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Overview

• Dynamic term structure models

Specify stochastic evolution of instantaneous interest rate rt and the
compensation investors require to face interest-rate risk.

Result is a complete dynamic model of the term structure of yields on
default-free bonds

• The big question

How do standard estimation methods behave in finite samples when
applied to newer classes of dynamic term structure models?

• The approach

We use Monte Carlo simulations to answer this question, and uncover
some surprising and discouraging results.



Outline

1. Overview of first-generation and second-generation dynamic term
structure models

2. Discussion of performance of maximum likelihood estimation

3. Alternatives to ML estimation



First generation of term structure models
One branch: CIR

rt = δ0 + xt

equiv m. measure dxt = (kθ−kxt)dt + σ
√

xtdzt

physical measure dxt = (kθ− (k−λ2)xt)dt + σ
√

xtdz̃t

Risk premia are determined by λ2

• Bond pricing is tractable

Pt,τ = Eq
t

[
e−

∫ t+τ
t rsds

]
• Physical transition density p(rt+s|rt) is known for s> 0.

• Drift under physical, equivalent martingale measures share at least
one parameter



First generation of term structure models
The other branch: Vasicek

rt = δ0 + xt

equiv m. measure dxt = (kθ−kxt)dt + σdzt

physical measure dxt = (kθ + λ1−kxt)dt + σdz̃t

Risk premia determined by λ1

• Bond pricing is tractable, transition density of rt is known, drifts share
at least one parameter

• For both CIR and Vasicek, generalization to multiple independent xi,t ’s
is simple



Estimation of first-generation models

• Observe yields on bonds with different maturities at dates t, t + 1, . . .

• Maximum likelihood is standard technique

• One way to implement

– Assume as many yields as state variables are observed without
error

– Given parameter vector, can invert to determine states xi,t

– Transition density of yields from t to t + 1 can then be calculated
(Jacobian transformation of transition density of states)

– Other bond yields observed with normally-distributed error

– Choose parameter vector to maximize likelihood function

• Existing evidence is that ML estimation works well in finite samples
similar in length to real-world data sets



Second-generation models

• Big problem with first-generation models—they do not work

The dynamics cannot capture real-life variations in expected excess
returns to long-maturity bonds

Forecasts of future bond yields are inferior to random-walk forecasts

• Second-generation models relax key restrictions in first-generation
models

– More flexible specification of bond risk premia; breaks link between
physical, equivalent martingale drifts

– Nonlinear drifts

– Correlated factors

– Many of these models do not have known transition densities for
discretely-observed bond yields



The first question

• For realistic sample sizes and term structure behavior, how well does
ML perform when risk premia specification breaks link between physi-
cal, equivalent martingale measures?

When transition density of discretely-observed data is un-
known/intractable, we use simulated ML (simulated transition density)



The second question

• How closely do tractable estimation methods approximate ML?

1. Efficient Method of Moments

Gallant and Tauchen; auxiliary model is SemiNonParametric (SNP).

2. Linearized extended Kalman filter



Our approach

• We answer these questions in very simple 2nd-generation settings

Settings are simple enough for ML or simulated ML to be feasible, al-
lows for comparison with alternative techniques

• Discussion today is even simpler – focus almost exclusively on one-
factor models with Gaussian dynamics



A key feature of the term structure:
persistence

• “True” parameters of physical dynamics of short rate, based on 1970-
2000 data

dr = 0.065(0.0523− rt)dt + 0.0175dzt

• Half-life of shocks is 11 years

• Monte Carlo simulation of ML estimation of short rate only (ignore info
in rest of term structure)

– 1000 weekly observations (19 years)

– Mean estimate of k is 0.304, standard dev is 0.239, mean standard
error is 0.167

Implied half-life of shocks 2 1/4 years



• 1st generation models: Estimation of term structure model attenuates finite-
sample bias of speed of mean reversion

– “True” model

equiv m. measure drt = (0.0085−0.065xt)dt + 0.0175dzt

physical measure dxt = ((0.0084−0.0050)−0.065xt)dt + 0.0175dz̃t

– Monte Carlo results (ML estimation, 1000 weeks of data)

Estimates of all parameters are now unbiased (within Monte Carlo sam-
pling error)

– Intuition – investors know true model, they price bonds using it



• The 2nd-generation version of the Gaussian one-factor model

physical measure dr = (kθ−krt)dt + σdz̃t

equiv m. measure dr = (kθ + λ1− (k−λ2)rt)dt + σdzt.

• λ1 affects average risk premia on bonds

• λ2 determines how risk premia vary with the level of the term structure

• “True” parameters

kθ = 0.0084,k = 0.065,σ = 0.0175,λ1 = 0.005,λ2 = −0.14

• Physical persistence parameter is 0.065 + 0.14 = 0.205, half-life of shocks is
3.4 years

• Monte Carlo results

ML finite-sample estimates of k, kθ unbiased, but physical speed of mean
reversion strongly biased (0.439), bias shows up in price of risk parameter
λ2



Intuition for poor finite-sample
performance of ML

• Drifts of physical, equiv m. measures decoupled with this model

Bonds are priced as if long-run mean of rt , speed of mean reversion of
rt are kθ/k, k. Compare to physical values of (kθ + λ1)/k, k−λ2.

• Therefore only info about physical drift is from time-series drift of rt ,
which is strongly biased

• Here, all the bias shows up in price of risk parameter



• 1st and 2nd generation drifts: true (solid) and mean estimates (dashed)
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• Same point carries over to 2nd-generation square root diffusion model

• “True” model
rt = 0.01 + xt

equiv m. measure dxt = (0.0075−0.063xt)dt + 0.08
√

xtdzt

physical measure dxt = (0.0075− (0.063− (−0.068))xt)dt + 0.08
√

xtdz̃t

• Estimated model allows for nonlinear physical dynamics with more general
risk premium specification

physical measure dxt = (kθ + λ1
√

xt − (k−λ2)xt)dt + σ
√

xtdz̃t

• Drifts implied by parameters estimated with ML from Monte Carlo simulation
(next slide)



• 1st and 2nd generation drifts: true (solid) and mean estimates (dashed)
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• Conclusion: With 2nd-generation models (allowing for general specification
of dynamics of risk premia), ML produces strongly biased estimates of risk
premia

Therefore models produce bad estimates of expected excess returns to
bonds

• Bias is qualitatively equivalent to bias in speed of mean reversion of near-
unit-root processes



Question 2: Tractable alternatives to ML

• Commonly-used technique in term structure modeling is Efficient
Method of Moments

• Our conclusion is that it performs very poorly

With highly persistent processes, EMM breaks down

• Overview of EMM is next, followed by some results



Efficient Method of Moments

• Path simulation estimation technique

Useful in settings where continuous dynamics of data are known, but
not discrete dynamics

• Denote history of observed yields through t as vector Yt .

• True density function is denoted gYt (Yt ;ρ0); may be unknown or in-
tractable

• f (yt|Yt−1;γ0) is auxiliary function that approximately expresses log den-
sity of yt as a function of Yt−1 and auxiliary parameter vector γ0

• First step in EMM: maximize auxiliary log-likelihood function

1

T

T

∑
t=1

[
∂ f (yt|Yt−1;γ)

∂γ

∣∣∣∣
γ=γ̃T

]
= 0.



• Central Limit Theorem
√

T(γ̃T − γ0)
d→ N

(
0,d−1Sd−1

)
,

S= E

[(
∂ f
∂γ

)(
∂ f
∂γ′

)∣∣∣∣
γ=γ0

]
,

d = E

(
∂ f

∂γ∂γ′

∣∣∣∣
γ=γ0

)
.

• Second step in EMM: Simulate long time series ŶN(ρ) = (ŷ1(ρ)′, . . . , ŷN(ρ)′)′

using true dynamic term structure model with params ρ

• Calculate expectation of score vector of auxiliary model, evaluated at ρ

mT(ρ, γ̃T) =
1

N

N

∑
τ=1

∂
∂γ

f [ŷτ(ρ) | Ŷτ−1(ρ); γ̃T ].

lim
N→∞

mT(ρ, γ̃T) = E

(
∂ f (yt(ρ)|Yt−1(ρ);γ)

∂γ

∣∣∣∣
γ=γ̃T

)



EMM Asymptotics

• Central Limit Theorem
√

TmT(ρ0, γ̃T)
d→ N

(
0,C(ρ0)d−1Sd−1C(ρ0)

)
C(ρ) = lim

T→∞

(
∂mT(ρ, γ̃T)

∂γ′

∣∣∣∣
γ=γ̃T

)
=

∂mT(ρ,γ)

∂γ

∣∣∣∣
γ=γ0

• Key to simplification: C(ρ0) = d
√

TmT(ρ0, γ̃T)
d→ N (0,S) .

• Logic leads to EMM estimator

ρ̃T = argmin
ρ

mT(ρ, γ̃T)′S̃−1
T mT(ρ, γ̃T).

• S̃T is sample counterpart to S



More about EMM

• Variance-covariance matrix of parameter estimates is

Σ̃T =
1

T
[(M̃T)′S̃−1

T (M̃T)]−1,

M̃T =
∂mT(ρ, γ̃T)

∂ρ′

∣∣∣∣
ρ=ρ̃T

.

• EMM is a GMM estimator; standard GMM test uses overidentifying
restrictions to evaluate adequacy of model

• Auxiliary function is unspecified

– Common choice is semi-nonparametric (SNP); vector-
autoregression used to describe conditional mean, non-normal
innovations with GARCH effects

– If true likelihood function is used as auxiliary function, parameter
estimates and asymptotic SDs are same as in ML case



Summary of Monte Carlo results for
EMM/SNP

• Overidentifying restrictions reject 1st generation Gaussian model at the
5% level in 40% of the simulations

• As models get more complicated, biases in EMM parameter estimates
and standard errors grow unacceptably large



• Reason for failure of EMM: A bad weighting matrix for the moments

– Recall asymptotic variance-covariance matrix of EMM moment vector:

√
TmT(ρ0, γ̃T)

d→ N
(
0,C(ρ0)d−1Sd−1C(ρ0)

)
d is 2nd deriv of auxiliary function evaluated at sample data + true auxil-
iary params

C is 2nd deriv of auxiliary function evaluated at infinite amount of “true”
data + true auxiliary params

S is variance-covariance matrix of auxiliary function score vector

– Asymptotically, C and d−1 cancel



• But when data are highly persistent, curvature of auxiliary function at sample
data typically differs substantially from expected curvature

Result is inefficient parameter estimates, bad test statistics

• This can be fixed by constructing sample estimates of d, C, but in practice
this is possible only when original likelihood function is tractable

• Our conclusion: EMM should not be used to estimate parameters of a highly
persistent process

• We recommend as an alternative a varient of the Kalman filter



Kalman filter

• Usual Kalman filter setting

1. Linear relation between observables (yields), unobservables (state
vector)

2. Linear conditional mean of unobservables

3. Gaussian innovations of unobservables and noise in observables;
constant variances

• 2nd generation term structure models retain (1), not necessarily (2) or
(3)

• If not,

1. Linearize instantaneous drift of unobservables; use as proxy for
conditional mean

2. Use instantaneous variance of unobservables, scaled by time, as
proxy for discrete-time variances; treat as Gaussian

• Inconsistent



• Our Monte Carlo results show . . .

1. In presence of stochastic volatility and/or nonlinear drifts, estimation with
the Kalman filter is less efficient than ML estimation

Less precision, somewhat greater bias in parameters

2. But in settings where simulations are necessary to implement ML, run
time is 25–60 times faster than ML

3. Since examination of finite-sample properties is important before inter-
preting estimation results, run-time considerations are paramount



Conclusions

1. 2nd generation term structure models present estimation difficulties not
present in 1st generation models

• With ML, strong biases in risk premia

• ML may require simulation

2. The linearized Kalman filter is a reasonable alternative to ML, but EMM
is not

Latest version of paper is at http://faculty.haas.berkeley.edu/duffee


