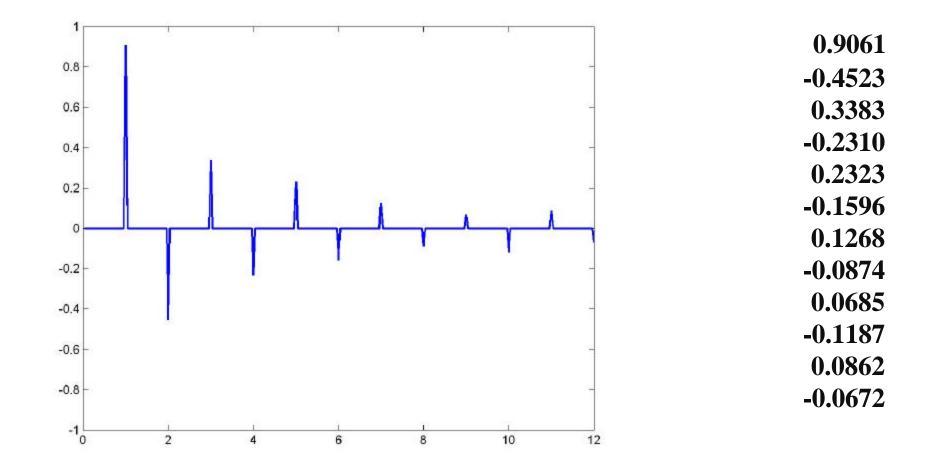
Simulated ARMA(1): f = 0.8 **q** = 0.9



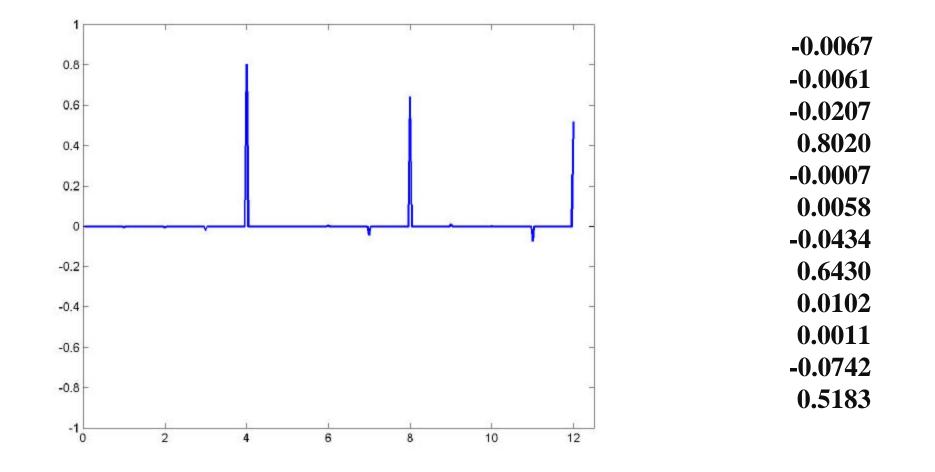
Simulated ARMA(1): $\mathbf{f} = 0.8$ $\mathbf{q} = 0.9$ Sample ACF T=1000



Simulated ARMA(1): $\mathbf{f} = 0.8$ $\mathbf{q} = 0.9$ Sample PACF T=1000



Simulated seasonal AR(1)_{4:} $f_4 = 0.8$ Sample ACF T=1000



Simulated seasonal AR(1)_{4:} $f_4 = 0.8$ Sample PACF T=1000

