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Forecasting with Box-Jenkins Models 

 

1. Minimum Mean Square Error Forecast 

 

 In this section we turn to the issue of determining point forecasts and their 

confidence intervals for some selected ARMA(p,q) and ARIMA(p,d,q) models.  Suppose 

our objective is to minimize the mean square error of forecasting ty  h periods ahead.  Let 

T represent the last time period Tt ,2,1 L=  for which observations on the time series ty  

is available and hTy +
ˆ  denote the h-step-ahead forecast of hTy + .  The mean square error 

of the forecast hTy +
ˆ  in predicting hTy +  is defined to be  

 

  2)ˆ()ˆ( hThThT yyEyMSE +++ −≡   

           = 22 )]ˆ([))ˆ(ˆ( hThThThT yyEyEyE ++++ −+−    

           =  2)}ˆ({)ˆ( hThT yBiasyVar ++ +  .                             (1) 

 

That is, the mean square error of the forecast hTy +
ˆ is equal to the sum of the variance of 

the forecast and the squared bias of the forecast. 

 

         Now consider the conditional mean of ),,,,|( 1,1 LL −−++ = TTTThThT aayyyEy .  

Denote this conditional mean by hm .  Then any predictor hTy +
ˆ  can be represent by  

dmy hhT +=+
ˆ  where d is the difference between the proposed predictor hTy +

ˆ  and hm  .  

The mean square error of forecast is then 

 

                         22 )()ˆ( dmyEyyE hhThThT −−=− +++  

 

        = 22 )(2)( dmydEmyE hhThhT +−−− ++  

                                       

        = 22)( dmyE hhT +−+                                     (2) 

 

where 0)( =−+ hhT myE  has been used.  Therefore, to minimize the mean square error of 

forecast we should choose 0=d and the forecast hTy +
ˆ  = hm (the conditional mean of 

hTy + ) to minimize the mean square error of the forecast. 

 

2. Forecasting with the ARMA(0,0) Model 

 

         Consider the simpliest Box-Jenkins model 

 

                            tt ay += 0φ  ,                                                                          (3) 
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the white noise model ARMA(0,0).  Now let us determine the minimum mean square h-

step-ahead forecast )|( •+hTyE , where ),,,,,( 11 LL −−=• TTTT aayy is the conditioning set 

for the conditional expectation.  Then 

 

                            00 ]|)[()|( φφ =•+=• ++ hThT aEyE   .                                   (4) 

 

Therefore, the h-step-ahead minimum mean square error forecast of hTy +  for the 

ARMA(0,0) model is  

 

                             0
ˆ φ=+hTy ,   L,2,1=h .                                                       (5) 

 

However, the forecast hTy +
ˆ  is not feasible (operational) because it is dependent on the 

unknown intercept 0φ  .  The intercept can, of course, be consistently estimated by the 

sample mean ∑
=

==
T

t

t Tyy
1

0 /φ̂  .  Therefore, an approximate h-step-ahead minimum 

mean square error forecast is 

 

                              yy hT ==+ 0
ˆˆ̂ φ   .                                                                 (6) 

 

Of course, as the sample size for the time series goes to infinity ),( ∞→tyt , the 

approximate h-step-ahead minimum mean square error forecast (6) approaches the 

theoretical h-step-ahead minimum mean square error forecast (5). 

 

3. Forecasting with the AR(1) Model 

 

           Now let us turn to prediction in the AR(1) model.  First, consider the problem of 

one-step-ahead forecasting in the AR(1) model 

 

                                ttt ayy ++= −110 φφ  .                                                       (7) 

 

Writing equation (7) for time period 1+T  we have 

 

                                tTT ayy ++=+ 101 φφ  .                                                     (8) 

 

Then 

 

                                )]|)[()|( 1101 •++=• ++ TTT ayEyE φφ  

 

                                                  = 110
ˆ

+=+ TT yyφφ                                          (9) 

 

is the minimum mean square error one-step-ahead forecast of 1+Ty  . 
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Similarly, 

 

                                )]|)[()|( 21102 •++=• +++ TTT ayEyE φφ  

 

      = )|()|()|( 2110 •+•+• ++ TT aEyEE φφ  

 

      = )( 1010 Tyφφφφ ++  

 

      = 2

2

1100
ˆ

+=++ TT yyφφφφ                                          (10) 

 

is the minimum mean square error two-step-ahead forecast.  Likewise, the minimum 

mean error h-step-ahead forecast is derived as 
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1
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2
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−
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−
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h
y   

 

         = )(1 µφµ −+ T

h y       (11) 

 

where recall that the unconditional mean of y  is )1/( 10 φφµ −= . 

 

 From (11) we can see that the optimal h-step-ahead forecast in the AR(1) model 

requires that the mean of y , µ , be “add-factored.”  The add factor, )(1 µφ −T

h y , is 

dependent on the position of the last available observation Ty  relative to the mean, 

µ−Ty , and the first order autocorrelation coefficient discounted h periods, h

1φ .  Suppose 

that the time series ty  is positively autocorrelated ( 10 1 << φ ) and the last available 

observation Ty  is below the mean ( 0<− µTy ).  Then the one-step-ahead forecast 1
ˆ

+Ty  

will be below the mean µ and 1φ  of the distance between the last available observation 

Ty  and µ .  (See the lead production example examined in exercise 1.)  The two-step-

ahead forecast will likewise be below the mean but it will only be 2

1φ  of the distance 

between the last available observation and the overall mean of the data.  Obviously, as 

the forecast horizon, h , increases to infinity, the optimal forecast approaches the overall 

mean of the data because the add-factor, )(1 µφ −T

h y , approaches zero as ∞→h .  This is 

typical behavior for stationary Box-Jenkins models.  As ∞→h , the optimal forecast 

approaches the overall mean in the data.  (As we will see in the MA(1) model, this 

approach of the overall mean is sooner than later.) 
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 Obviously the optimal forecasts of (11) are going to forecast hTy +  with error.  The 

mean square error of the one-step-ahead forecast is calculated as  

 

   2

111 )ˆ()ˆ( +++ −= TTT yyEyMSE     

 

           = 2

10110 )]([ TTT yayE φφφφ +−++ +  

 

           =  22

1)( aTaE σ=+   .                                                 (12) 

 

By definition then, the standard error of the one-step-ahead forecast is  

 

   aaTT yMSEyse σσ === ++

2

11 )ˆ()ˆ(   .                                   (13) 

 

 The mean square error of the two-step-ahead forecast is calculated as 

 

 2

222 )ˆ()ˆ( +++ −= TTT yyEyMSE   

 

          = 22

10102110 )]([ TTT yayE φφφφφφ ++−++ ++  

 

          = E
22

1010211010 )]()([ TTTT yaay φφφφφφφφ ++−++++ ++    

 

          = 2

211 ][ ++ + TT aaE φ  

 

          = 2

2211

2

1

2

1 )( ++++ ++ TTTT EaaaEaE φφ    

 

          = )1( 2

1

2222

1 φσσσφ +=+ aaa   .     (14) 

 

Similarly, the mean square error of the optimal h-step ahead forecast is 

 

 2)ˆ()ˆ( hThThT yyEyMSE +++ −=  

 

          = 2

2

2

11

1

1 )( hTT

h

T

h
aaaE ++

−

+

− +++ Lφφ   

 

          = )1( )1(2

1

4

1

2

1

2 −++++ h

a φφφσ L   .                                               (15) 

 

By definition, the standard error of the h-step-ahead forecasts for the AR(1) model is 

 

 )1()ˆ()ˆ( )1(2

1

4

1

2

1

2 −

++ ++++== h

ahThT yMSEyse φφφσ L  

 

     = 2/1)1(2

1

4

1

2

1 )1( −++++ h

a φφφσ L .                                                   (16) 
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 Of course, the theoretical minimum mean square error h-step-ahead forecasts (11) 

are not operational because the formula depends on the unknown parameter values µ  

and 1φ  .  They can, of course, be estimated by y=µ̂  and 11
ˆ r=φ , the sample mean and 

the sample first-order autocorrelation coefficient, respectively.  Therefore, the 

approximate minimum mean square h-step-ahead forecast for the AR(1) model is 

 

  )()ˆ(ˆˆˆ̂
11 yyryyy T

h

T

h

hT −+=−+=+ µφµ      (17) 

 

with an approximate standard error of forecast of 

 

  2/1)1(2

1

4

1

2

1 )ˆˆˆ1(ˆ)ˆ(ˆ −

+ ++++= h

ahTyes φφφσ L     (18) 

 

where Ta
T

t

ta ∑
=

=
1

2ˆσ̂ is the standard error of the residuals of the AR(1) model and the 

residuals are defined as )ˆˆ(ˆˆ
110 −+−=−= ttttt yyyya φφ .  See exercise 2 and the 

calulation of the 12 step ahead forecasts of lead production and their standard errors.  

You might note that letting ∞→h  in equation (15) implies that the mean square error of 

the infinite horizon forecast is just  

 

  
2

1

2

1
)ˆ(

φ

σ

−
=∞+

a

TyMSE          (19) 

 

which is the unconditional variance of the time series ty .  That is, the uncertainty in your 

forecasts can never be greater than the unconditional variance of the series itself and 

approach this limit as the time horizon of the forecast increases. 

 

4. Forecasting with the MA(1) model 

 

 Now let us turn to the derivation of the minimum mean square forecasts for the 

MA(1) model 

 

   110 −−+= ttt aay θφ   .      (20) 

 

Considering the time period T + 1, the MA(1) model becomes 

 

   TTT aay 1101 θφ −+= ++ .                   (21) 

 

Taking the conditional expectation of (21) assuming Ta  is known we have 

 

   ]|)[()|( 1101 •−+=• ++ TTT aaEyE θφ  
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          = 110
ˆ

+=− TT yaθφ      (22)  

 

as the minimum mean square error one-step-ahead forecast for the MA(1) model. 

 

The approximate minimum mean square error one-step-ahead forecast then becomes 

 

    TT ay ˆˆˆˆ̂
101 θφ −=+      (23) 

 

where Tâ  is the residual at time T and, say, using the method of moments we can 

estimate 0φ  and 1θ  by, respectively,  y=0φ̂  and 1θ̂  so as to satisfy the moment condition 

 

    
2

1

1
1 ˆ1

ˆ

θ

θ

+

−
=r       (24) 

 

and, at the same time, the invertibility condition 1ˆ
1 <θ .  Again, 1r  is the first-order 

sample autocorrelation coefficient of the time series ty .  The two roots that will satisfy 

(24) are  

 

    
1

2

1

1
2

411
ˆ

r

r−±−
=θ      (25) 

 

as long as 2/11 ≤r .  One then just chooses the root 1θ̂  that satisfies the invertibility 

condition. 

 

 The minimum mean square error two-step-ahead forecast for the MA(1) model is 

obtained by solving 

 

   ]|)[()|( 11202 •−+=• +++ TTT aaEyE θφ  

 

          = 20
ˆ

+= Tyφ      (26) 

 

with an approximate minimum mean square error forecast of  

 

    yyT ==+ 02
ˆˆ̂ φ .     (27) 

 

It can easily be shown that the minimum mean square error h-step-ahead forecast for 

2≥h  is likewise 0
ˆ φ=+hTy .  In summary, the (approximate) minimum mean square error 

h-step ahead forecasts for the MA(1) model are 
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  =ŷ̂    




≥

=−

2,

1,ˆˆ
1

hy

hay Tθ
       (28) 

 

 As can be seen from (28), the optimal forecasts for the MA(1) model requires that 

we add-factor the mean for one period and then we adopt the mean for forecasts two or 

more periods ahead.  Then the forecast profile of the MA(1) model directly reflects the 

type of memory that the MA(1) model has – a one period memory.  That is, recall that the 

MA(1) model has a nonzero correlation at lag one, namely, )1/( 2

111 θθρ +−=  but 0=jρ  

for 2≥j .  The MA(1) model has a one-period memory and, correspondingly, the optimal 

forecasts for the MA(1) model calls for add-factoring the mean for one period but not 

thereafter.  Note that the one-period add-factor is quite intuitive.  If the last available time 

series observation, Ty , is larger than expected ( 0ˆ >Ta ) and if the data are positively 

autocorrelated at one lag ( 0ˆ
1 <θ ), then next period’s forecast will be above the mean but 

two and further step-ahead forecasts will adopt the mean as the optimal forecast.  

Similarly the minimum mean square error forecasts of the MA(2) leads to an add-

factoring of the same mean for two periods but, for three or more periods ahead, the 

sample mean is used.  In general the minimum mean square error forecasts for the MA(q) 

model add-factors the sample mean for q periods-ahead and then thereafter, the sample 

mean is used. 

 

 Looking back over sections 2, 3, and 4 where we derived the minimum mean 

square forecasts for the ARMA(0,0), AR(1), and MA(1) models, we can see a pattern of 

add factoring the sample mean according to the type of memory that the data has.  In the 

case of the white noise model, the mean is always used and is never add-factored because 

white noise data has no memory.  When data follow the AR(1) model, the mean is always 

add-factored but in a diminishing way reflecting the infinite but diminishing memory of 

the AR(1) process.  In the case of the MA(1) model, the data has a one-period memory, 

therefore, the forecasts add-factor the mean for one-period-ahead forecasting but adopts 

the mean thereafter.  Even though we don’t derive the minimum mean square error 

forecasts for the ARMA(1,1) model, they behave much like the forecasts of the AR(1) 

model.  Given, that the autocorrelation function of the ARMA(1,1) model is diminishing, 

its memory is infinitely-lived but diminishing.  Therefore, it logically follows that the 

minimum mean square error forecasts of the ARMA(1,1) model add-factors the sample 

mean but in a diminishing way as the forecast horizon increases and only in the infinite 

horizon is the sample mean used.  In short, the Box-Jenkins methodology generates 

forecasts that carefully take into account the location of the last observation vis-à-vis the 

sample mean and the type of memory that characterizes the data.  Moreover the forecasts 

of stationary data eventually (sometimes sooner than later) achieve the mean and the 

standard errors of the forecasts approach the unconditional variance of the data as the 

forecast horizon approaches infinity. 
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5. Forecasting with Integrated ARIMA(p,d,q) models 

 

 Recall that for the Dow-Jones data (see the SAS program DOW.sas and Exercise 

4) we required that the data be differenced in order to make it stationary.  Then how do 

we forecast with ARIMA(p,d,q) models that require data to be differenced?  Let us focus 

on the case where the data ty  needs to be differenced only once (d=1) before it becomes 

stationary.  That is, the transformed series 1−−=∆ ttt yyy  is assumed to have a constant 

mean, constant variance, and constant covariance for each of the lags j = 1, 2, … .  In 

general, let us assume that we have the optimal h-step-ahead forecasts of the differences 

in ty , namely hTy +∆
ˆ̂

, available to us.  Given the last available observation, Ty , we can 

construct the minimum mean square error forecasts of the original (level) data as follows: 

 

  11

ˆ̂ˆ̂
++ ∆+= TTT yyy ; 

  21212

ˆ̂ˆ̂ˆ̂ˆ̂ˆ̂
+++++ ∆+∆+=∆+= TTTTTT yyyyyy ; 

   etc.         (29) 

 

 For example, we saw that the Dow-Jones data followed an ARIMA(0,1,1) Box-

Jenkins model.  Equivalently, the differences of the data follow an MA(1) model.  Then 

in generating the forecasts of the Dow-Jones Index we first need to generate the forecasts 

of the differences hTy +∆  and then integrate them into the last available observation, as in 

(29) to obtain the forecasts of the original data.  Before doing that, let us first generate the 

optimal forecasts for the ARIMA(0,1,0), i.e. random walk, model. 

 

 The random walk model with drift (ARIMA(0,1,0)) is written as 

 

  ttt ayy ++= −10φ  .       (30) 

 

The drift parameter is 0φ .  If 00 =φ , the data is “flat” and is neither drifting up or down.  

If 00 >φ , the data is drifting upward.  If 00 <φ , the data is drifting downward.  In 

differenced form (30) is written as 

 

  tt ay +=∆ 0φ  .       (31) 

 

That is, the differenced data, ty∆ , follows a white noise model (ARMA(0,0)).  It follows 

that the approximate minimum mean square forecasts for hTy +∆  are 

 

  yy hT ∆=∆ +

ˆ̂
 for 1≥h       (32) 
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where ∑
=

−∆=∆
T

t

t Tyy
2

))1/(( is the sample mean of the differenced data, ty∆  . 

 

Therefore, the approximate minimum mean square forecasts for hTy +  are 

 

  yyyyy TTTT ∆+=∆+= ++ 11

ˆ̂ˆ̂  ; 

 

  yyyyyyyy TTTTT ∆+=∆+∆+=∆+= +++ 2
ˆ̂ˆ̂ˆ̂

212 ; 

 

and, in general,  

 

  yhyy ThT ∆+=+
ˆ̂  ,  1≥h  .     (33) 

 

Thus, in the ARIMA(0,1,0) model the optimal forecasts begin with the last available 

observation, Ty , and move in lock step in increments of y∆  which is the “average drift” 

in the data.     

 

 Now consider forecasting with the ARIMA(1,1,0) model or, equivalently, an 

ARMA(1,0) model in the differences ty∆ .  The optimal forecasts of the AR(1) model 

imply that  

 

  )(ˆˆ̂
1 yyyy T

h

hT ∆−∆+∆=∆ + φ  ,   1≥h       (34) 

 

where now 1φ̂  represents the estimated first-order autocorrelation coefficient for the 

AR(1) model of the sy'∆  .  It follows that the level forecasts are 

 

  )(ˆˆ̂ˆ̂
111 yyyyyyy TTTTT ∆−∆+∆+=∆+= ++ φ  ; 

 

  )ˆˆ)((2
ˆ̂ˆ̂ˆ̂ 2

11212 φφ +∆−∆+∆+=∆+= +++ yyyyyyy TTTTT ; 

 

and, in general,  

 

  )ˆˆˆ)((ˆ̂
1

2

11

h

TThT yyyhyy φφφ +++∆−∆+∆+=+ L   

 

           = )ˆ1(
ˆ1

ˆ
)( 1

1

1 h

TT yyyhy φ
φ

φ
−

−
∆−∆+∆+  .   (35) 

 

 Compare the h-step-ahead forecasts of the ARIMA(0,1,0) model, (33), with the h-

step-ahead forecasts of the ARIMA(1,1,0) model, (35).  The ARIMA(1,1,0) forecasts are 
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not equal to the trend line forecasts yhyT ∆+ of the ARIMA(0,1,0) model.  The basic 

trend yhyT ∆+ is add-factored by the amount )ˆˆˆ)(( 1

2

11

h

T yy φφφ +++∆−∆ L .  As the 

forecast horizon approaches infinity ( ∞→h ), the forecasts of the ARIMA(1,1,0) model 

approaches the trend line 

1

1

ˆ1

ˆ
)(

φ

φ

−
∆−∆+∆+ yyyhy TT  .  

 

 Finally, consider forecasting with the ARIMA(0,1,1) model or, equivalently, an 

ARMA(0,1) model in the differences ty∆ .  The optimal forecasts of the MA(1) model 

imply that  

 

  






≥∆

=−∆
=∆ +

2,

1,ˆˆˆ̂ 1

hy

hay
y T

hT

θ
          (36) 

 

where Tâ  now represents the T-th residual of the MA(1) model of the sy'∆  and 1θ̂  is the 

estimated MA(1) coefficient of the same model.  It follows that the level forecasts are 

 

  TTTTT ayyyyy ˆˆˆ̂ˆ̂
111 θ−∆+=∆+= ++  ; 

 

  TTTTT ayyyyy ˆˆ2
ˆ̂ˆ̂ˆ̂

1212 θ−∆+=∆+= +++ ; 

 

and, in general,  

 

  TThT ayhyy ˆˆˆ̂
1θ−∆+=+   .      (37)  

 

 Compare the h-step-ahead forecasts of the ARIMA(0,1,0) model, (33), with the h-

step-ahead forecasts of the ARIMA(0,1,1), (37).  The ARIMA(0,1,1) forecasts are not 

equal to the trend line forecasts yhyT ∆+ of the ARIMA(0,1,0) model.  The basic trend 

yhyT ∆+ is add-factored once by the amount Tâˆ
1θ−  and then changes by the “average 

drift”, y∆ , thereafter.  After the first forecast, the forecasts follow the trend line 

TT ayhy ˆˆ
1θ−∆+ .  (See the level forecasts of the Dow-Jones Index analyzed in Exercise 

4.)  For the ARIMA(0,1,1) model, the basic trend line yhyT ∆+ is add-factored once 

(reflecting the one period memory of the sy'∆  in the MA(1) model) while, for the 

ARIMA(1,1,0) model, the trend line yhyT ∆+ is continually add-factored but in a 

diminishing way (reflecting the infinite but diminishing memory of the sy'∆ in the AR(1) 

model).    

 

 


