## ARMA modeling in practice

## Model Specification (Identification)

## Parameter Estimation

## Diagnostics

 1
## USE OF THE MODEL

Institute for Systems,
Informatics and Safety

## Model Specification (Identification)

1) Plot the series
2) Perform transformations to achieve stationarity (if necessary)
3) Compute sample ACF and PACF
4) Make a guess on $p$ and $q$ and go to next stage (Estimation)

## Sample ACF

Given an observed time series $\left(X_{1}, X_{2}, \ldots, X_{t}, X_{t+1}, \ldots, X_{T}\right)$ with sample mean $\hat{\mu}$, the sample autocorrelation of order $\mathbf{j}$ is defined as the ratio between the sample autocovariance and the sample variance:

$$
\hat{\rho}(j)=\frac{\sum_{t=j+1}^{T}\left(X_{t}-\hat{\mu}\right)\left(X_{t-j}-\hat{\mu}\right)}{\sum_{t=1}^{T}\left(X_{t}-\hat{\mu}\right)^{2}}
$$

## Partial Autocorrelation Function (PACF)

With the sample ACF alone it is difficult to discriminate among $\operatorname{AR}(p)$ processes.
For example $A R(2)$ vs. $A R(3)$ or $A R(3)$ vs. $A R(4)$.


PACF
In order to introduce the partial autocorrelation function we start with a very simple
AR(1) example: $X_{t}=\phi X_{t-1}+a_{t}$
In the $A R(1)$ model, $X_{t-1}$ has all the information relevant to explain $X_{t}$. Once we have $X_{t-1}$ we do not care about $X_{t-2}, X_{t-3}, X_{t-4}, \ldots$

If we run a linear regression of $X_{t}$ on $X_{t-1}$ the OLS coefficient it will converge $\phi$ If we run a linear regression of $X_{t}$ on $X_{t-2}$ the OLS coefficient it will converge $\phi^{2}$ However if we run a linear regression of $X_{t}$ on $X_{t-1}$ and $X_{t-2}$ the OLS coefficient of $X_{t-2}$ will converge to 0 as $X_{t-1}$ "does all the job" in predicting $X_{t}$

The correlation coefficient of $\mathrm{X}_{\mathrm{t}-2}$ and $\mathrm{X}_{\mathrm{t}}$ ( net of $\mathrm{X}_{\mathrm{t}-1}$ ) is zero.

The partial correlation coefficient of order $p\left(\phi_{p p}\right)$ is defined as the coefficient of $X_{t-p}$ in the linear regression of $X_{t}$ on $X_{t-1}, X_{t-2}, \ldots X_{t-p}$.

$$
\begin{aligned}
X_{t} & =\phi_{11} X_{t-1}+\varepsilon_{t} \\
X_{t} & =\phi_{12} X_{t-1}+\phi_{22} X_{t-2}+\varepsilon_{t} \\
X_{t} & =\phi_{13} X_{t-1}+\phi_{23} X_{t-2}+\phi_{33} X_{t-3}+\varepsilon_{t} \\
& \vdots \\
X_{t} & =\phi_{1 p} X_{t-1}+\phi_{2 p} X_{t-2}+\ldots+\phi_{p p} X_{t-p}+\varepsilon_{t}
\end{aligned}
$$

In $\mathrm{AR}(\mathrm{p})$ processes only the first $p$ partial autocorrelations are different from 0 . Since a $M A(q)$ can be written as $A R(\infty)$, the partial correlations of MA models converge to 0 in the limit.

Institute for Systems,
Informatics and Safety

Simulated AR(1): $\quad \phi=-0.8$


Institute for Systems,
Informatics and Safety

Simulated AR(1): $\quad \phi=\mathbf{- 0 . 8} \quad$ Sample ACF $\quad T=1000$


IOINT
RESEARCH
CENTRE

Simulated AR(1): $\quad \phi=\mathbf{- 0 . 8} \quad$ Sample PACF $\quad \mathrm{T}=1000$


## Simulated MA(1): $\quad \theta=0.7$



Simulated MA(1): $\quad \theta=0.7$
Sample ACF T=1000

0.4653
$\mathbf{- 0 . 0 0 9 4}$
$\mathbf{0 . 0 0 6 2}$
0.0036
0.0070
0.0417
0.0354
0.0282
0.0607
0.0433
$-\mathbf{- 0 . 0 0 4 4}$
0.0144

## Simulated MA(1): $\quad \theta=0.7$ <br> Sample PACF T=1000


0.4676
-0.2865
0.2067
-0.1436
0.1190
-0.0279
0.0394
0.0066
0.0650
-0.0274
0.0038
0.0300

Simulated ARMA(1): $\phi=0.8 \quad \theta=0.9$


Simulated ARMA(1): $\quad \phi=0.8 \quad \theta=0.9 \quad$ Sample ACF $\quad T=1000$


Simulated ARMA(1): $\quad \phi=0.8 \quad \theta=\mathbf{0 . 9} \quad$ Sample PACF $T=1000$

0.9061
$-\mathbf{0 . 4 5 2 3}$
0.3383
$-\mathbf{0 . 2 3 1 0}$
0.2323
$-\mathbf{0 . 1 5 9 6}$
0.1268
$-\mathbf{- 0 . 0 8 7 4}$
0.0685
$-\mathbf{0 . 1 1 8 7}$
$\mathbf{0 . 0 8 6 2}$
$\mathbf{- 0 . 0 6 7 2}$

## Simulated seasonal $\operatorname{AR}(1)_{4}: \quad \phi_{\mathbf{4}} \mathbf{= 0 . 8}$ Sample ACF $\quad \mathrm{T}=1000$



$$
\begin{array}{r}
-\mathbf{0 . 0 0 6 7} \\
-\mathbf{0 . 0 0 6 1} \\
\mathbf{- 0 . 0 2 0 7} \\
\mathbf{0 . 8 0 2 0} \\
\mathbf{- 0 . 0 0 0 7} \\
\mathbf{0 . 0 0 5 8} \\
-\mathbf{0 . 0 4 3 4} \\
\mathbf{0 . 6 4 3 0} \\
\mathbf{0 . 0 1 0 2} \\
\mathbf{0 . 0 0 1 1} \\
\mathbf{- 0 . 0 7 4 2} \\
\mathbf{0 . 5 1 8 3}
\end{array}
$$

Simulated seasonal $\mathbf{A R}(1)_{4}: \quad \phi_{\mathbf{4}} \mathbf{= 0 . 8}$ Sample PACF $\quad \mathrm{T}=1000$

0.0117
0.0122
-0.0022
0.8080
-0.0075
0.0304
-0.0402
0.0079
0.0209
-0.0360
-0.0498
0.0109

