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Abstract

This paper documents nonlinear cross-sectional dependence in the term structure of
U.S. Treasury yields and points out risk management implications. The analysis is
based on a Kalman filter estimation of a two-factor affine model which specifies the
yield curve dynamics. We then apply a broad class of copula functions for modeling
dependence in factors spanning the yield curve. Our sample of monthly yields in the
1982 to 2001 period provides evidence of upper tail dependence in yield innovations;
i.e., large positive interest rate shocks tend to occur under increased dependence.
In contrast, the best fitting copula model coincides with zero lower tail dependence.
This asymmetry has substantial risk management implications. We give an example
in estimating bond portfolio loss quantiles and report the biases which result from
an application of the normal dependence model.

Key words: affine term structure models, nonlinear dependence, copula functions,
tail dependence, value-at-risk

JEL classification: C13, C16, G10, G21

∗E-mail correspondence: aszimaye@ecel.uwa.edu.au

1



1 Introduction

The class of affine term structure models (ATSMs) as proposed by Duffie and Kan (1996)

and further characterized by Dai and Singleton (2000), has recently become a benchmark

in modeling the term structure of default-free interest rates. Within the model class, the

term structure is characterized by the current realizations as well as the dynamics of a

set of state variables. Only an exact assessment of the state variable dynamics and their

dependence allows for an accurate description of the term structure. While previous em-

pirical studies have focused on time-series nonlinearities and discontinuities in the process

dynamics, this paper analyzes nonlinear cross-sectional dependence between factors that

span the yield curve. We show that the dependence structure of the long and short end of

the yield curve exhibits nonlinearity which can be characterized under a particular focus

on extreme dependence. The implications of these findings are demonstrated by a risk

management application.

Within the class of ATSMs, logarithmic bond prices are affine functions of the state vari-

ables. The class appeals by its analytical tractability and contains the well-known models

by Vasicek (1977), Cox et al. (1985), Chen and Scott (1992), and Longstaff and Schwartz

(1992), for example. However, recent empirical evidence indicates that term structure data

do not support the ATSM class. A series of articles document distinct nonlinearities, e.g.

in the drift and volatility function of the short-rate, which implies that mean-reversion

in the short-rate depends on its level (see, for example, Aı̈t-Sahalia (1996) and Stan-

ton (1997)). Ang and Bekaert (2000) focus on these findings and develop a Markovian

switching-model which captures such nonlinearities. Also, empirical results on one- and

two-factor ATSMs by Duan and Simonato (1999) indicate a strong rejection of the affine

model assumption when testing against alternatives which relax the restrictions imposed

by the theoretical model.1 In general, findings of nonlinearity in the term structure of

interest rates are important for at least three reasons. First, only an exact assessment of

the state variable dynamics and their dependence allows for an accurate modeling of the

term structure. Second, derivatives pricing is frequently based on assumptions imposed by

the class of ATSMs. Finally, effective bond portfolio risk management builds upon models

which provide reliable risk implications.

1Other specifications of the term structure include Ahn et al. (2002) as well as alternative formulations
of the short rate e.g. by Chan et al. (1992) and Aı̈t-Sahalia (1996). For an extensive survey of models see
also Dai and Singleton (2002). Besides the linear structure, the distributional assumptions imposed by
ATSMs is critical: Björk et al. (1997) extend the diffusion driven ATSMs by allowing for jumps. Eberlein
and Raible (1999) study term structure models driven by general Lévy processes.

2



This paper analyzes nonlinear cross-sectional dependence between factors that span the

yield curve. Performing a detailed statistical analysis, we document that the dependence

structure between the short and the long end of the yield curve exhibits nonlinearity

and we thereby put the focus on extreme dependence behavior. The starting point of

our analysis is the benchmark-class of ATSMs. Based on this theory, the term structure

dynamics in our study are given by a Gaussian two-factor generalized Vasicek model.

This model was applied, for example, by Babbs and Nowman (1998) who find that the

two-factor approach provides a good description of the yield curves for a broad sample of

mature bond markets. Furthermore, Babbs and Nowman (1999) even support a two-factor

specification as compared to a three-factor specification. They report that —although in

formal statistical terms—the two factor model is rejected with the three-factor model as

alternative, the measurement error of the two-factor model indicates that it performs as

well as the three-factor model.

Formulating a discrete time two-factor model in state-space representation allows us to

infer the parameters of the unobservable state variable process. As outlined in Duan

and Simonato (1999), we use Lagrange multiplier statistics in order to test the validity

of the Gaussian two-factor ATSM for U.S.-Treasury bond market data. A rejection of

the model is followed by a statistical analysis based on copula functions without having

to rely on Gaussian ATSM assumptions. We focus on cross-sectional dependence in the

term structure and model general forms of dependence in the factor innovations. While

a Gaussian factor model allows for correlated factors only, copula functions generalize

the dependence concept; see e.g. Joe (1997) and Nelsen (1999). Dependence in the center

of the distribution may be treated separately from the dependence in the distribution

tails. Hence, we impose various combinations of symmetric as well as asymmetric tail

dependence on the factor innovations.

Recent studies which apply copula functions in finance such as, for example, Ané and

Kharoubi (2001) and Scaillet (2002) indicate that the concept is an appealing way of

modeling complex dependence structures. Malevergne and Sornette (2002) argue that the

hypothesis of the normal copula cannot be rejected for a variety of financial returns, in-

cluding stock and exchange rate returns. However, this finding may relate to the amount

of data available and to issues of power of the testing procedures in the presence of tail de-

pendence. Indeed, the authors also find that alternative copula models cannot be rejected

either. Conditional copula functions are studied by Patton (2001) who models conditional

dependence in U.S.-Dollar exchange rate returns and by Rockinger and Jondeau (2001)

who examine conditional dependence in international stock market returns. Within this

literature, there is still debate on which copula models are most appropriate. We apply a

3



new transformed version of the Frank copula. Also, to our knowledge, the present study is

first to provide evidence on the dependence structure within the term structure of interest

rates.

In our empirical investigation, we study the term structure of U.S.-Treasuries which rep-

resent the largest government bond market worldwide. We use a sample of monthly yield

curve observations as in the empirical studies for example by Ang and Bekaert (2000) and

De Jong (2000). The sample covers the 20-year period from October 1982 to December

2001. We form two 10-year subsamples in order to check for the robustness of the empirical

results. The empirical investigation in the paper is then organized in two steps. In the first

step, we use the class of affine term structure models to specify the yield curve dynamics.

In particular, we choose a two-factor generalized Vasicek model characterized by a jointly

normal bivariate factor process. We then extract factors representing yields, namely the

interest rates on zero-coupon bonds with one year and five years to maturity. The model

parameters are estimated by Kalman filtering as supported by maximum likelihood argu-

ments following the approach in previous studies such as, for example, Lund (1997), Duan

and Simonato (1999), and Dewachter et. al. (2002). We test for alternatives by relaxing

the restriction placed on the system by the affine term structure model as outlined by

Duan and Simonato (1999). A rejection of the model is followed by further statistical

analysis. In the second step, we model the dependence structure within the yield curve.

We thereby focus on the dependence relation between short-term and long-term interest

rates as represented by the two yield factors. To this aim, a broad set of different copula

functions is used.

Based on our empirical findings, we show that the class of elliptical copula functions—

including symmetric copulas such as the normal and the Student-t —has characteristics

which violate the observed complex dependence structure. The yield factor dependence

can neither be characterized by a correlation coefficient as in the normal model nor with

a symmetric Student-t model. While the copula function of the normal distribution does

not allow for dependence in the tails, the Student-t copula does not allow for asymmetric

tail dependence. However, dependence models contained in the class of Archimedean

copulas can indeed capture dependence in the yield curve which is characterized by distinct

asymmetry and upper tail dependence. The Gumbel as well as a transformed Frank copula

turn out to be more suitable choices than the student-t copula. Considering all candidate

models used in our study, we find the transformed Frank copula to be the most appropriate

model. Moreover, the goodness-of-fit tests for the two subsamples indicate that our main

conclusions are robust within the observation period. In summary, using various different

test methodologies, we conclude that the transformed Frank copula offers dependence
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characteristics which are more appropriate for the term structure innovations than those

of other, commonly used, copula functions.

Given our empirical findings, we demonstrate the risk management implications in a bond

portfolio setting. Based on the affine model of factor dynamics and the alternative copula

models of factor dependence, we study the pricing effects of nonlinear dependence in the

yield factors. Particularly, we use the ATSM implication that bond prices are exponential

affine functions of the state variables. By sampling from one year and five year yield factors

under the fitted copula functions we then estimate loss quantiles for bond portfolios with

alternative durations. Our analysis highlights that the normal copula function—which

is implied by the assumption of linear dependence in affine term structures—yields a

substantial bias in the assessment of portfolio risk. When compared to the transformed

Frank copula which captures the asymmetric dependence in the data, we report a bias

structure in the upper and lower bond portfolio loss quantiles which yields values as high

as six percent as compared to the normal model. The model bias due to the normality

assumption should be even more pronounced when the pricing implications for nonlinear

contracts, e.g. for interest rate derivatives, are considered.

The remainder of this paper is organized as follows. In the next section, we outline the

model used in the analysis. Term structure time series dynamics are given with the class of

ATSMs. Cross-sectional dependence in bivariate term structure innovations is modeled by

two candidate classes of copula functions. The empirical investigation and the estimation

results are given in Section 3. The application to bond portfolio risk management which

points out risk implications of nonlinear factor dependence is given in Section 4. Section 5

concludes.

2 The Term Structure Model

The starting point of our study is the class of benchmark ATSMs. We model the term

structure time series dynamics within a continuous time two-factor generalized Vasicek

model. A state-space representation allows for observational noise and prepares estima-

tion based on a discrete time vector autoregressive specification. We then focus on cross-

sectional dependence in the term structure by modeling dependence in factor innovations

with copula functions which stem from two broad dependence classes. Based on the cop-

ula model, we can impose various combinations of symmetric as well as asymmetric tail

dependence on the factor innovations.
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2.1 Term Structure Dynamics

2.1.1 Affine Term Structure Models

The affine term structure model is a class of models in which the yields to maturity are

affine functions of some state variable vector. The state vector X is assumed to obey the

following dynamics

dX(t) = κ(θ −X(t)) dt+ Σ
√
S(t) dW (t), (1)

where W is a d-dimensional standard Brownian motion, θ is a d-vector, κ and Σ are

d×d matrices, and S(t) is a d×d diagonal matrix with diagonal elements which are affine

functions of the state vector X. Provided that a parameterization is admissible, the price

of a zero bond P (t, τ) in time t with time to maturity τ can be expressed as

P (t, τ) = exp
(
A(τ) +B(τ)>X(t)

)
, (2)

where A is a scalar function, and B is a d-dimensional vector function. The instantaneous

interest rate is, as usual, defined as

r(t) = − lim
τ↘0

lnP (t, τ)

τ
. (3)

Duffie and Kan (1996) show that P (·, ·) is generically exponential affine, i.e. in the form of

equation (2), if and only if the mean and variance in equation (1), and the short rate r are

affine functions in the state variable X. Moreover, A and B in equation (2) are obtained as

solutions to ordinary differential equations, see Duffie and Kan (1996). Let R(t, τ) denote

the time-t continuously compounded yield on a zero bond with maturity τ . The yield to

maturity of this bond is

R(t, τ) = − lnP (t, τ)

τ
. (4)

2.1.2 The Gaussian Two-Factor Model

The special case of the two-factor generalized Vasicek model is given by

r(t) = R0 +X1(t) +X2(t),

dX(t) = −κX(t) dt+ Σ dW (t), (5)

where W is a 2-dimensional standard Brownian motion, and

κ =

(
κ1 0
0 κ2

)
, and Σ =

(
σ1 0

ρ σ2

√
1 − ρ2 σ2

)
.
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The parameter R0 is the mean level of the instantaneous rate r, the state processes X1

and X2 fluctuate around zero with mean reversion rates κ1, κ2, and diffusion coefficients

σ1, σ2, and correlation ρ. Details on the functions A and B describing the term structure

implied by the two-factor model are given in Duffie and Kan (1996) and Babbs and

Nowman (1998). These functions are given by the factor parameters defined above and by

γ1 and γ2 ∈ IR, which represent the risk premia of factor one and factor two, respectively.

2.1.3 State-Space Representation

Estimation of the above term structure model can be carried out via transformation to

state-space representation; see for example Babbs and Nowman (1998, 1999) and Duan

and Simonato (1999) for term structure estimation applications and Harvey (1989) for a

general treatment of state-space models.

Assume that the yields for different maturities are observed with error. After the addition

of measurement error, the yield to maturity, using the bond pricing formula (2), can be

written as

R(t, τ) =
−A(τ)

τ
+

−B(τ)>X(t)

τ
+ ε(t, τ), (6)

where ε(t, τ) is assumed to be a normally distributed error term with mean zero and stan-

dard deviation σετ
. Hence, given that N bond yields for different maturities are observed,

the N corresponding yields have the following representation:



R(t, τ1)

...
R(t, τN)


 =




−A(τ)
τ1
...

−A(τ)
τN


+




−B(τ)>

τ1
...

−B(τ)>

τN


 X(t) +



ε(t, τ1)

...
ε(t, τN)


 . (7)

In terms of the state-space model, this equation is referred to as the measurement equa-

tion. To obtain the transition equation for the state-space model, the expressions for the

conditional mean and variance for the unobserved state variable process over a discrete

time interval of length h have to be derived. Define m(X(t);h) = IE{X(t+ h) |X(t)} and

Φ(X(t);h) = Var(X(t+ h) |X(t)), then the transition equation reads

X(t+ h) = m(X(t);h) + Φ(X(t);h)1/2 η(t, h), (8)

where η(t, h) is a d-vector of Gaussian white noise with Φ(X(t);h)1/2 denoting the Cholesky

decomposition of Φ(X(t);h).
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The two-factor model (5) defines the state variables as Gauss-Markov processes and thus

the conditional mean and the conditional variance are:

m(x;h) = (mh
i,j)2×2 · x =

(
e−κ1 h 0

0 e−κ2 h

)
x, (9)

Φ(x;h) = (Φh
i,j)2×2 =

(
σ2
1

2κ1
(1 − e−2κ1 h) ρ σ1 σ2

κ1+κ2
(1 − e−(κ1+κ2)h)

ρ σ1 σ2

κ1+κ2
(1 − e−(κ1+κ2)h)

σ2
2

2κ2
(1 − e−2κ2 h)

)
. (10)

Given observations of the yield vector in (6) and under a discrete sampling scheme with

interval h, the exact likelihood function can be established based on the Kalman filter

estimate of the unobservable state variable process X.

2.2 Nonlinear Term Structure Dependence

2.2.1 The Discrete-Time Factor Process

Section 2.1 above outlined the two-factor affine term structure model which we apply in

our study for capturing the term structure dynamics. The generalized Vasicek model (5)

is based on the continuous time factor dynamics dX driven by two-dimensional Brownian

motion.

The factor process given by transition equation (8) is linear in the drift and non-stochastic

in the diffusion coefficient. Hence, given (9) and (10), a discrete-time sample of X under

h = 1, dropping h superscripts, is given by a vector autoregressive process of order one

X1,t = m1,1X1,t−1 + (Φ1/2)1,1η1,t + (Φ1/2)1,2η2,t,

X2,t = m2,2X2,t−1 + (Φ1/2)2,1η1,t + (Φ1/2)2,2η2,t, (11)

with t = 1, ..., T . The variables ηi,t, i = 1, 2 are uncorrelated iid standard normal inno-

vations. In this setting, factor dependence is completely characterized by the correlation

coefficient ρ. Generalizing the above model, we now rewrite the discrete-time factor dy-

namics as

X1,t = m1,1X1,t−1 + Z1,t,

X2,t = m2,2X2,t−1 + Z2,t, (12)

and assume that the innovations (Z1,t, Z2,t) are i.i.d. vectors with common joint distribu-

tion function H(z1, z2). This relaxes the assumption of joint normality as imposed by the
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class of ATSMs. Note that once the normality assumption does not hold, the affine struc-

ture essentially breaks down since it is derived on the basis of a multivariate Brownian

motion as driving process and Itô calculus, see Duffie and Kan (1996).

2.2.2 Copula Functions

Based on (12), copula functions allow us to treat general versions of factor dependence in

the two-factor generalized Vasicek model (5). The copula concept dates back to seminal

papers by Hoeffding and Sklar; recent methodological overviews are given for example by

Joe (1997) and Nelsen (1999). For the present application, we restrict the exposition to

the two-dimensional case.

Let FZ1
and FZ2

denote the continuous marginal distribution functions of Z1 and Z2,

i.e. H(z1,∞) and H(∞, z2), respectively. By transformation we obtain uniform random

variables as U = FZ1
(Z1) and V = FZ2

(Z2). The copula function C : [0, 1]2 → [0, 1] for

the bivariate random vector (Z1, Z2) is defined as the joint distribution function of the

uniform random vector (U, V ) = (FZ1
(Z1), FZ2

(Z2)), that is, C(u, v) = IP[U ≤ u, V ≤ v].

Hence, it follows

H(z1, z2) = C(FZ1
(z1), FZ2

(z2)), (13)

which is known as Sklar’s Theorem. The result generally implies that for multivariate dis-

tribution functions the univariate margins and the dependence structure can be separated.

Given that the marginal distribution functions are continuous, dependence is represented

by a unique copula function C.

Apart from a separate treatment of dependence and marginal behavior, different copula

functions may characterize dependence in the center of the distribution differently while

showing identical limiting properties which characterize dependence in the distribution

tails. Given the stylized fact of fat-tails in financial return distributions, tail dependence

is therefore an interesting characteristic of copula functions. One can distinguish lower

and upper tail dependence as defined below.

Definition 2.1 The copula function C is lower tail dependent if

lim
u→0

IP[U ≤ u, V ≤ u]

u
= lim

u→0

C(u, u)

u
= λL, λL ∈ (0, 1],

and C is upper tail dependent if

lim
u→1

IP[U > u, V > u]

1 − u
= lim

u→1

1 − u− u+ C(u, u)

1 − u
= λU , λU ∈ (0, 1].
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Since the tail dependence measures λL and λU are limit properties of a copula, we can write

λL = λL(C) (λU = λU(C)) or λL = λL(θ) (λU = λU(θ)) if C is member of a parametric

family Cθ with parameter vector θ. For the sake of simplicity, we may write λ whenever

λL = λU .2 We next introduce and characterize two standard classes of copula functions.

a) Elliptical copulas

The class of the elliptical copulas is widely used as a benchmark model. Elliptical

copulas are commonly defined as copulas of elliptical distributions. In particular, this

includes the copula of the student-t and the normal distribution function.

(a) The t-copula Ct is given by

Ct(u, v) = Tν,ρ (T←ν (u), T←ν (v)) , (14)

where Tν,ρ is the bivariate standardized student-t distribution function with ν de-

grees of freedom and correlation ρ, while Tν denotes the univariate standardized

student-t distribution function and ’←’ denotes the generalized inverse distribution

function. The upper and lower tail dependence parameter λ for ν > 2 is:3

λ = 2

(
1 − Tν+1

(√
ν + 1

√
1 − ρ√
1 + ρ

))
. (15)

(b) For ν → ∞ the t-copula degenerates to the copula of the normal distribution

CN(u, v) = Nρ (N←(u), N←(v)) , (16)

where Nρ(·) and N(·) denote the standard bivariate and the standard univariate

normal distribution functions, respectively. From equation (15), it is obvious that

zero tail dependence, i.e. λ = 0, results.

2Note that in principle one cannot infer from a finite sample observation whether the underlying copula
function is tail dependent or not. However, recent empirical studies, e.g. by Ané and Kharoubi (2001)
and Malevergne and Sornette (2002), exhibit that the concept of tail dependence is useful in describing
dependence structures in financial data.

3See Embrechts et al. (2002). Note that the above expression for λ even holds in the case 0 < ν ≤ 2
then with a different interpretation of ρ.
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b) Archimedean copulas

Elliptical copulas as outlined above are restricted to symmetry. For this reason, we

outline the more general class of Archimedean copulas. They are described by a generator

function ϕ as given in the proposition below.

Proposition 2.2 Let ϕ : [0, 1] → [0, ∞] be continuous and strictly decreasing with

ϕ(1) = 0. The function C : [0, 1]2 → [0, 1] given by

C(u, v) = ϕ[−1] (ϕ (u) + ϕ (v)) (17)

is a copula if and only if ϕ is convex.

Here ϕ[−1] : [0, ∞] → [0, 1] denotes the pseudo-inverse of ϕ. The copula constructed by

(17) is called Archimedean. The function ϕ is called generator of the copula. A generator

ϕ is called strict if ϕ(0) = ∞ and in this case ϕ[−1] = ϕ−1. The following Archimedean

copulas are utilized in this paper.

(a) The independence copula with generator ϕΠ(q) = − ln q and

CΠ (u, ν) = uν. (18)

The copula exhibits neither lower nor upper tail dependence, i.e.: λL = λU = 0.

(b) The Gumbel copula with generator ϕG(q) = (− ln q)δ where δ ∈ [1, ∞) and

CG (u, v) = exp

(
−
[
(− ln u)δ + (− ln v)δ

] 1

δ

)
. (19)

It exhibits asymmetric tail dependence with zero lower tail dependence λL = 0 and

upper tail dependence λU = 2 − 2
1

δ . Note that overall dependence can be modeled

only if upper tail dependence is non-zero, i.e. if δ > 1.

(c) The Frank copula with generator ϕF (q) = − ln e−ϑ·q−1
e−ϑ−1

where ϑ ∈ (−∞, ∞) \ {0}
and

CF (u, v) = −1

ϑ
ln

(
1 +

(
e−ϑu − 1

) (
e−ϑv − 1

)

e−ϑ − 1

)
. (20)

This copula is neither lower nor upper tail dependent, i.e. as for the independence

copula we have: λL = λU = 0.
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(d) In order to broaden the class of copula functions which may proof to be suitable for

our modeling needs, we use a transformation rule as introduced by Nelsen (1999).

The rule states that if ϕ is a generator and δ ≥ 1, then ϕδ (q) = ϕ (q)δ is also

a generator.4 Once we apply the transformation rule to the Frank copula CF , the

transformed Frank copula CTF has generator ϕTF = (ϕF )δ where the parameter

vector is ω = (ϑ, δ) ∈ (−∞, ∞) \ {0} × [1, ∞). It follows that CTF is given by:

CTF (u, v) = ϕ−1
TF (ϕTF (u) + ϕTF (v))

= − 1
ϑ

ln

[
1 +

(
e−ϑ − 1

)
exp

[
−
((

− ln
[
e−ϑ·u−1
e−ϑ−1

])δ
+
(
− ln

[
e−ϑ·v−1
e−ϑ−1

])δ) 1

δ

]]
.

(21)

It can be shown that the transformed Frank copula CTF has zero lower tail depen-

dence, λL = 0, while it is upper tail dependent with λU = 2− 2
1

δ ; in contrast to the

Gumbel copula CG defined in (19), it allows for overall dependence even if upper

tail dependence is zero with δ = 1 where it follows CTF = CF . Also, CTF converges

to the Gumbel copula CG for ϑ→ 0; see Junker and May (2002) for details.

3 Empirical Analysis of Nonlinear Term Structure

Dependence

Our program for the empirical analysis is as follows. First we briefly introduce the zero-

coupon yield dataset. Then we estimate the term structure parameters of the two-factor

model based on a Kalman filter approach as outlined in Section 2.1.2. The empirical

analysis of dependence between unpredictable innovations in the long end and the short

end of the yield curve is based on an examination of our different parametric copula

functions as given in Section 2.2.2. We argue that the theoretical properties of the copula

functions given above, jointly with careful empirical testing, allow us to identify a suitable

model which is consistent with the dependence in the yield structure.

3.1 The Sample

As pointed out in the introduction, our empirical analysis of the U.S.-Treasury term

structure is based on a sample of monthly zero-coupon yields. The yield observations are

obtained from the refined Fama-Bliss zero-coupon yield dataset as introduced in Fama and

4Hence, the Gumbel copula CG for example, follows immediately from the independence copula CΠ.
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Bliss (1987). The maturities range from one to five years. The sample covers the period

October 1982 to December 2001 with 231 monthly observations. Of course, the amount of

sample information comes with a trade-off concerning stationarity. We did therefore not

extend the sample back to periods in the early eighties where much different economic

as well as economic policy regimes prevailed. Still, with the given dataset covering nearly

twenty years, a check of robustness of the empirical results with respect to sample choice

is important. We hence form two subsamples covering the October 1982 to December

1991 and the January 1992 to December 2001 period, which yields 111 and 120 monthly

observations, respectively.

In the following, we consider the monthly zero-coupon yields R(t, τi), t = 0, ..., 230 where

τi denotes the i-year maturity, i = 1, 2, 3, 4, 5. All yields are given on an annualized

continuously compounded basis. The length of the discrete sampling interval, h, equals 1

month. Table 1 reports summary statistics for the entire sample period as well as for the

two subperiods.

(Table 1 about here)

The statistics in Table 1 exhibit an on average increasing yield curve. The sample au-

tocorrelation coefficients indicate typical first order linear dependence in monthly bond

yields. Comparing the results for the subsamples with those for the entire period indicates

lower levels of interest rates together with lower levels of volatility in yield changes for

the second subsample.

3.2 Term Structure Model Estimation

This section presents the term structure estimation results based on Kalman filtering as

outlined in Section 2.1.2. In general, the application of the Kalman filter requires the

state process X to have normally distributed innovations which is typically violated in

estimation applications. This implies that the parameter estimation approach is in effect

based on a quasi-likelihood function.5

5Inference based on the Kalman iteration and likelihood maximization faces two specification issues.
First, the Kalman Filter estimates of Xt do not exactly correspond to the conditional expectations given
the observed yields since the filter relies on a linear projection. Second, in a non-Gaussian model, the
filtering errors—the differences between Xt and the linear projections—are not normally distributed.
Brandt and He (2002) discuss the first-order approximation for non-normalities introduced by affine
factor dynamics. Duan and Simonato (1999) discuss the estimation of square-root models by Kalman
filtering and show in a simulation study that the biases are small, and, as also the results in Lund (1997)
indicate, economically insignificant.

13



(Table 2 about here)

Based on the Kalman filter approach, maximum likelihood (ML) estimation yields an

estimate of the parameter vector ψ = (R0, κ1, κ2, γ1, γ2, σ1, σ2, ρ) of the two-factor gener-

alized Vasicek model (5). We assume a diagonal covariance structure of the measurement

errors ε(t, τ) in (7) where the diagonal elements are denoted by σ2
εi
. The estimation re-

sults are given in Table 2. All parameter estimates contained in ψ, apart from those of

γ1, turn out to be significantly different from zero at usual confidence levels. The es-

timated standard errors σ̂εi
are relatively homogeneous for all maturities with a slight

tendency for larger measurement error variability for the 1-year maturity yields. These

results are are in line with those of previous empirical research. Additionally, we test for

over-identification restrictions imposed by the model using a robust Lagrange multiplier

test as suggested by Duan and Simonato (1999). The reported results clearly reject the

Gaussian ATSM against the specified alternatives. This result is taken into account in the

subsequent dependence analysis.

3.3 Derivation of Term Structure Innovations

Given the estimation results of the previous section, we can derive unpredictable innova-

tions for our term structure sample. By choosing two observable yields, namely the short

end τs-year and the long end τl-year maturity yield, R(t, τs) and R(t, τl), the dynamics

of the two-dimensional yield factor X can be expressed in terms of the estimated term

structure parameters; see the Appendix for details on the yield factor representation. For

the Gaussian two-factor model it follows
(
R(t, τs)
R(t, τl)

)
= µR + AR

(
R(t− 1, τs)
R(t− 1, τl)

)
+

(
ετs,t
ετl,t

)
, (22)

where µR and AR are functions of the parameter vector ψ and (ετs,tετl,t)
> is a linear trans-

formation of (Zτs,tZτl,t)
>, i.e. (ετs,tετl,t)

> = B (Zτs,tZτl,t)
>. Accordingly, the common joint

distribution function G(ετs , ετl) of the innovations is completely determined by H(zτs , zτl)

and B which is a function of ψ, see the Appendix for a derivation of B.

In the following we choose the one-year and the five-year maturity yield, R(t, 1) and

R(t, 5), to represent the short and the long yield factor, respectively. We present three

alternative methods for deriving the bivariate empirical yield innovations (ε̂1,t, ε̂5,t)t=1,...,T

which are then the basis of the subsequent copula analysis. Our first methodology is guided

by a practitioner’s viewpoint: we highlight the implications arising from the use of ATSMs.
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Thereby, the Kalman filter is understood as a tool for obtaining parameter estimates of the

specific ATSM. Based on the estimates and the convenient affine structure of the model,

the results may be applied to the valuation of interest rate options, risk management,

and portfolio selection. Therefore, the measurement errors within the Kalman filter (see

Equation 22), are not taken into account once the ATSM parameter estimates are obtained

for the main part of the study. We refer to this approach as using the predictive affine

system for deriving the empirical yield innovations. Based on the Kalman filter estimate

ψ̂, we can derive the estimates µ̂R and ÂR. The time t− 1 conditional expectation IEt−1,ψ̂

is defined by equation (22). We then obtain the sequence of bivariate empirical yield

innovations as
(
ε̂1,t
ε̂5,t

)
=

(
R(t, 1) − IEt−1,ψ̂{R(t, 1)}
R(t, 5) − IEt−1,ψ̂{R(t, 5)}

)
, t = 1, ..., T, (23)

with T = 230.

The second methodology is related to the Lagrange multiplier test as outlined by Duan

and Simonato (1996) and fully relaxes the ATSM assumption placed on the linear system

given in (6). Based on the alternate specification, we obtain µ̂LM
R and ÂLM

R and compute

the empirical innovations (ε̂ LM
1,t , ε̂

LM
5,t )t=1,...,T by

(
ε̂ LM
1,t

ε̂ LM
5,t

)
=

(
R(t, 1) − IELM

t−1{R(t, 1)}
R(t, 5) − IELM

t−1{R(t, 5)}

)
, t = 1, ..., T, (24)

with T = 230, where IELM
t−1 is the time t − 1 conditional expectation under the relaxed

specification. This approach is referred to as using the the unrestricted system for deriving

the empirical yield innovations.

We also provide a third methodology which incorporates the measurement errors of the

Kalman filter in Equation (6). This approach is related to the work of De Rossi (2004)

who also applies Kalman filtering on interest rate data. He utilizes the forecasted series

(R̂t|t)t=1,...,T for discussing the measurement error of the model. Here, we compute the so-

called smoothed estimates (X̂t|T )t=1,...,T of the states process X which are the estimates

based on the entire sample information; see e.g. Harvey (1989). Employing the linear

relation in (40), the smoothed yields (R̂t|T )t=1,...,T are given by

R̂t|T = A + B X̂t|T . (25)

This approach minimizes the effects of the measurement error and we obtain the most

probable in sample estimate of the paths of the state process (Xt)t=1,...,T and of the

observed yield system (R)t=1,...,T in the period of our study. We refer to this methodology
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as smoothed affine system. The empirical innovations (ε̂ SM
1,t , ε̂

SM
5,t )t=1,...,T based on this

method are given by
(
ε̂ SM
1,t

ε̂ SM
5,t

)
= R̂t|T −

(
µ̂R + ÂR R̂t−1|T

)
, t = 1, ..., T, (26)

where µ̂R and ÂR are given by the Kalman filter estimates ψ̂ which were obtained as a

result of the first methodology.

The predictive affine system will be used for the main part of the analysis. Most results

are also reported for the other methodologies. Note that including the estimation error of

the Kalman filter estimate ψ̂ would be desirable. In this study, we have opted for leaving

this issue out, and rather focus on the three different filtering methodologies. Based on

the results, we conduct a detailed statistical analysis of the yield innovations’ dependence

structure.

3.4 Analysis of the Term Structure Innovations

Estimation of the copula parameter vector based on sample innovations is widely used in

empirical research. Given the parameter estimates for the term structure dynamics above,

the empirical marginal distribution functions are first determined for each component

of the bivariate yield innovation series (23). We thereby investigate the joint normality

assumption which is imposed by the ATSM. In the second step, parametric estimation of

the copula functions is carried out. In order to avoid parametric model misspecification, we

base our inference on the empirical marginal distributions and then derive the parameter

estimates for the copula functions. The copula functions introduced in Section 2.2.2 are

our respective candidate dependence models for the bivariate yield innovation series.

The Kalman filtering estimates of Section 3.2 result in the bivariate yield innovation series

(ε̂1,t, ε̂5,t)t=1,...,T as defined by equation (23). The following empirical results are restricted

to the first methodology as introduced in Section 3.3. The analysis for the two alternative

methodologies leads to rather similar results.

3.4.1 Univariate Distributional Properties of the Term Structure Innovations

The empirical marginal (univariate) distribution functions F·,T are determined for each

component separately. They are given as

F·,T (x) =
1

T

∑T

t=1
I{·t≤x}. (27)
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Closer inspection of the series’ univariate distributional properties reveals that the as-

sumption of uncorrelated normally distributed innovations requires more detailed in-

spection. Unreported QQ-plots of the marginal distributions of the innovations (where

quantiles of the empirical distributions are plotted against those of the standard normal

distribution) indicate a reasonably close approximation by the normal distribution; the

fit in the lower tail is better for the long maturity factor innovations. Results from the

univariate chi-square test indicate that normality cannot be rejected with p-values of 0.40

for ε̂1 and 0.15 for ε̂5. Anderson-Darling statistics for the univariate time series provide

an alternative goodness-of-fit criterion. The in-sample statistics with values 0.160 for the

one-year to maturity innovations and of 0.164 for the five-year to maturity innovations

are both are well below 2.492 which represents the critical value for the 95% confidence

level.

We next consider the innovations’ time-series properties. Unreported sample autocorre-

lation functions for the univariate series with lags up to order 23 indicate that estimated

autocorrelations stay within the 95% confidence intervals with one exception for ε̂1 which

is an expected violation under the given confidence level. For the squared univariate in-

novations we find six violations which exceed the 95% confidence interval for the short as

well as the long maturity series. The exceedances are evidence of some heteroskedasticity

in both series. This finding is further supported by a comparison of the two subsamples

which exhibit different levels of volatility (see the estimates of the standard deviation σ̂1

and σ̂2 in Table 4). The volatility level drops from approximately 0.0042 in the first period

to approximately 0.0026 in the second period. 6 For previous findings on heteroskedasticity

in bond yields refer to Bollerslev et al. (1992) and Bali (2000), for example.

Heteroskedasticity is frequently a matter related to estimation efficiency in empirical

finance. In the following, we focus on nonlinear cross-sectional dependence. We thereby

highlight a new empirical feature which violates the assumptions of the class of Gaussian

ATSMs, while at the same time it is of significant economic relevance.

6This effect leads to an inferior performance of out-of sample Anderson-Darling tests when compared
to in-sample tests. Based on the out-of sample test performance, the null hypothesis is rejected in one
out of two cases. We use the first subsample for estimating the copula parameters and apply these
to compute the out-of sample statistics for the second subsample, and vice versa. The Anderson-Darling
statistics increase significantly to 1.760 and 1.017 for the second subsample based on the first subsample’s
distribution estimates, and to 21.756 and 5.198 for the first subsample based on the second subsample’s
distribution estimates respectively.
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3.4.2 Copula Estimation Methodology

Given the above results, we conclude that a most critical empirical issue of our term

structure model is the dependence structure. As a valid simplifying prior, we assume in

the following that the marginal distributions of the yield innovations are normal with

mean zero and variances σ2
1,· and σ2

5,·, respectively. Using Sklar’s Theorem (13) we can

write

G· (ε1, ε5) = C· (N (ε1/σ1,·) , N (ε5/σ5,·)) , (28)

where the notation ‘ · ’ indicates the choice of one of the respective copula functions Ct,

CN , CTF or CG. For the different copula functions, the parameter vectors are given as ωt =

(ρ, ν), ωN = (ρ), ωTF = (ϑ, δ), and ωG = (δ). Note that we use ML-estimation to obtain

simultaneous estimates of the parameters (ω·, σ1,·, σ5,·) of the joint distribution function

G·. These estimates are optimal for the overall joint distributional assumption imposed by

G·, which includes the marginal distributions as well as the dependence structure. With

the joint density function g·(ε1, ε5) derived from (28), the log likelihood function reads

lnL· (ω·, σ1,·, σ5,·; ε1,t, ε5,t) =

=
T∑

t=1

ln

[
1

σ1,·σ5,·

c· (N (ε1,t/σ1,·) , N (ε5,t/σ5,·)) N
′

(ε1,t/σ1,·) N
′

(ε5,t/σ5,·)

]
, (29)

where N
′

denotes the density of the standard normal distribution and c· is one of our re-

spective copula densities. Since the copula parameter estimates ω̂T will have ML-properties,

the estimates of the tail dependence parameters, λ̂T = λ(ω̂T ) will be consistent and asymp-

totically normally distributed with

√
T (λ̂T − λ)

d→ N
(
0, σ2

λ

)
. (30)

Given that λ (·) are suitably smooth functions, the variance term σ2
λ can be approximated

by a first order Taylor series expansion of the form

σ2
λ̂

=

(
∂λ(ω̂T )

∂ωT

)>
Σω̂T

∂λ(ω̂T )

∂ωT
,

where ∂λ
∂ωT

denotes the gradient of the tail dependence as a function λ of the parame-

ters ωT , and Σω̂T
denotes the covariance matrix of the parameters ω̂T produced by the

ML estimation.
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3.4.3 Diagnostics for the Estimated Copula Models

Based on our estimates of the parametric copulas, we compare the in-sample model fit

based on a set of different goodness-of-fit test procedures. These include seven test statis-

tics which are given as follows.

A general goodness-of-fit test is the bivariate version of the well-known χ2-test. Unfortu-

nately, standard theory does not apply to empirical copula processes; see van der Vaart

and Wellner (1996). We evaluate the goodness-of-fit of several parametric models for the

joint distribution of the innovations (ε1,t, ε5,t). Hence, we perform a conventional χ2-test

on the original space IR2 of the innovations. Therefore, IR2 is divided into rectangles (ci)

forming a Donsker class, and we define the χ2-statistic by

X2
df =

k∑

i=1

(IEG·
(ci) − # {(ε1,t, ε5,t), t = 1, ..., T : (ε1,t, ε5,t) ∈ ci})2

IEG·
(ci)

, (31)

where IEG·
(ci) denotes the expected number of observations in cell ci under the model G·.

For the χ2-test, separation of the cells (ci) has to be carried out in a way as to get space

resolvent test information while at the same time guarantee convergence of the empirical

process. We follow Moore (1986) who suggests to choose IEG·
(ci) ≈ T 2/5 for every cell;

accordingly 28 cells follow for the full sample and 17 cells follow for the two subsamples,

respectively. Due to the restricted sample size in our setting, we follow Pollard (1979) for

the asymptotic distribution of the statistic, X2
df , based on the ungrouped estimator

X2
df →d χ2

df−m−1 +
m∑

l=1

αl χ
2
1 ,

where df is the number of cells, m is the number of model parameters, and (αl)l=1,...,m are

constants taking values in [0, 1]. Setting αl = 0 or αl = 1, we can derive upper and lower

bounds for the p-values. Hence, we provide intervals for the p-values of the χ2-statistic

X2
df .

Three additional tests of the overall model fit are based on the maximized log-likelihood

function lnL·. These include the Akaike information criterion, AIC = −2 lnL· + 2p, and

the Bayesian information criterion, BIC = −2 lnL·+ p lnT . While the Bayesian criterion

puts a heavier penalty on the number of model parameters, both statistics are based

on the probability of the observations within a given model. In contrast to that, the

entropy criterion measures the probability of a given model. The model entropy is given

as the expected value of the negative logarithm of the maximized density function, EN =

IE(− ln g·(ε1, ε5)), where we approximate the expectation by Monte Carlo simulation.
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The χ2-tests can be interpreted as a measure of the differences in the densities. Alternative

goodness of fit statistics in the literature, such as the Kolmogorov/Smirnov-test, are based

on distance measures between the empirical and a theoretical parametric distribution

function. As both, the empirical and the theoretical distribution functions have to converge

to zero at the lower tail and to one at the upper tail, their representation of fit in the tails

is weak by construction. A test statistic which is superior in this regard dates back to

Anderson and Darling (1952). The Anderson-Darling test uses relative instead of absolute

deviations between the distribution functions and thereby gives a better representation

of the fit in the tails. We use the integrated version outlined by the authors and denote

it by AD.

Our last goodness-of-fit diagnostic particularly focuses on the fit in the distribution tails.

The AD statistic, due to its use of the cumulative distribution function, has the drawback

of a smoothing effect which is particularly present in the upper tail. Considering model

fit in the tails, we therefore also apply a diagnostic which is not based on the overall

probability deviations, but on the probability deviations at a particular quantile of the

joint distribution function only. Let CT denote the empirical copula function

CT (u, v) =
1

T
# {(ut, vt), t = 1, ..., T : (ut, vt) ≤ (u, v)} , (32)

and CT denote the empirical survival copula function

CT (u, v) =
1

T
# {(ut, vt), t = 1, ..., T : (ut, vt) > (u, v)} . (33)

With these empirical copulas we measure deviations at the upper and the lower tail

independently. The relative lower tail probability deviation PDp is defined as the deviation

of the model probabilities from the empirical probabilities measured at a point (q, q) in

the lower corner of the set [0, 1]2. Here, q = C←T (p), 0 ≤ p ≤ 1 and C←T is the inverse of the

diagonal section of the empirical copula function CT . The relative lower tail probability

deviation PDp is given as

PDp =
G·
(
F←ε1,T (C←T (p)) , F←ε5,T (C←T (p))

)
− p

p
. (34)

Based on survival functions, the upper tail relative probability deviation is defined by the

survival probability deviation PDp at the point (q, q) in upper corner of [0, 1]2. It is given

as

PDp =
G·
(
F
←

ε1,T

(
C
←

T (p)
)
, F

←

ε5,T

(
C
←

T (p)
))

− p

p
. (35)
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Setting p equal to a small positive value, the probability deviations PDp and PDp allow

us to measure deviations in the tails. Note that pT observations are available for the

calculation of the empirical distribution function and—given that pT is sufficiently large—

ensure convergence towards the theoretical distribution function.

3.4.4 Copula Estimation Results

Referring back to the methodology introduced in Section 3.3, Tables 3 and 4 give the

estimation results for the overall sample 1982-2001 and the two subsamples 1982-1991

and 1992-2001, respectively. Giving additional results, Table 5 shows the corresponding

results for the overall sample 1982-2001 under the second and the third methodology,

respectively. We give standard deviation estimates for the marginal distributions as well

as the estimates of the parameters in the copula parameter vectors ωt, ωN , ωTF , and ωG.

Further, we provide results of nested likelihood ratio tests of the normal copula against

the t-copula and the Gumbel-copula against the transformed Frank-copula. Note that

testing the normal-copula against the t-copula is a boundary value problem, since the

degree of freedom of the t-copula approaches infinity in order to describe the null model

which is the normal-copula. Following Self and Liang (1987), the distribution is not χ2

but censored χ2, i.e., the deviance d has the asymptotic distribution N2 1{N≥0} where N

is a standard normal random variable. In Table 6 we compare the goodness-of-fit for the

competing copula models for the overall sample as well as for the two subsamples. Table 7

provides these results for the second and third methodology as introduced in Section 3.3.

For the evaluation we use the seven statistics χ2, AIC, BIC, EN, AD, PD and PD as

defined above in Section 3.4.3.

(Table 3 about here)

(Table 4 about here)

(Table 5 about here)

Table 3 summarizes the estimation results for the joint distribution functions in the overall

sample period. The normal copula yields an estimate of the correlation coefficient of

0.85, which indicates a quite strong positive linear dependence in the yield factors. The

subsample results in Table 4 indicate comparable linear dependence, with an estimate of

0.89 in the first and 0.79 in the second subsample. The results also show that the estimates

of the standard deviations for the marginal distributions vary somewhat depending on the

copula model, where the Gumbel copula assigns the largest standard deviations to the
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margins. Considering the subsamples, this highlights that the standard deviations in the

yield factor realizations were higher in earlier subsample period 1982-1991 than in the

later 1992-2001 period.

A graphical illustration of the estimated 1982-2001 joint distribution functions under the

different copula functions is given in Figure 1. The plotted joint density contour lines

visualize the dependence implications of the different copulas, while the plotted yield

innovations allow for a first visual inspection of model fit.

(Figure 1 about here)

(Table 6 about here)

(Table 7 about here)

We next turn to the results of the goodness-of-fit tests in Tables 7 and 8. Given the size

of the data set we have to point out in advance that it is not possible to strictly reject

any of the copula models. However, it turns out that the transformed Frank copula shows

best overall fit and also never obtains one of the worst diagnostic results in any of the two

subsamples.

Starting with the overall sample, our results clearly indicate that the transformed Frank

copula is the superior dependence model. All seven statistics including those which pe-

nalize for the number of model parameters (χ2, AIC and BIC) happen to favor the

CTF -model where the second best model follows with some diagnostic distance. Consid-

ering the symmetric models, the student-t copula shows advantages in the chi-square and

the entropy statistic, but not for AIC and BIC. It is remarkable that the AD test al-

ways shows very high deviations values for the student model as compared to the other

models. Considering Figure 1, an explanation for this finding may be that that the con-

tours of the student model narrow most quickly in the overall region of the lower left

quadrant [−∞, 0]×[−∞, 0] of the joint distribution function thereby causing large rel-

ative deviations in the empirical versus theoretical distributions for moderate negative

values. Additionally, due to the sample size, the AD statistic should be interpreted with

some caution; the number of 230 observations may not fully guarantee convergence of the

empirical distribution functions, which is a requirement for the AD statistic. Concerning

the probability deviations in the tails, PD and PD, we choose p = 0.05 which yields

11 observations for the calculation of the marginal distribution function. The PD and

PD results indicate that the transformed Frank copula has lowest deviations from the

empirical observations in the upper as well as the lower tail. The symmetric models tend
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to overestimate the probability of observations in the lower tail, which is demonstrated

by large positive values for PD. The Gumbel copula shows a tendency to overestimate

the probability of observations in the upper tail showing a large deviation PD; note that

the Gumbel copula models overall dependence and upper tail dependence jointly via the

δ-parameter which implies strong upper tail dependence under strong linear dependence,

and vice versa. Using likelihood ratio tests, we can compare the nested specifications,

i.e. normal against student-t and Gumbel against transformed Frank. In both cases, the

p-values indicate that the LR test favors the two-parameter alternatives against the single-

parameter models. Hence, the dependence structure, whether symmetric or asymmetric,

can hardly be handled by a single-parameter specification.

These results for the first methodology are consistent with those of the second and third

methodology for obtaining the yield innovations; see Table 5 for the copula estimates,

and Table 7 for the goodness-of-fit statistics. The unrestricted system has very similar

estimates as compared to the predictive affine system. The smoothed affine system pro-

duces somewhat different copula estimation results. The correlation coefficient estimate

for the normal and the student-t copula increases as well as the tail dependence for all

copula specifications. This effect can be explained by the nature of the smoothed system,

which reduces the impact of the measurement error on the observations and therefore,

the dependence between the factors is more noticeable. Moreover, for both alternative

methodologies the p-values of the LR tests decrease giving even stronger evidence for

the t-copula against the normal-copula and the transformed Frank against the Gumbel

copula.

We next turn to the subsamples, i.e. the 1982-1991 and 1992-2001 subsample results.

Note that the PD and PD statistics are now based on p = 0.1 which, under a subsamples

sizes of roughly T/2, implies a number of tail observations roughly equal to these for

the full sample diagnostics. For the subsamples, the assignment of the best goodness-

of-fit statistics in Table 6 shows notable variations across the models. This is due to

the substantial decrease in sample size, which makes the interpretation of the results

less conclusive than for the overall sample. However, the transformed Frank copula still

obtains the best results when evaluated by a score of the number of best fit-results among

all models. Also, the CTF -copula function is never assigned one of the worst-fit results,

which does not hold for any of the other models. Given a smaller data set, the statistics

χ2, AIC and BIC considerably penalize the two-parameter copula functions. At the same

time, the Ct parameter estimate of ν for the first susample as well as the CTF parameter

estimate of δ for the second subsample (see Table 4), exhibit low respective t-values. A

relatively stable pattern in Table 6 is provided by the PD statistics; high deviations for
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the overall sample as well as for the subsamples point out that a drawback of the Gumbel

copula is its tendency to overestimate the upper tail.

Turning to the first subsample, 1982-1991, CTF shows the best fit according to the EN ,

AD and PD statistics. The one-parameter copula models CN and CG also perform rela-

tively well. The normal model even gives best fit according to the chi-square test statistic

and PD, and the the Gumbel model produces the best results for AIC and BIC. In the sec-

ond subsample, 1992-2001, as mentioned above, we report lower estimates of the volatility

in the marginal distributions. However, our results do not indicate that the dependence

structure is much different in the two subsamples. The CTF -copula again yields results

better than for the other models with best fit as measured by the χ2-statistic, the BIC,

the EN and the upper tail fit PD. The student-t model has the worst AD statistic; still

it has the best fit according to the AIC and PD measures. The normal copula performs

notably well having the best AD statistic and none of the worst results. The LR test

results for testing normal against student-t and Gumbel against transformed Frank are

provided in Table 4. In the first subsample the null models are not rejected, where we

have highly significant rejections of the null models for the second subsample. To sum-

marize the subsample comparison results, we can state that – given a high variability in

the statistics – the Gumbel copula provides a second best fit in the first subperiod while

the normal copula provides a second best fit in the second subperiod. In both subperiods

however, the statistics indicate that the transformed Frank copula has best overall fit.

This result is also robust with respect to the three different methodologies applied for

computing the empirical yield innovations.

4 Application: Measuring Bond Portfolio Risk

Based on the affine term structure model of Section 2.1.2, the term structure of interest

rates is completely described by two risk factors. Clearly, the dependence characteristics of

the joint distribution of the 1-year yield and the 5-year yield influences the risk measure-

ment of portfolios. In this section we analyze the different distributional specifications’

impact on risk management decisions. We apply the estimation results obtained under

the predictive affine system which are summarized in Table 2.

We start with a graphical illustration of the copula function estimation results of Sec-

tion 3. Figure 2 contains four plots of the fitted conditional densities of the 5-year yield

given a fixed realization of the 1-year yield. Each plot represents one of the four different

copula models. As can be seen, the conditional densities show large structural differences
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especially including the probability of joint upper or lower tail events. For example, given

a negative shock to the short rate of –0.02 in the transformed Frank model, the condi-

tional density for the five year yield has high variance while, given a positive shock, the

conditional density has low variance. As is illustrated, the structure looks much different

for the symmetric models.

(Figure 2 about here)

We next apply the estimated dependence structures to quantify the risk of different bond

portfolios and compare the results. We consider portfolios which invest in the 1-year zero

bond at price P (t, 1) and the 5-year zero bond at price P (t, 5) and then study the return

of this investment after 1 month of time. Denote by RΛ the return of the portfolio which

has initial portfolio duration Λ. As a risk measure % we utilize Value-at-Risk (VaR), i.e.

the quantile of the profit-and-loss distribution of the portfolio. When adjusted for the

expected portfolio return VaR is

% = F←RΛ
(α) − IE{RΛ},

where α is the confidence level and FRΛ
is the cumulative distribution function of RΛ.

We introduce the superscript ‘+’ to the risk measure % when measuring the risk of a long

position, and the superscript ‘−’ for measuring the risk of a short position, respectively.

Additionally, the subscript at the risk measure % indicates the copula applied for defining

the dependence structure. The confidence levels we discuss are α = 99% and α = 99.9%

for which the VaR numbers %+
N , %+

t , %+
G, %+

TF , and %−N , %−t , %−G, %−TF are calculated.

We compare the risk measures % by fixing the risk measure induced by the normal copula

which is the standard risk measure, and calculate the relative deviations from this measure.

The relative deviations are

∆· =
%· − %N
%N

,

where‘ · ’ indicates the choice of one of the three copula functions Ct, CTF , and CG. The

relative deviations ∆· for long and short bond portfolio holdings as a function of the initial

duration Λ are plotted in Figure 3.

(Figure 3 about here)

The results for holding a long position in the interest rate portfolio ∆+
· are displayed at

the top of Figure 3. The results for t-copula model ∆+
t are indicated by the solid line.
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As can be seen at the top left in Figure 3, the t-copula produces VaR numbers which

are close to the normal copula model for the 99% confidence level. When increasing the

confidence level to 99.9% at the top right in Figure 3, the maximum relative deviation

increases from 0.2% to 3% which reflects the property of the t-copula to adopt to the

(upper) tail dependence existing in our data set. A similar pattern is observed for the

model given by transformed Frank copula (see the dashed line). The relative deviation

∆+
TF takes a maximum value of approximately 4% for the 99.9% confidence level, and the

VaR is persistently larger than the numbers based on the t-copula model. The Gumbel

copula (dashed-dotted line) generates the highest VaR. The maximum relative deviation

∆+
G is 2.5% for the 99% confidence level, and around 4.5% for the 99.9% confidence level,

respectively.

At the bottom of Figure 3 the results ∆−· are shown for a short position in bond portfolios

with initial duration Λ. The relative deviation of the t-copula model ∆−t has similar

characteristics as in the case of the long position. The VaR turns out to be relatively close

to the VaR given under the normal copula, where the positive deviations tend to become

overall larger when the confidence level is increased from 99% to 99.9%. The t-copula

quantiles exceed the normal ones because the t-copula features lower tail dependence

which is not present in the data. In contrast to the t-copula, the transformed Frank copula

and the Gumbel copula both produce negative relative deviations of the VaR measures

when compared to the normal copula. The maximum relative deviation is around 3% for

the 99% confidence level and around 6% for the 99.9% confidence level.

The above findings can be interpreted as follows. In Section 3.4.4, the transformed Frank

copula proved to be the dependence model which reflects the observed dependence struc-

ture in the most appropriate way. Assuming that the data are generated by a joint distri-

bution with normal margins and a transformed Frank copula then implies that the normal

copula produces a systematic bias in measured VaR.

For long bond portfolio positions, the normal copula tends to underestimate VaR where

the lack in risk capital may approximately amount to up to 4% in our example. Clearly,

the negative bias in VaR produced by the normal copula is related to the upper tail

dependence which is present in the data but not a characteristic of the normal dependence

model. The t-copula results in VaR numbers which are much closer to the transformed

Frank numbers than the normal numbers with a maximum deviation of approximately

1%. This finding is due to the upper tail dependence which is incorporated in the t-

copula. The Gumbel copula features characteristics which are present in the analyzed

data set: upper tail dependence and asymmetry. The VaR numbers are of reasonable
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quality especially for the high confidence levels of 99.9%. For the 99% confidence level, the

Gumbel copula produces the maximum relative deviation to transformed Frank numbers.

For this particular case, the Gumbel copula performs poorly compared to the alternative

dependence models (Figure 3, top, left).

For short bond portfolio positions, the normal copula overestimates VaR. The maximum

relative deviation takes a value around 6%. Though the data were not found to show

lower tail dependence in Section 3.4.4, which is in accordance with the normal copula,

bias is again present having opposite sign. The explanation for this finding is reasonably

simple. As the upper and lower tail of the normal copula are estimated simultaneously, the

realized estimate is a balanced result of both shortcomings of the normal copula, namely

its of lack of tail dependence and its symmetry characteristic. Also, due to its symmet-

ric structure, the absolute biases generated by the t-copula are high when compared to

the transformed Frank model. Hence, the t-copula turns out to produce overestimated

VaR numbers for short positions. As it turns out, even for moderate confidence levels of

99%, the copula functions’ ability to reproduce a complex observed dependence structure

gains in importance. The Gumbel copula is a parsimoniously parameterized model which

captures upper tail dependence. The relative deviations for the best-fitting transformed

Frank model indicate that the normal model can produce VaR biases of up to 6% in the

given example.

5 Conclusion

As is well-known, the concept of linear dependence breaks down under non-normality.

The present investigation documents that some of the more flexible nonlinear dependence

models derived form statistical theory may prove to be relevant in financial applications.

Based on the benchmark model given by the affine class of term structures which assumes

joint normality in yield innovations, this paper analyses cross-sectional dependence in the

term structure of U.S.-Treasury yields. The nonlinearities documented in the data repre-

sent a profound statistical characteristic which is shown to be of economic significance.

Deviations from linear dependence have implications on risk management when financial

risk is for example measured by the commonly used VaR methodology. Most strikingly,

we conclude that the normal copula as a benchmark model of dependence imposes two

main problems, namely absence of tail dependence and symmetry, which prevent accu-

rate risk measurement. Our findings are not limited to bond pricing and bond portfolio

VaR applications. The model bias due to the normality assumption should be even more
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pronounced when the pricing implications for nonlinear contracts, e.g. for interest rate

derivatives, are considered.
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Appendix A. Yield-Factor Representation

Provided that a parameterization is admissible, we know from Duffie and Kan (1996):

P (t, τ) = exp
(
A(τ) +B(τ)>X(t)

)
, (36)

where the functions A and B describing the two-factor generalized Vasicek model of Babbs

and Nowman (1998) are given by the parameters R0 ∈ IR, κ1, κ2, σ1, σ2 ∈ IR+, ρ ∈]−1, 1[,

and γ1, γ2 ∈ IR in the following way:

A(τ) =
∑

i=1,2

[
−πi (Bi(τ) + τ) − σ2

i

4κi
Bi(τ)

2

]
−R0τ + Aρ(τ) , (37)

B(τ) = (B1(τ), B2(τ))
> =

(
e−κ1 τ − 1

κ1

,
e−κ2 τ − 1

κ2

)>
, (38)

where π1 = σ1 γ1
κ1

− σ2
1

2κ2
1

, π2 =
σ2 (ρ γ1+

√
1−ρ2 γ2)

κ2
− σ2

2

2κ2
2

, and:

Aρ(τ) =
ρ σ1 σ2

κ1 + κ2

[
1

κ1

(B1(τ) + τ) +
1

κ2

(B2(τ) + τ) −B1(τ)B2(τ)

]
. (39)

A distinct feature of ATSM framework is that the latent state variables can be transferred

to an appropriate set of yields, see Duffie and Kan (1996). Moreover, the affine structure
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of the latent variables is preserved for the yields, and the yields can be viewed at as a

new set of state variables provided some technical conditions hold. Given a d-factor ATSM

with state variable X = (X1, ..., Xd)
>. For a set of maturities (τ1, ..., τd) the corresponding

yields Y = (Y1, ..., Yd)
> are given by Equation (36):

Y (t) = A + BX(t) (40)

where

A =




−A(τ1)
τ1
...

−A(τd)
τd


 , B =




−B1(τ1)
τ1

. . . −Bd(τ1)
τ1

...
. . .

...

−B1(τd)
τd

. . . −Bd(τd)
τd


 . (41)

Provided B is non-singular, we can state the following equation for the yield vector Y :

dY (t) = κ̃(θ̃ − Y (t)) dt+ Σ̃

√
S̃(t) dW (t) , (42)

where

κ̃ = B κB−1 , θ̃ = B θ + A , Σ̃ = BΣ , and S̃(t) = {α̃i + β̃>i Y (t)} , (43)

and α̃i = αS i − βS i
> B−1 A, and β̃i = B−1> βS i. We briefly discuss the yield dynamics

implied by the two-factor generalized Gaussian model. Here, we find θ = 0, and S(t) = Id
what results into κ̃ = B κB−1, θ̃ = A, Σ̃ = BΣ, and S̃(t) = Id:

dY (t) = B κB−1(A− Y (t)) dt+ BΣ dW (t) , (44)

where B κB−1 describes the mean reversion including cross-dependencies between Y1

and Y2, and the covariance is given by BΣ Σ> B>. Setting (R(·, τs), (R(·, τl))> = (Y1, Y2),

it follows from the affine structure
(
R(t, τs)
R(t, τl)

)
= A + BXt =

(
−A(τs)/τs
−A(τl)/τl

)
+

(
−B(τs)

>/τs
−B(τl)

>/τl

)
Xt.

Due to the autoregressive structure of X in (12) this results in

(
R(t, τs)
R(t, τl)

)
= (I2 − BK B−1)A + BK B−1

(
R(t− 1, τs)
R(t− 1, τl)

)
+ B

(
Zτs,t
Zτl,t

)
,

which is Equation (22) where µR = (I2 − BK B−1)A and AR = BK B−1, and K =

diag(e−κ1 h, e−κ2 h), see Equation (9) and Equation (12).
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Figure 1: Contourlines of the estimated densities under the different copula models with
normal margins. Sample period 1982 to 2001.
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Figure 2: Conditional densities under the different fitted copula functions. Sample period
1982 to 2001.
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∆
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∆
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∆
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Figure 3: Relative deviations ∆+ (top) and ∆− (bottom) of the risk measures from the
normal copula model for the α = 99% (left) and α = 99.9% (right) quantiles. The solid
line belongs to the t-copula, the dashed-dotted line to the Gumbel copula, and the dashed
line to the transformed Frank copula. Sample period 1982 to 2001.
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Table 1
Summary statistics (sample mean, sample standard deviation, and first order sample

autocorrelation) for the monthly U.S. Treasury zero-coupon yield data. Sample period 1982 to

2001 and subsamples 1982 to 1991 and 1992 to 2001.

October 1982 to December 2001

Maturity Mean Std. Dev. Autocorr.

1 year 0.0638 0.0201 0.9852

2 years 0.0675 0.0206 0.9859

3 years 0.0701 0.0204 0.9854

4 years 0.0721 0.0205 0.9851

5 years 0.0732 0.0205 0.9858

October 1982 to December 1991

Maturity Mean Std. Dev. Autocorr.

1 year 0.0794 0.0157 0.9641

2 years 0.0837 0.0165 0.9707

3 years 0.0863 0.0165 0.9709

4 years 0.0886 0.0166 0.9696

5 years 0.0897 0.0167 0.9708

January 1992 to December 2001

Maturity Mean Std. Dev. Autocorr.

1 year 0.0494 0.0109 0.9712

2 years 0.0526 0.0098 0.9581

3 years 0.0550 0.0088 0.9447

4 years 0.0569 0.0082 0.9371

5 years 0.0579 0.0080 0.9387
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Table 2
Estimation results for the two-factor generalized Vasicek model with monthly observations on

1, 2, 3, 4 and 5 year maturity yields. Sample period 1982 to 2001 and subsamples 1982 to 1991

and 1992 to 2001. Kalman filter recursions are initialized with the values of the stationary

mean and variance of the unobserved state variables. Maximization of the log-likelihood

function is based on a sequential quadratic programming algorithm. White (1982)

heteroskedasticity-consistent standard errors of the parameter estimates given in parenthesis.

Lagrange multiplier (LM) test results are reported including p-values and degrees of freedom

(df) following Duan and Simonato (1999).

Kalman Filter Estimates

Parameters Oct. 82 to Dec. 01 Oct. 82 to Dec. 91 Jan. 92 to Dec. 01

R
0

0.0589 0.0637 0.0286

(0.0291) (0.0254) (0.0176)

κ
1

0.0691 0.1225 0.1918

(0.0227) (0.0285) (0.0143)

σ
1

0.0203 0.0260 0.2402

(0.0034) (0.0048) (0.0151)

γ
1

-0.1850 -0.0465 -0.4359

(0.1400) (0.1696) (0.1465)

κ
2

0.3719 0.4954 0.2131

(0.0413) (0.0610) (0.0162)

σ
2

0.0188 0.0230 0.2385

(0.0033) (0.0047) (0.0158)

γ
2

1.3358 1.4057 1.5395

(0.1838) (0.2509) (0.2310)

ρ -0.7807 -0.8199 -0.9991

(0.0797) (0.0774) (0.0001)

σε1 0.0014 0.0008 0.0014

(0.0001) (0.0002) (0.0001)

σ
ε2

0.0004 0.0006 0.0002

(0.0001) (0.0001) (0.0001)

σ
ε3

0.0006 0.0007 0.0003

(0.0001) (0.0001) (0.0001)

σ
ε4

0.0006 0.0008 0.0002

(0.0001) (0.0001) (0.0001)

σ
ε5

0.0005 0.0006 0.0005

(0.0001) (0.0001) (0.0001)

LM 178.337 68.065 135.972

p-value 0.00000 0.00000 0.00000

df 8 8 8
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Table 3
Parametric ML-estimates of the joint distribution function G under the alternative copula

models including LR test results. Standard errors and t-values of the parameter estimates

given in parenthesis. Sample period 1982 to 2001.

October 1982 to December 2001

T = 230 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 3.4291E-3 3.4730E-3 0.8556 10.2957 0.3681 0.3681

s.e. (0.1806E-3) (0.1701E-3) (0.0196) (7.6051) (0.1823) (0.1823)

t-value (18.99) (20.42) (43.76) (1.35) (2.02) (2.02)

CN 3.4517E-3 3.4510E-3 0.8537 - 0 0

s.e. (0.1845E-3) (0.1679E-3) (0.0190) - - -

t-value (18.71) (20.55) (44.97) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 3.4152E-3 3.4738E-3 4.1759 1.8101 0 0.5334

s.e. (0.17785E-3) (0.1665E-3) (1.1523) (0.2463) - (0.0764)

t-value (19.20) (20.86) (3.62) (3.29) - (6.98)

CG 3.5237E-3 3.5433E-3 - 2.8805 0 0.7279

s.e. (0.18045E-3) (0.16912E-3) - (0.2047) - (0.0218)

t-value (19.53) (20.95) - (9.19) - (33.46)

LR tests deviance p-value
CN vs. Ct 2.06 0.0756

CG vs. CTF 13.46 0.0002
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Table 4
Parametric ML-estimates of the joint distribution function G under the alternative copula

models including LR test results for the subsample periods 1982 to 1991 and 1992 to 2001.

t-values of the parameter estimates given in parenthesis.

October 1982 to December 1991

T = 110 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 4.2012E-3 4.0293E-3 0.8871 27.6529 0.2008 0.2008

t-value (15.33) (15.01) (43.13) (0.36) (0.31) (0.31)

CN 4.2051E-3 4.0202E-3 0.8868 - 0 0

t-value (15.31) (15.31) (43.79) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 4.1678E-3 4.0233E-3 1.9274 2.6545 0 0.7016

t-value (15.91) (15.50) (1.06) (2.61) - (8.68)

CG 4.2200E-3 4.0745E-3 - 3.2772 0 0.7645

t-value (16.83) (16.13) - (7.24) - (30.48)

LR tests deviance p-value
CN vs. Ct 0.11 0.3701

CG vs. CTF 1.17 0.2794

January 1992 to December 2001

T = 119 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 2.5580E-3 2.9075E-3 0.8148 6.2034 0.4188 0.4188

t-value (13.60) (14.68) (23.83) (1.95) (3.22) (3.22)

CN 2.5634E-3 2.7780E-3 0.7886 - 0 0

t-value (13.75) (16.48) (21.52) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 2.5364E-3 2.8771E-3 5.8523 1.3362 0 0.3201

t-value (13.73) (16.31) (2.11) (0.91) - (1.33)

CG 2.5802E-3 2.9629E-3 - 2.4207 0 0.6684

t-value (13.62) (15.09) - (6.02) - (17.98)

LR tests deviance p-value
CN vs. Ct 14.16 0.0001

CG vs. CTF 13.12 0.0003
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Table 5
Parametric ML-estimates of the joint distribution function G under the alternative copula

models including LR test results for the unrestricted and smoothed affine systems. t-values of

the parameter estimates given in parenthesis. Sample periods 1982 to 2001.

October 1982 to December 2001 (unrestricted system)

T = 230 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 3.4182E-3 3.4725E-3 0.8554 8.8836 0.4009 0.4009

t-value (18.86) (20.88) (44.49) (2.24) (3.54) (3.54)

CN 3.4405E-3 3.4491E-3 0.8531 - 0 0

t-value (18.52) (20.54) (44.62) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 3.4144E-3 3.4613E-3 3.7458 1.8957 0 0.5586

t-value (18.72) (20.93) (3.24) (3.37) - (7.56)

CG 3.5304E-3 3.5307E-3 - 2.8646 0 0.7262

t-value (19.01) (20.88) - (9.21) - (33.33)

LR tests deviance p-value
CN vs. Ct 4.09 0.0216

CG vs. CTF 15.21 0.0000

October 1982 to December 2001 (smoothed affine system)

T = 230 σ̂1,· σ̂2,· ρ̂ ν̂ λ̂L λ̂U
Ct 3.4608E-3 3.4019E-3 0.9328 4.6824 0.6731 0.6731

t-value (22.09) (22.33) (111.24) (5.91) (21.29) (21.29)

CN 3.4763E-3 3.3708E-3 0.9300 - 0 0

t-value (20.85) (20.81) (95.89) - - -

σ̂1,· σ̂2,· ϑ̂ δ̂ λ̂L λ̂U
CTF 3.4424E-3 3.4117E-3 4.9431 2.4687 0 0.6759

t-value (20.93) (20.70) (3.41) (3.48) - (10.64)

CG 3.5219E-3 3.5342E-3 - 4.2494 0 0.8228

t-value (20.92) (21.04) - (10.66) - (59.75)

LR tests deviance p-value
CN vs. Ct 4.33 0.0187

CG vs. CTF 15.02 0.0001
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Table 6
Goodness-of-fit statistics for the ML-estimates of the joint distribution function G under the

alternative copula models. +indicates best model fit for a given statistic, −indicates worst

model fit for a given statistic. Sample period 1982 to 2001 and subsamples 1982 to 1991 and

1992 to 2001.

October 1982 to December 2001

T = 230 Ct CN CTF CG
χ2

23,24 (p-value) [0.06, 0.21]− [0.07, 0.19] [0.41, 0.51]+ [0.07, 0.19]

AIC -4204.30 -4204.24 -4215.34+ -4203.88−

BIC -4188.54− -4191.93 -4199.58+ -4191.57

EN -9.15 -9.15 -9.19+ -9.14−

AD 21.61− 0.69 0.52+ 0.63

PDp=0.05 22.58%− 20.26% 6.19%+ 9.67%

PDp=0.05 -4.08% -7.21% -3.67%+ 21.76%−

October 1982 to December 1991

T = 110 Ct CN CTF CG
χ2

12,13 (p-value) [0.76, 0.79] [0.84, 0.85]+ [0.72, 0.75] [0.69, 0.72]−

AIC -1954.91− -1956.80 -1960.44 -1961.27+

BIC -1942.11− -1946.70 -1947.64 -1951.17+

EN -8.92 -8.91− -8.96+ -8.94

AD 14.6768− 0.6751 0.6134+ 0.6489

PDp=0.1 7.25%− 6.36% -0.91%+ -1.86%

PDp=0.1 0.57% 0.40%+ 7.66% 14.29%−

January 1992 to December 2001

T = 119 Ct CN CTF CG
χ2

12,13 (p-value) [0.58, 0.65] [0.42, 0.52] [0.67, 0.71]+ [0.40, 0.50]−

AIC -2267.39+ -2255.23 -2265.22 -2254.10−

BIC -2244.28 -2244.89 -2252.10+ -2243.76−

EN -9.49 -9.51 -9.56+ -9.47−

AD 6.0714− 0.2756+ 0.3732 0.2796

PDp=0.1 0.72%+ -9.81% -7.35% -12.81%−

PDp=0.1 4.35% -5.68% 0.41%+ 16.22%−
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Table 7
Goodness-of-fit statistics for the ML-estimates of the joint distribution function G under the

alternative copula models. +indicates best model fit for a given statistic, −indicates worst

model fit for a given statistic. Sample period 1982 to 2001. Unrestricted system and smoothed

affine system.

October 1982 to December 2001 - unrestricted system

T = 230 Ct CN CTF CG
χ2

23,24 (p-value) [0.01, 0.12] [0.01, 0.08]− [0.10, 0.25]+ [0.02, 0.12]

AIC -4374.37 -4372.28 -4384.81+ -4371.60−

BIC -4360.62− -4361.97 -4371.06+ -4361.29

EN -9.59+ -9.54 -9.57 -9.48−

AD 31.93− 0.55 0.45+ 0.55

PDp=0.05 21.08%− 17.69% 3.79%+ 7.47%

PDp=0.05 1.81%+ -2.38% 3.16% 26.79%−

October 1982 to December 2001 - smoothed affine system

T = 230 Ct CN CTF CG
χ2

23,24 (p-value) [0.60, 0.65] [0.51, 0.57]− [0.86, 0.86]+ [0.77, 0.78]

AIC -4374.61 -4372.28 -4384.81+ -4371.79−

BIC -4359.85− -4361.97 -4371.06+ -4362.48

EN -9.50− -9.52 -9.54+ -9.51

AD 30.23− 0.57 0.45+ 0.53

PDp=0.05 11.19%− 4.74% -6.54% 0.56% +

PDp=0.05 -15.03%− -9.03%+ -11.46% 9.68%
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