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Abstract

We investigate numerical solution of �nite di�erence approximations to American

option pricing problems, using a novel direct numerical method | simplex solution of

a linear programming formulation. This approach is based on a new result extending

to the parabolic case the equivalence between linear order complementarity problems

and abstract linear programmes known for certain elliptic operators. We test this

method empirically, comparing simplex and interior point algorithms with the pro-

jected successive overrelaxation (PSOR) algorithm applied to the American vanilla

put and lookback put. We conclude that simplex is roughly comparable with pro-

jected SOR on average (faster for �ne discretisations, slower for coarse), but is more

desirable for robustness of solution time under changes in parameters. Furthermore,

signi�cant speed-ups are certainly possible over the results given here.

1 Introduction

The aim of this paper is to investigate numerical solution of �nite di�erence approximations
to partial di�erential equation (PDE) problems arising in pricing American options using a
novel linear programming approach, and to test this empirically against other methods for
such problems. We argue that with the current state of solver and computer technology it
is e�cient to solve numerically for the value function of a wide range of American derivative
securities by simplex solution of the linear programming formulation.

In x2 we outline the classical Black-Scholes model for pricing standard European and
American options, paying particular attention to the related PDEs and boundary con-
ditions. We present, for the case of the American vanilla put option, the well-known

1



equivalent formulations of an American option problem as a free boundary problem, a lin-
ear order complementarity problem (OCP) and a variational inequality (VI). Results from
the literature on uniqueness of the variational inequality solution give us uniqueness of the
order complementarity problem solution. Our main theoretical result is an extension to
the parabolic case of a known equivalence for coercive elliptic partial di�erential operators
of type Z, namely, that this order complementarity formulation is equivalent to a least
element problem, and hence to an abstract linear programme.

In x4, we consider �nite di�erence approximations to the various equivalent formula-
tions of the American put problems in x2. Again, results from the literature on conver-
gence of the solution to the discretised variational inequality to the continuous Ameri-
can put value function give convergence for the equivalent discretised linear programme.
Standard numerical algorithms for the solution of these problems are projected successive
over-relaxation (PSOR) for the complementarity problem and simplex and interior point
methods for the linear programme. We investigate these in x5.

In x5 we test the new linear programming approach empirically for the American vanilla
put and lookback put | against the PSOR algorithm for the complementarity problem |
using modern simplex and interior point algorithms from IBM's Optimization Subroutine
Library (OSL) running on an IBM RS/6000 590. We reproduce known solution values
from the literature and detail the behaviour of solution time and iteration counts with
varying discretisation and market parameters for both algorithms, giving plots of the so-
lution surfaces. Overall, we �nd similar performance for PSOR and simplex algorithms on
average, with the interior point algorithm much worse than either. We also notice that
the solution time of the simplex method is highly robust to changes in the risk-free rate
and volatility parameters, as one expects from a direct method. We conclude that the lin-
ear programming approach has much potential, and should, with its speed and exibility,
prove superior to other methods for a wide range of option types | particularly for certain
exotic options, where one may exploit the parametric simplex method. Furthermore, it
is worth pointing out that any PDE-based numerical method for option valuation yields
an approximation to the option value surface, and hence provides immediately numerical
approximations of the various partial derivatives (the `Greeks') fundamental to practical
hedging schemes. (See Carr [5] for details.)

2 The Black-Scholes Model

To begin the classical Black-Scholes analysis we must make certain assumptions about the
nature of our economy and the agents that operate within it. Uncertainty in our security
market is modelled by a �ltered probability space (
;F ; fFtg; Q), supporting a Wiener
process W with �nite time horizon T . World events a�ect prices only in so far as they
drive the Wiener process and so the simplest construction of 
 is as the set of all paths of
the Wiener process over t 2 [0; T ], the �ltration as that naturally generated by the Wiener
process over time and Q as the Wiener measure over paths. (To be technically correct we
must apply the usual conditions, namely, that the �ltration is increasing, right-continuous

2



and augmented with the null sets of Q.)
Furthermore, we make the following assumptions about the structure of our economy

and the agents that operate within it: continuous trading; perfectly divisible assets; no
transaction costs; no restriction on short sales; agents have symmetric information and are
non-satiated; no arbitrage opportunities.

We allow only two �nancial instruments in our market. Firstly, we have a savings
account, whose value is continuously compounded at the constant risk-free interest rate
r � 0. Secondly, we model the price process S followed by the dividend-free stock by a
geometric Brownian motion (GBM). With the assumptions given above and some technical
restrictions, it can be shown that the absence of arbitrage is necessary and su�cient for
the existence of a probability measure ~Q, equivalent to the objective measure Q, such that
the discounted stock price process e�rtS(t) is a martingale. (The equivalent martingale
measure approach is due to Harrison and Kreps [14], to which the reader is referred for
more details.) This implies that the stock price process has drift r under this measure;
indeed, by the equating the result of applying Ito's lemma to the discounted stock price
and the calculation of its total derivative we obtain the SDE

dS(t)

S(t)
= rdt+ �d ~W(t) t 2 [0; T ]; (1)

where S(0) > 0, � > 0 is the constant volatility of the stock, a measure of the price
variability and ~W is a Wiener process under the equivalent martingale measure ~Q (see, for
example, Karatzas and Shreve [19]).

2.1 Derivative securities

We de�ne a derivative security as a risky security whose value is entirely determined by
other risky assets. We consider here standard (vanilla) options, which form the basis for
most other more exotic varieties. A call or put option confers the right to buy or sell
respectively one share of stock for strike price K, only at a maturity date T for a European
option, or at any stopping time in [0; T ] for the American equivalent. Under the model
here, closed form formulae are known for all these options apart from the American put
| in general an American option will have no known closed form formula. We study the
vanilla put in more detail, in terms of its payo� function  : IR+

! IR given by de�nition as
 (S(� )) = (K � S(� ))+, received by the holder on exercise at any stopping time � 2 T0;T ,
where T0;T is the set of stopping times in [0; T ]. We wish to characterise, in a manner
suitable for numerical solution, the value function u: IR+ � [0; T ] ! IR, giving the option
fair value u(x; t) to the holder at stock price x > 0 and time t 2 [0; T ].

2.2 The equivalent martingale measure and Black-Scholes PDE

for derivative securities

Under the equivalent martingale measure the discounted price process of any European-
style derivative security is a martingale. If u(x; t) is the value of any European-style
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derivative when the price of the underlying stock is x at time t 2 [0; T ], then this martingale
property immediately gives us u as the conditional expectation of the discounted payo�.
However, we may derive another characterisation of u: its discounted price process must
have zero drift to be a martingale, so that applying Ito's lemma to give the process followed
by e�rtu(S(t); t) and equating the drift to zero gives the PDE derived by Black and Scholes
[3], viz.

LBSu+
@u

@t
= 0 (2)

for (x; t) 2 IR+ � [0; T ), where the di�erential operator LBS := 1

2
�2x2 @2

@x2
+ rx @

@x
� r. We

supply the terminal condition u(:; T ) =  to determine the value function u as the solution
to this PDE.

American options The case of American-style payo�s is more di�cult. The value
function is the solution of a classical optimal stopping problem, namely to choose the
stopping time that maximises the conditional expectation of the discounted payo� |
indeed the optimal stopping time �(t) may be shown to be given by

�(t) = inf fs 2 [t; T ] : u(S(s); s) =  (S(s)g ; (3)

i.e. the �rst time the option value falls to simply that of the payo� for immediate exercise.
Now for a PDE characterisation of u, only the discounted stopped price process of such

a derivative is a martingale, and only up to the stopping time, so that u satis�es the same
PDE (2), but on an implicitly de�ned region C where u(x; t) >  (x), since (3) tells us that
exercise occurs when u(x; t) falls to  (x). Thus the domain of the value function may be
partitioned into a continuation region C and a stopping region S is given by

C := f(x; t) 2 IR+ � [0; T ) : u(x; t) >  (x)g

S := f(x; t) 2 IR+ � [0; T ) : u(x; t) =  (x)g: (4)

Clearly this is a partition, because we have u(x; t) �  (x) everywhere.
On the whole domain IR+� [0; T ), we have LBSu+

@u
@t
� 0, since, to preclude arbitrage

opportunities, the drift of the (undiscounted) price process cannot be greater than the
risk-free rate. However, as long as the current position of the stock price process (t;S(t))
is in C, it is optimal to continue, and hence the PDE (2) is satis�ed on this region. As
soon as the process crosses into S, it is apparent from (3) it is optimal to stop, and on
the stopping region u(x; t) = K � x, hence LBSu +

@u
@t
< 0. These features will be neatly

encapsulated in the complementarity problem of x3.
Instead of a simple terminal condition for the PDE, however, we now have a free

boundary condition: that u(x; t) =  (x) for (x; t) on the optimal stopping boundary between
C and S. One more condition is necessary to de�ne this boundary, and for the American
put this is usually taken to be the smooth �t condition @u

@x
= �1 on the optimal stopping

boundary. For further discussion of these matters see Van Moerbecke [25], Jacka [17] and
Myneni [24].

Figure 1 is a sketch of the American put value function. The projections of the contin-
uation and stopping regions on to the value surface are labelled Cp and Sp respectively.
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u(x; t)

Sp

T � t

Cp

x

Figure 1: Sketch of the American put value function

3 Equivalent Formulations of the American Put Prob-

lem

The characterisations of the American put value function as optimal stopping and free
boundary problems are adequate, but are not explicit enough to lead to simple numerical
schemes. The following formulations of the American put problem as a linear order com-

plementarity problem and a variational inequality allow us to treat the domain of the value
function as an entire region, dispensing with the need to consider explicitly the optimal
stopping boundary. For the remainder of this section, we make the usual change of vari-
ables to the log-stock price � := log x, with respect to which the Black-Scholes PDE for
the American put is given by Lu + @

@t
u = 0, where L is the constant coe�cients elliptic

operator

L :=
1

2
�2

@2

@�2
+
�
r �

1

2
�2
�
@

@�
� r; (5)

and u now refers to the option value as a function of �. The various inequalities for the
operator LBS in the previous section carry over to the log-transformed version L. Note
that we now have a new payo� function given by ~ (�) := (K � e�)+ and continuation and
stopping regions Ĉ and Ŝ de�ned with respect to the new variable �.

3.1 The order complementarity problem

As seen in x2.2, the American put value function u satis�es Lu+ @u
@t

= 0 and u > ~ on Ĉ, so

that (�Lu� @u
@t
)^ (u� ~ ) = 0, where ^ denotes pointwise minimum of the two functions.

On Ŝ, Lu + @u
@t
< 0 and u(�; t) = ~ (�), and we again have (�Lu � @u

@t
) ^ (u � ~ ) = 0.

We may express the free boundary problem for the American put option in a form that
encapsulates these main complementary properties, as the following order complementarity

problem [4].
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Theorem 1 The American put value function is the unique solution to the linear order

complementarity problem

(OCP)

8>>>><
>>>>:

u(:; T ) = ~ 
u � ~ 
�Lu� @u

@t
� 0

(�Lu� @u
@t
) ^ (u� ~ ) = 0 a:e: in IR� [0; T ]:

For (OCP) to be well-posed, we must restrict it to a vector lattice, which is a vector
space with a partial order de�ned by a positive cone P such that for any points x and y the
maximum x_y and the minimum x^y exist in the given order. See Borwein and Dempster
[4] and Cryer and Dempster [8] for further discussion. We give the precise setting in the
sequel. To prove that the American put value function is the unique solution of (OCP), we
express it in another equivalent form, namely as a parabolic variational inequality, in which
form we may apply some standard results on uniqueness of solutions to such variational
inequalities.

3.2 (OCP) as a variational inequality

Before we give the variational inequality formulation some de�nitions will be needed. Tech-
nically, we must specify a function space for the variational inequality solution, chosen
ideally as a minimal set of restrictions so that it is well-posed. De�ne the Sobolev space
Wm;p;�(IR2) as the space of functions u 2 Lp

�
IR2; e

��j�j d�
�
whose weak derivatives of

order not exceeding m 2 IN exist and are also in Lp
�
IR2; e

��j�j d�
�
, for p 2 [0;1] and

� 2 (0;1). (Here j:j denotes the L1 norm in IR2 and dx denotes Lebesgue measure on
IR2, and it should be noted that the extension of the results in the sequel to IRn+1, for
arbitrary n 2 IN, is completely straightforward.) We shall be interested in the Hilbert

space H1(IR2) := W 1;2;�(IR2), for some �xed � > 0, of square integrable functions with
square integrable derivatives de�ned on IR2. The Hilbert space H1(IR2) has as Banach
dual the Sobolev space H�1(IR2) := W�1;2;�(IR2), also a Hilbert space of Radon measures
with which it may be identi�ed. Consider the pairing h:; :i : H1 �H1 ! IR between dual
spaces given by

hu; vi :=
Z
IR2

u(�; t)v(�; t)e��(j�j+jtj) d� dt; (6)

where we may interpret v 2 H�1 as the density function of the Radon measure element of
the dual space H�1 of H1 with respect to e��(j�j+jtj) d� dt. Alternatively, we may consider
h:; :i given by (6) as an inner product on the Hilbert space H0(IR2) := L2(IR2; e

��jxjdx) by
virtue of the canonical injections H1 ,! H0 ,! H�1 [2] p.79. In this setting the partial
di�erential operator L may be interpreted either as a map H1 ! H�1 or as an operator
on H1. Consider also the bilinear form a(:; :) : H1 �H1 ! IR given by

a(u; v) :=
Z
IR2

�2

2
u�v�e

��(j�j+jtj) d� dt�

Z
IR2

 
(r � �2=2) + �

�2

2

�

j�j

!
u�ve

��(j�j+jtj) d� dt
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+
Z
IR2

ruve��(j�j+jtj) d� dt; 8u; v 2 H1: (7)

Finally, note that H1 (and hence H�1) is a vector lattice Hilbert space (but not a Hilbert
lattice) with positive cone de�ned in terms of (Lebesgue) almost everywhere nonnegativity
[4, 8]. See Baiocchi and Capelo [2] and Borwein and Dempster [4], p.553{554, for more
details on these ideas, which have been adapted here to match the more general setting of
Jaillet et al [18]. In particular, we shall assume all functions in H1 (�= H�1) considered to
be de�ned as u(:; jtj) on IR� (�1; 0) and as u(:; T ) on IR� [T;1) (see [2], p.89 et seq.).

The following lemma relates the bilinear form a(:; :) to the elliptic part of the partial
di�erential operator L, and we will use it to show variational inequality (VI) and (OCP)
equivalence.

Lemma 1 The bilinear form a satis�es

a(v; u) = hu;�Lvi u; v 2 H1: (8)

Proof: See [8], p.80{81, and [17] p.72 et seq. However, the idea is simple enough | simply
integrate the �rst term of (7) by parts.

With the preceding de�nitions and Lemma 1 we may now state the variational inequal-
ity formulation in the form of the following theorem.

Theorem 2 The variational inequality (VI) given by

(VI)

8><
>:
u(:; T ) = ~ 
u � ~ 
v � ~ a:e: ) a(u; v � u) +

D
v � u;�@u

@t

E
� 0 a:e: in [0; T ]

is equivalent to the order complementarity problem (OCP).

Proof: This is again a well known result, due to Borwein and Dempster [4] . We can
rewrite the third line of (VI) using Lemma 1 as

*
�Lu�

@u

@t
; v � u

+
� 0 8v � ~ : (9)

Let u solve (VI): Choosing arbitrary v � u in (9) gives �Lu � @u
@t
� 0, which is the third

constraint in (OCP). This in turn implies, since u� ~ � 0, that
D
�Lu� @u

@t
; u� ~ 

E
� 0.

Now if we choose v = ~ , (9) becomes
D
�Lu� @u

@t
; u� ~ 

E
� 0, which two inequalities

together give the complementarity condition
D
�Lu� @u

@t
; u� ~ 

E
= 0, which is equivalent

to the third constraint of (OCP) (Borwein and Dempster [4], p.549).
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Let u solve (OCP): Then*
�Lu�

@u

@t
; v � u

+
=

*
�Lu�

@u

@t
; v � ~ 

+
+

*
Lu+

@u

@t
; ~ � u

+

=

*
�Lu�

@u

@t
; v � ~ 

+
� 0 8v � ~ : (10)

So we see that (VI) and (OCP) are equivalent.

The key property that will determine uniqueness of the solution to (VI), and hence
(OCP), is that of coercivity of the bilinear form or di�erential operator, de�ned as follows.

De�nition A continuous bilinear form a(:; :) de�ned on a Hilbert space H is coercive on
H i�

9� 2 IR+ s:t: a(u; u) � �kuk2 8u 2 H:

Similarly, an operator T on H is coercive i�

9� 2 IR+ s:t: hu; T ui � �kuk2 8u 2 H:

It can be shown that a given by (7), and hence �L, is coercive (see Jaillet et al

[18], p.267, whose spaces L2([0; T ]; V�) and L2([0; T ]; H�) may be considered restrictions
respectively of our spaces H1 and H0.). Then the Lions-Stampacchia theorem implies that
the solution to (VI) is unique (see, for example, Baiocchi and Capelo [2], p.24 et seq.). This
result completes the proof of Theorem 1, since (VI) has a unique solution and is equivalent
to (OCP). The formulation (VI) is a type of classical physical problem, a (Stefan) obstacle
problem, where the payo� function ~ is the obstacle below which the solution cannot fall.

3.3 Abstract linear programme equivalent formulation

We have established in the previous section the uniqueness of the solution to (OCP) by
considering its formulation as the variational inequality (VI). We now derive the key result
which will eventually enable us to compute a numerical approximation to the value function
of the American put, and indeed many other types of American derivative securities, as an
ordinary linear programme. First we need some de�nitions.

De�nition A linear operator T on a Hilbert space H is of type Z i�

hu; vi = 0) hu; T vi � 0 8u; v 2 H: (11)

De�nition De�ne, for a closed subset F � P � H of a vector lattice Hilbert space H with
positive cone P := fv 2 H : v � 0g, the least element problem

(LE) �nd u 2 F s:t: u � v 8v 2 F:
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The least element is denoted by u = LE(F ), and is illustrated in Figure 2. Note that if it
exists, the least element is always unique since, if u1 and u2 are least elements of F , then
u1 � u2 and u2 � u1, so from the vector lattice property u1 = u2.

We now de�ne an associated problem, the abstract linear programme (LP).

De�nition De�ne, for a subset F � P � H of a vector lattice Hilbert (function) space H
with positive cone P and constant vector c > 0 a.e. with respect to Lebesgue measure on
its domain, the abstract linear programme

(LP) inf
v2P

hc; vi s:t: v 2 F:

The following theorem gives equivalence between (OCP), (LE) and (LP), and is an
extension of a result of Cryer and Dempster [8] for elliptic partial di�erential operators to
the parabolic case.

Theorem 3 In the setting described above, if T is a coercive type Z temporally homoge-

neous elliptic di�erential operator, then there exists a unique solution u to the following

equivalent problems:

(OCP)

8>>>><
>>>>:

u(:; T ) = ~ 
u � ~ 
T u� @u

@t
� 0

(T u� @u
@t
) ^ (u� ~ ) = 0 a.e. on IR� [0; T ],

(LE) �nd u = LE(F );

(LP) inf
v
hv; ci s:t: v 2 F;

for any c > 0 a.e. on IR� [0; T ], where

F :=

(
v : v(:; T ) = ~ ; v � ~ ; T v �

@v

@t
� 0

)
: (12)

Proof: We �rst prove the equivalence between (OCP) and (LE), after the trivial domain
extensions of the problem functions to set them in H1 given above. It will be necessary to
reverse time, so that in backwards time T u+ @u

@t
� 0 and the terminal condition becomes

the initial condition u(:; 0) = ~ . Let L denote the Laplace transform operator with respect
to the measure e��jtj, so that for (�; �) 2 IR2, the Laplace transform û 2 H1 of a function
u 2 H1 is de�ned by

û(�; �) := Lu(�; :)(�) :=
Z
1

0

e�j�jtu(�; t)e��tdt: (13)
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As noted above, we have extended the temporal domain of our value functions u to [0;1)
as constant on (T;1), so that this generalised Laplace transform is well de�ned. L is a
linear operator and T is temporally homogeneous, i.e. has time-independent coe�cients,
and therefore commutes with the Laplace operator, so that taking the Laplace transform
of the operator T + @

@t
gives T L + L @

@t
. The Laplace transform of the �rst order time

derivative is given by 
L
@u

@t

!
(�; �) :=

Z
1

0

e�j�jt
@u

@t
(�; t)e��tdt

=
h
e�(j�j+�)tu(�; t)

i1
0
+ (j�j+ �)

Z
1

0

e�j�jtu(�; t)e��tdt

= �u(�; 0) + (j�j+ �)û(�; �) (14)

and u(�; 0) is given by the initial condition u(:; 0) = ~ .
Now, note that the Laplace transform is positivity-preserving in the sense that u �

0 ) û � 0 a.e. on IR2. Then, writing the initial condition, constant in �, as q̂(:; �) :�
�u(:; 0) to agree with the notation of Borwein and Dempster [4], (OCP) is equivalent to

the transformed order complementarity problem d(OCP), also posed in H1, given by

d(OCP)
8><
>:
û �  ̂

(T + j�j+ �)û+ q̂ � 0
((T + j�j+ �)û+ q̂) ^ (û�  ̂) = 0 a.e. on IR2

where  ̂ is the Laplace transform of the log-transformed payo� function ~ , given by
 ̂(�; �) = ~ (�)=(j�j + �). Since T is coercive, type Z and elliptic, so is T + j�j + �,

and hence û is the unique solution to d(OCP). This assertion is apparent from: hu; (T +
j�j + �)ui = hu; T ui + (j�j + �)hu; ui � (� + j�j + �)kuk2; and hu; (T + j�j + �)vi =
hu; T vi + (j�j + �)hu; vi � 0 for hu; vi = 0, for all � 2 IR. We can now apply the order
complementarity-least element equivalence result of Borwein and Dempster [4] for coercive
type Z elliptic operators, so that û is also the solution (necessarily unique) to the least

element problem d(LE) de�ned by LE(F̂ ), where F̂ is de�ned by

F̂ := fû : û �  ̂; (T + j�j+ �)û+ q̂ � 0g: (15)

Applying the inverse Laplace transform L�1 to û shows that

u = L�1û

solves both (LE), given by LE(F ), and (OCP), as required. Indeed suppose the contrary,
i.e. that there exists v 2 F such that v � u, v 6= u. Then it follows since L is positivity
preserving that v̂ 2 F̂ and v̂ � û, v̂ 6= û, a contradiction to û = LE(F̂ ).

With this least element result, the LP equivalence is immediate | u is the least element
of F () u � v for all v 2 F , and so hc; ui � hc; vi for all v 2 F and any vector c > 0.
Therefore u minimises hc; vi over all v in F and is thus the solution to the abstract linear
programme (LP). Restricting to the original problem domain yields the result.
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F

u
P

c0v = constant

Figure 2: The least element problem as a linear programme

It should be noted that the above proof depends on time running `backwards', that
is, expressed in terms of time to maturity, otherwise we cannot substitute ~ for u(:; 0) in
(14). The �nite dimensional least element-linear programme equivalence is illustrated for
IR2 in Figure 2. The least element result tells us that the linear constraint set lies within
the positive cone translated so that its apex lies at u, since in �nite dimensions the least
vector is least in every element. We see immediately that we pick out the least element of
the constraint set by minimising hc; ui, where c > 0, over the set u 2 F ; speci�cally in IR2,
by minimising the intercept of negatively sloped lines de�ned by c0u with normal c > 0
intersecting F .

This general result gives equivalence between (VI), (OCP), (LE) and (LP) for the
American put, since (�L) is coercive type Z (see Jaillet et al [18]). It should be stressed
that Theorem 3 is very general, and applies to virtually any parabolic partial di�erential
operator with a temporally homogeneous coercive type Z elliptic part, and virtually any
payo� function. For example, it may be applied to the Black-Scholes operator LBS directly.

The �rst part of the proof of Theorem 3 is easily generalised to the case of parabolic op-
erators with time-dependent coe�cient elliptic part T by considering the operator LT L�1

on functions de�ned on the price-frequency domain. However, the di�culty in extend-
ing the result to the time-dependent coe�cient case by this method lies in verifying that
the new operator inherits the coercive type Z properties from T . Replacing L by the
norm-preserving orthogonal Fourier transform veri�es the required inheritance trivially,
but introduces complex valued functions which cannot be naturally ordered. A more deli-
cate argument involving step function coe�cient approximation and a suitable passage to
the limit can be however be used to establish the results of Theorem 3; the details will
appear elsewhere.

Theorem 3 also suggests a simple way to solve the equivalent problems numerically
| by a suitable discretisation, the in�nite-dimensional abstract linear programme (LP)
reduces to an ordinary linear programme with solutions in IRn. This is a standard problem
type with an extensive literature devoted to rapid solution, and e�cient solution software is
readily available. In the next section we discretise the problem, and consider our suggested
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LP and alternative numerical solution methods.

4 Numerical Methods

In general, there will be no known closed form solution to an American option problem,
and we are unlikely to �nd one. In this section, we consider numerical solution of the
American vanilla put problem. We use the novel formulation of the value function in x2
as the solution to an abstract linear programme, which, when we discretise space and time
by standard �nite di�erences, becomes an ordinary linear programme which we may solve
by well-known and highly developed algorithms.

4.1 Localisation of the value function

As a �rst simplifying approximation, we restrict the domain of the value function IR�[0; T ]
to a �nite region [L; U ] � [0; T ], for any L < logK < U . We then must specify explicitly
the behaviour of the value function on the spatial boundaries | set u(L; :) = ~ (L) and
u(U; :) = ~ (U), then we have a localised version (LOCP) on [L; U ] � [0; T ] of the order
complementarity problem (OCP) given by

(LOCP)

8>>>>>><
>>>>>>:

u(L; :) = ~ (L); u(U; :) = ~ (U)
u(:; T ) = ~ 
u � ~ 
�Lu� @u

@t
� 0

(�Lu� @u
@t
) ^ (u� ~ ) = 0 a:e: on [L; U ]� [0; T ]:

Furthermore, de�ning the localised inner product by hu; vi` as in (6) but integrated over
[L; U ] in the �rst variable, we have a localised version (LLP) of the linear programme (LP),
identical in form except that the constraint set F is now given by

F :=

(
v : v(L; :) = ~ (L); v(U; :) = ~ (U); v(:; T ) = ~ ; v � ~ ; �Lv �

@v

@t
� 0

)
:

There still exists a unique solution to (LLP), since the operator is unchanged. As L; U !

1, this solution tends uniformly to the solution to (LP), i.e. the American put value
function on the whole domain, a result demonstrated by Jaillet et al [18] for the equivalent
localised variational inequality | naturally the equivalent problems (LOCP) and (LLP)
inherit this same convergence property.

4.2 Discretisation of the value function

We discretise (LLP) by approximating the value function by a piecewise constant function,
constant on rectangular intervals around points in a regular lattice or mesh, on the domain
[L; U ] � [0; T ]. (Note that everything that follows holds for irregular meshes with trivial
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modi�cations.) Write umi as the value of the general function u at mesh points (i;m)
de�ned by

umi := u (L+ i��; T �m�t) ; (16)

where m 2 f0; 1; : : : ;Mg := M and i 2 f0; 1; : : : ; Ig := I. Writing ~ i := ~ (L + i��), we
have the boundary values um0 = ~ 0, u

m
I = ~ I and, because m is a backwards time index,

u0i =
~ i.

We now approximate the partial derivatives which appear in L by discrete analogues,
using �nite di�erence approximations. We approximate the partial derivatives of the value
function at a point indexed by (i;m) in the interior of the index domain I �M by

@u

@�
� �

umi+1 � umi�1
2��

+ (1� �)
um�1i+1 � um�1i�1

2��

@2u

@�2
� �

umi+1 � 2umi + umi�1
(��)2

+ (1� �)
um�1i+1 � 2um�1i + um�1i�1

(��)2

@u

@t
�

um�1i � umi
�t

(17)

for � 2 [0; 1]. The cases � = 0, � = 1

2
, � = 1 correspond to explicit, Crank-Nicolson and

implicit discretisation schemes respectively.
Substitution of these discrete forms for their counterparts in (LOCP) gives the discrete

order complementarity problem (DOCP):

8>>>><
>>>>:

umi � ~ i; u
0

i =
~ i; u

m
I = 0; um0 = ~ 0

aumi�1 + bumi + cumi+1 + dum�1i�1 + eum�1i + fum�1i+1 � 0�
aumi�1 + bumi + cumi+1 + dum�1i�1 + eum�1i + fum�1i+1

�
^ (umi �

~ i) = 0

i 2 I n f0; Ig; m 2 M n f0g;

(18)

where
a := ��

h
�2�t
2��2

�
(r��2=2)�t

2��

i
b := 1 + r�t+ � �

2�t
��2

c := ��
h
�2�t
2��2

+ (r��2=2)�t

2��

i
d := �(1� �)

h
�2�t
2��2

�
(r��2=2)�t

2��

i
e := (1� �)�

2�t
��2

� 1 f := �(1� �)
h
�2�t
2��2

+ (r��2=2)�t

2��

i
:

(19)

We discuss well-posedness and convergence in due course | �rst of all we express the
complementarity condition of (18) in matrix form by collapsing the space and time indices
into vectors. Put

um :=

0
B@
um
1

...
umI�1

1
CA ~ :=

0
B@

~ 1
...

~ I�1

1
CA � :=

0
BB@
�(a+ d) ~ 0

0...
0

1
CCA : (20)

Then, substituting um
0
= ~ 0 and u

m
I = 0 into (18), the complementarity condition becomes

(Bum�1 + Aum � �) ^ (um � ~ ) = 0 m 2M n f0g; (21)
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where, de�ning notation for a tridiagonal matrix as

Tdk(ak; bk; ck) :=

0
BBBBBBB@

b1 c1
a2 b2 c2

. . . . . . . . .

aK�2 bK�2 cK�2
aK�1 bK�1

1
CCCCCCCA
; (22)

A and B are the (I � 1)-square tridiagonal matrices

A := Tdi(a; b; c); B := Tdi(d; e; f): (23)

Now we can collapse the time index m by putting

u :=

0
B@
u1
...
uM

1
CA ~	 :=

0
B@
~ 
...
~ 

1
CA � :=

0
BB@
�� B ~ 

�...
�

1
CCA (24)

and may in turn express (21) as

(Cu� �) ^ (u� ~	) = 0; (25)

where C is the M(I � 1)-square `staircase' matrix given by

C :=

0
BBBB@
A

B A
. . . . . .

B A

1
CCCCA : (26)

So, the discretisation scheme we have described leads us to approximate u(�; t) by a
step function whose value on grid points (umi )(i;m)2I�M , in the vector form given by (20)

and (24), is the solution u 2 IRM(I�1) of the �nite dimensional order complementarity
problem

(DOCP)

8><
>:
u � ~	
Cu � �
(Cu� �) ^ (u� ~	) = 0;

with the boundary values u:I = 0, u:
0
= ~ 0 and u

0 = ~ | we give these separately because
the boundary conditions have been substituted in to (DOCP) and do not appear in its
solution as written.

However, before we can write down a well posed equivalent linear programme, we have
to verify that the conditions of Theorem 3, namely the type Z property and coercivity of
the operator, are satis�ed in the matrix sense. Considering (21), since um�1 is known at
step m, the discretised operator L is represented in �nite dimensions by the matrix A, so
we require that A be type Z and coercive. It is simple to show that a matrix is type Z if
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an only if it has non-negative o�-diagonal coe�cients, the classical de�nition of a Z matrix

[4]. Clearly, A is type Z if and only if a � 0 and c � 0, which is the case if and only if

jr � �2=2j � �2=��: (27)

This condition holds for all parameter values simply by taking I large enough, and indeed
for realistic parameter values the critical value of I is very small. If condition (27) holds,
it is a simple matter to show that A is then coercive | see Jaillet et al [18], or Hutton [15]
for equivalent results applied to the discretised operator expressed in terms of an operator
acting on step functions | so that the original problem is well approximated .

Assuming (27) holds then, we may now use an appropriate version of Theorem 3 and
write down the equivalent discretised version of (LP) as, for any �xed c > 0 in IR(I�1)M ,

(OLP)

8<
:
min c0u

s:t: u � ~	
Cu � �:

with the boundary values u
(:)
I = 0, u

(:)
0 = ~ 0 and u

0 = ~ .
(OLP) is an ordinary linear programme which is easily solved numerically. Jaillet et al

[18] show that as M; I !1, the solution of the equivalent discretised localised variational
inequality converges to the solution of the localised variational inequality, which as already
mentioned, itself converges uniformly, as L; U ! 1, to the American put value function
on the whole domain. By virtue of Theorem 3, these same convergence properties are
naturally inherited by (DOCP) and (OLP).

4.3 Solution of the discrete problem

In the discrete problem given in x4.2, the equivalent (DOCP) and (OLP) are presented
as global in time. We can, however, decompose completely the global problem suggested
by (DOCP) and (OLP) by stepping through time | we can solve (DOCP) by solving the
sequence of complementarity problems

um � ~ 

Bum�1 + Aum � � � 0

(Bum�1 + Aum � �) ^ (um � ~ ) = 0 m = 1; : : : ;M;

with the boundary conditions u:I = 0, u:
0
= ~ 0 and u0 = ~ . This decomposition just

amounts to writing out rows of the global complementarity problem (DOCP) in blocks of
I � 1 and noting that the resulting complementarity problem in each block is well-posed
i.e. a unique solution exists, since A is a square coercive Z-matrix and um�1 is known at
time step m.

Each order complementarity problem in the decomposition (28) has an equivalent linear
programme, so that we get the following decomposition of (OLP):

min c0um
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s:t: um �  

Aum � �� Bum�1 m = 1; : : : ;M: (28)

Note that this statement illustrates the fact that one can get an LP equivalence from the
special case of the discrete complementarity problem - linear programme equivalence due
to Mangasarian [23]. Solving either (DOCP) or (OLP) in this way is computationally
far quicker and more memory-e�cient than solving the global problem. We now consider
suitable algorithms for solving the sub-problems.

The standard approach to solving the �nite di�erence formulation for the American
put is via the complementarity problem (DOCP), and there are two main approaches |
one iterative , the other direct | to solving this problem. By far the most popular is the
iterative method of projected successive over-relaxation (PSOR) due to Cryer [7], and it
is against this method that we test our proposed linear programming method. Pivoting
methods (which are direct) may be used for the complementarity problem, however these
tend to be more general and less well-developed than the simplex algorithm. (See Jaillet
et al [18] for further details on pivoting methods in the current setting.)

4.3.1 Solution of (OLP)

There are again two main algorithms for solving linear programmes such as (OLP), namely
the (direct) simplex method, due to Dantzig [9], and the (iterative) interior point method,
�rst applied to linear programmes by Koopmans in [21] and recently reintroduced by
Karmarkar [20]. Our preliminary results from the interior point method were poor | see
Hutton [15] for more details | so we concentrate here on the simplex method and outline
the salient features that we propose to exploit in x5.

4.3.2 Simplex method

The dual of the mth sub-problem (28) of (OLP) is, for any c > 0,

max ( ~ 0j(�� Bum�1)0)ym

s:t: 0 � (IjA0)ym � c: (29)

In the primal sub-problem, given by (28), only the right-hand side changes from the pre-
ceding sub-problem. When translated into the dual this means that only the objective
function of the dual sub-problem changes, as we see from (29), and so the optimal dual
solution to the preceding sub-problem is still a basic feasible solution to the current dual
sub-problem. This means at least that phase 1 | the feasibility search | is unnecessary.
Since we assume �t is small, the optimal solution of one sub-problem has only a few basic
variables changed from that of the preceding problem; the preceding dual solution should
not be too many pivots away from the current problem's dual solution. Not surprisingly,
therefore, we see in x5 that for this problem once we `hot-start' the solver from the previous
time step's optimal basis, the dual simplex method is superior to the primal.
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The simplex optimal basis has an immediate interpretation in terms of the problem:
ui is in the optimal basis if and only if umi > ~ i, i.e. the point indexed by (i;m) is in the
discrete approximation of the continuation region C. Similarly, ui is non-basic if and only
if umi = ~ i and hence the point indexed by (i;m) is in the discrete approximation of the
stopping region S.

Finally, it is vital in any approach to PDE-type problems that the typically very large
matrices in question, i.e. A and B, are stored in a way that exploits their sparsity. The
OSL routines we use in x5 store only the non-zero elements and enough information to
locate them, in so-called storage-by-columns.

4.3.3 The explicit method

The various algorithms for solving the discrete problem described above are in practice
only applied to the class of implicitmethods. (We distinguish between the implicit method,
which has � = 1, and general implicit methods, which have � > 0.) For the explicit method
(� = 0) we can write down the each time step's solution in a simple way. The constraint
matrix A de�ned by (23) reduces to the (I � 1)-square diagonal matrix diag(1 + r�t), so
that in fact the general mth sub-problem of (OLP) given by (28) reduces to

min c0um

s:t: um � ~ 

(1 + r�t)um � ��Bum�1: (30)

We can solve this by inspection | the solution um is explicitly determined from the previous
time step's solution um�1 by

um = ~ _
�

1

1 + r�t

�
�� Bum�1

��
: (31)

This is clearly a very rapid calculation for each iteration, the only signi�cant calculation
being a single matrix multiplication. However, this method has a problem of stability,
needing a large number of iterations to become stable. We discuss this further below.

The dual of the explicit method mth sub-problem, given in general in standard form
by (29), is also very simple, and is given by, for any c > 0,

max ( ~ 0j(�� Bum�1)0)ym

s:t: 0 � ym � c: (32)

Note that we have exploited the arbitrary value of c and the fact that A is diagonal to
change, without loss of generality, the constraint (IjA0)ym � c to ym � c. Again this has
a very simple solution, namely

ym = sgn
�
~ 0j(�� Bum�1)0

�
c; (33)
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where sgn(x) is the diagonal matrix with element i equal to 1 if xi > 0, equal to 0 if xi < 0
and arbitrary if xi = 0. Note that the dual solution is not unique, since some elements of
~ are zero and hence the corresponding variables may be set arbitrarily.

The dual solution is of the same order of computational complexity as the primal,
requiring only a matrix multiplication. The calculation of `sgn' is perhaps quicker than
computing a `max', since a variable's sign is stored as a binary number in a computer, but
this is not signi�cant and overall the two methods can be made virtually identical. We will
use the more standard primal method in our empirical tests in x5.

Accuracy and stability The �nite di�erence approximations (17) to the �rst and second
order spatial derivatives @u

@�
and @2u

@�2
are both O((��)2), whilst the approximation to the

time derivative @u
@t
is accurate to O(�t) | approximations accurate to a higher order would

produce an unstable algorithm. Thus, in general, the solution of the discrete approximation
will be accurate to O(��2 + �t) | however, in the case of the Crank-Nicolson method
(� = 1=2), accuracy is second order in time, i.e. O(��2+�t2), due to fortuitous cancellation
of remainders in the Taylor series.

However, these �nite di�erence approximation choices do not guarantee stability. The
general method is unconditionally stable for all � 2 [1

2
; 1], but for � 2 [0; 1

2
) | which

includes the explicit method | we have stability of the scheme if and only if

0 � � �
1

�2(1� 2�)
; (34)

where the mesh ratio � is de�ned by � := �t
(��)2

. The implications of this result for the

explicit method (� = 0) are profound, because to satisfy (34) we must take a number of
time steps of the order of the square of the number of space steps. This requirement can
become computationally unmanageable, since we need to take a large number of space
steps to get high accuracy. However, it is worth noting that, as a result, a stable explicit
scheme has second order time accuracy.

Other constant values of � in [0; 1] are equally valid, but have no real advantages over
the three just described. It may be advantageous to allow � to be time and/or state
dependent, so as to produce an alternating direction implicit (ADI) method suitable for
higher space dimensions, but we discuss this idea further only briey in the conclusions of
x6. The above discussion of accuracy and stability is well-known | see any standard PDE
text.

4.4 American lookback put

As a further test of the proposed linear programming method, we solve a variant of the
vanilla put, namely the continuously-sampled lookback put, where the path dependent
strike price is given by the maximum of the stock price process to date. In this case, the two
state variables, the current stock price x and the current maximum y, may be encapsulated
by a similarity transformation to the single variable z := log(y=x). It is straightforward to
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show that the normalised value function V � := 1

x
V solves the abstract linear programme

(LP), but with a modi�ed partial di�erential operator L := 1

2
�2 @2

@z2
�
�
r + 1

2
�2
�

@
@z

and

payo� function ~ (z) := (1 � ez). (To the authors' knowledge, the PDE was �rst derived
in Babbs [1].) Discretisation of (LP) is similar, except that we have spatial boundary
conditions @V �

@z
(0; :) � 0 and limz!1 V �(z; :) = ~ , and we approximate the Neumann

condition @V �

@z
(0; :) � 0 by the simple, albeit crude, �rst order accurate estimate u:0 = u:1.

We give results for numerical solution of this problem along with those for the vanilla put
in the next section.

5 Numerical Results

In this section, we give results from empirical tests of the simplex and PSOR algorithms for
solution of (OLP) or (DOCP) respectively. We demonstrate the accuracy of the solution of
(OLP) by simplex, give timings for the di�erent numerical algorithms and then give some
plots of the solution surfaces.

5.1 Computational Details

All results in the sequel were computed in double precision on an IBM RS/6000 590 serial
computer with 128 megabytes (MB) of RAM, running under AIX 3.2.5. The simplex al-
gorithm used was the routine EKKSSLV of IBM's Optimisation Subroutine Library (OSL)
Release 2, described in [16], which consists of compiled FORTRAN subroutines. All rou-
tines were written in FORTRAN and compiled and optimised by IBM xlf. The code
for PSOR applied to the American vanilla put was kindly supplied by Je� Dewynne of
Southampton University.

For simplex solution of general implicit methods (� > 0), the �rst block of (OLP) was
solved by a call to the OSL basis crash routine EKKCRSH at level 4, followed by a call to
the dual simplex method of EKKSSLV. Level 4 crash tries to produce a triangular starting
basis, maintaining dual feasibility, if possible, by not pivoting in variables that are in the
objective function, and ensuring that the sum of infeasibilities never increases. Results were
virtually identical to level 3 crash, which does not try to maintain dual feasibility. (See [16]
for more details.) Since the constraint matrix A de�ned by (23) is the same in each block,
successive blocks were `hot started' from the previous block, i.e. the simplex solver started
from the complete basis of the previously solved block, which should not be too far from the
current sub-problem's optimal basis, since �t is small. In practice, using the crash routine
EKKCRSH to generate the starting basis at each time step was not much slower | perhaps
25%. No presolving routine was used, since the OSL presolver EKKPRSSL writes presolve
information to a �le, which slows down the procedure considerably. Initially, EKKSSLV was
allowed to choose heuristically between primal and dual algorithms and always chose the
dual algorithm. This proved to be the right choice, since setting primal simplex produced
about half the speed of the dual method, and so for all experiments EKKSSLV is set to dual
simplex, with solution accuracy set to 1� 10�8. This is as one expects from the discussion
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of dual simplex in x4.3.1. The projected successive over-relaxation (PSOR) algorithm is
used with relaxation parameter ! := 1:5, convergence tolerance � := 1� 10�8 and starting
vector given by the previous time step's solution vector.

For the explicit method for the vanilla put, according to (34), the number of time steps
M must be chosen for stability so that � � 1=�2. This gives the restriction thatM �Mmin,
where

Mmin :=
�2TI2

U � L
; (35)

and for our explicit method experiments, we often chooseM =Mmin. For the lookback put
we do not knowMmin analytically, but it is very simple to determine the critical mesh ratio
| and hence Mmin | experimentally, since instability is very apparent in any numerical
solution.

The matrix multiplications Bum�1 in the mth (OLP) sub-problem (28) and those in
each PSOR iteration were computed in a sparse manner, skipping known zero elements,
and so take only O(I) operations, since the matrices involved are tridiagonal at most.

5.2 Accuracy of Finite Di�erences

The accuracy of �nite di�erence schemes applied to the American put is already well-
established | see, for example, Geske and Shastri [13] or more recently Carr and Faguet
[6]. For the purposes of validation of the LP method, we present results for the di�erent
�nite di�erence schemes solved by LP, speci�cally the simplex method, compared to option
values found in the literature: the series solution of Geske and Johnson [12] for the vanilla
put and the reected binomial method of Babbs [1] for the lookback put.

5.2.1 The American vanilla put

Table 1 gives vanilla put option values for all three schemes, with strike price K = 1,
maturity date T = 1 and varying risk-free rate and volatility. The current stock price is
x = 1, i.e. the option is `at the money', and calendar time t = 0, so that the value quoted is
P (1; 0). The discretisation in log price space is given by L = �:58, U = 2:02 and I = 130,
chosen so that the current stock price coincides with a grid point, eliminating the need for
interpolation. For implicit methods, we take M = 70, and for the explicit method, M was
chosen as the minimumMmin according to (35). The third column, labelled Pan(1; 0), gives
values of the `analytic' solution of Geske and Johnson [12] quoted in their paper, computed
as the �rst three terms of their series expansion | it is hard to know whether the values
quoted really are accurate, given that only a small number of terms are taken.

We see from this table that all schemes give at least 3 signi�cant �gures of accuracy

with this grid size. From the root-sum-of-squared errors (
P
e2i )

1

2 quoted in the last row,
with ei de�ned as PLP (1; 0)� Pan(1; 0), and by inspection, Crank-Nicolson and the stable
explicit method are more accurate than implicit, as is to be expected from their second
order time accuracy. The Crank-Nicolson solution appears always to be above the implicit
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one | this is because the solution surface is convex with respect to time, and the Crank-
Nicolson solution better captures the curvature because of its higher order time accuracy,
and so lies above the implicit solution. The explicit scheme produces very similar accuracy
to Crank-Nicolson, which is to be expected, since with the number of time steps chosen
according to (35), the explicit scheme also has second-order time accuracy.

5.2.2 The American lookback put

We are rather limited in our ability to properly evaluate the accuracy of �nite di�erence
schemes applied to the American lookback put problem, since we have only one value
against which to compare. Babbs [1] computes, by a modi�ed binomial method after 500
time steps, the solution at t = 0 as 10:17 with maturity T = :5 , risk-free rate r = :1,
volatility � = :2, dividend rate q = 0 and current stock price 100.

In Table 5 we give results at this same point computed by our LP method for the three
�nite di�erence schemes, with spatial domain z 2 [0; 1]. The critical mesh ratio for the
explicit method was found by trial and error to be about 25. For all three methods, we
see that any reasonable agreement with the known value only happens for large numbers
of space steps I. In general, accuracy is a whole signi�cant �gure less than for the vanilla
put for a similar mesh size. This is because we are evaluating the function exactly on the
boundary z = 0, where we have only a crude �rst order approximation to the Neumann
condition @V �

@z
(0; t) = 0. However, this inaccuracy is an artifact of the discretisation and not

the solution algorithm, and could be easily eliminated by more sophisticated approximation
to the Neumann boundary condition, e.g. a small space step at the boundary, or a second
order approximation.

5.3 Timings of Numerical Algorithms

All times are CPU times in seconds, and are for Crank-Nicolson or explicit methods. We
exclude the implicit method (� = 1), since times are virtually identical to the Crank-
Nicolson method, except slightly less time is spent computing the matrix multiplication
Bumi since B is diagonal. Unless otherwise stated, all timed problems are solved on the
truncated log-stock axis [�1; 2] with maturity date T = 1, exercise price K = 1, riskless
rate r = :1 and volatility � = :2.

Table 2 gives times for the vanilla put for the three main algorithms under consideration,
and corresponding plots of each method's time as a function of space steps I are given in
Figure 3. The number of time steps for the explicit was taken as the maximum of the
number taken for the implicit methods (1000) and the minimum number for stability, so as
to compare like with like, i.e. stable algorithms with at least 1000 time steps. The simplex
solution gives near-linear solution time as a function of space steps I. PSOR is faster for
smaller I, and explicit is faster again. PSOR and explicit methods exhibit rather similar
behaviour as I increases, both increasing like I2, so that for larger I, simplex is superior.
This is a well known theoretical property of SOR methods.
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Columns 3 and 5 of Table 2 give iteration numbers for PSOR and simplex. We cannot
give iteration numbers for each time step, so we give the �rst and last time step iteration
counts. In the case of simplex, from observation the iteration count always increases in a
near linear manner from the �rst step count to the last, and the iteration count in each
block is near linear as a function of I | as we expect from the solution time results. This
is also in keeping with empirical evidence, according to Luenberger [22], that the simplex
method converges in between m and 3m=2 pivots, where m is the number of rows of the
constraint matrix, in this case I�1. This clearly is an over-estimate for our results, perhaps
due to the sophisticated solver we are using, but the same linearity is observed. We show
the same information for PSOR | in this case, the iterations decrease as we step through
time, declining rapidly for the �rst few steps.

Similarly, Table 3 shows results and graphs of solution time for PSOR and simplex as
the number of time steps M increases, for two cases I = 600 and I = 2400. Dependence
of explicit method time on M is clear enough so we do not include it here. Again, simplex
shows linear dependence on the number of time steps, so that each time step takes about
the same amount of time. PSOR has the interesting property of being very at as a function
of M , particularly for I = 2400, for which case the solution time is virtually constant in
M . This is probably because the previous time step's solution, used as the starting point
for the iteration, is closer to the current time step's solution for smaller �t. As in Table 2,
we see PSOR is faster for smaller I, or equivalently, simplex is faster for smaller M .

Finally, we see in Table 4, the variation of PSOR and simplex with the �nancial param-
eters r, the risk-free rate, and �, the volatility. Again we exclude explicit method times,
since it is clear that they are constant with respect to r and are proportional to �2. In that
table, an asterisk (*) represents failure to converge after several hours. Again, we see that
the faster method is determined by the values of these parameters. PSOR is faster than
simplex for low r and �, slower for high r and �. However, the most immediate feature
of these results is that simplex time is virtually constant with respect to r and �, whilst
PSOR solution time explodes for high volatility.

We do not attempt to give such detailed solution timings for the American lookback
put, since, as we can see from Table 5, the algorithms behave in a very similar manner
on this problem. That table shows the same near-linear increase in solution time with
the simplex method, and PSOR again does better for a smaller number of space steps I,
but, as expected, as we increase I solution times increase as I2. However, comparing with
Table 2, note that both explicit (chosen with M = max(1000;Mmin) again) and PSOR are
slower on this problem than on the vanilla put, but simplex is faster.

5.4 American Option Solution Surfaces Graphically

Finally we give plots of the solution surfaces of the vanilla and lookback options solved
for in this Section. Figure 6 shows the American vanilla put surface plotted with respect
to the true stock price, computed with a discretisation of 50 � 50 with log-transformed
spatial domain � 2 [�1:5; 1:5], so that the true stock price domain is x 2 [e�1:5; e1:5] . We
recognise all the theoretical features of Figure 1 | we see that the option value at maturity
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is simply the payo� or obstacle function (K � x)+, the value function is convex in x, non-
increasing with time, always greater than or equal to the obstacle and smoothly �tted
onto the obstacle at the free boundary. Figure 7 shows the space-time domain, shaded
according to whether the value function is equal to the obstacle or greater than it. (Note
that Figure 7 was computed with the �ner grid 200� 200, so that S� is better de�ned in
the �gure.) In that �gure, there are three regions shown: region A is exactly the stopping
region S; B [C is the continuation region C truncated at x = eU ; C represents where the
solution is machine zero | theoretically, it should not be zero anywhere except for t = T

and x � K, but this region just represents the limits of machine accuracy. The convex
boundary between A and B is the optimal stopping boundary S�.

Figure 8 shows the lookback put surface for a current stock price of 1, a discretisation
of 50 � 50 and spatial domain z 2 [0; 1]. We see essentially the same theoretical features
as those of the vanilla put regarding the obstacle ez � 1, and the Neumann condition at
z = 0 is clearly visible. Figure 9 shows the space-time domain with shaded continuation
and stopping regions labelled C and S. The optimal stopping boundary in this �gure is
more jagged than that in Figure 9 | this is simply because this �gure was computed with
the same coarse grid as the surface itself.

6 Conclusions

We conclude that the new linear programming algorithm presented here is a very e�ective
solution technique for �nite di�erence approximations to American option free boundary
problems like those considered here. It is e�cient, especially for �ne discretisations, and
simple to implement when combined with modern commercially available simplex solvers.
It is a direct method, and as such has the inherent advantages that solution times are
predictable and robust with respect to changes in the parameters, with the additional
feature of the simplex method of being near-linear in the number of constraints | which
is directly related to the space discretisation. We cannot claim on the basis of the results
given in this paper that simplex solution is always superior, indeed PSOR is certainly
faster for coarser space or �ner time discretisations. As they stand, the implementations
here are probably equally e�cient. However, the PSOR algorithm and code used here was
optimised for this problem, whilst the simplex solver was a general purpose algorithm.
There is thus enormous scope for speeding up the simplex solution, and one need only look
at the historical improvements in linear programming to date to see that further speed-ups
in general purpose algorithms are to be expected. Preliminary results on other problems
suggest that the latest simplex routine of CPLEX gives a signi�cant speed improvement
over that of OSL.

It should also be possible to write a simplex solver for tridiagonal constraint matrices,
exploiting the rapid LU decomposition algorithms for such matrices. This comment also
illustrates one possible drawback of this approach | a modern simplex solver is a complex
piece of code, and one cannot usually obtain source code for commercially-available solvers,
so that alteration and �ne-tuning may be impossible. However there are other simplex
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solution algorithms in the public domain, and it might be pro�table to adapt some of
these to properly exploit the matrix structure | particularly with a view to solving the
banded constraint matrices of higher dimensional problems.

We have demonstrated that the LP solution works at least as well for the continuously
sampled similarity-transformed American lookback put | the poor accuracy of the solution
at the boundary is due to the discretisation scheme, not the solution algorithm, and could
easily be improved. The simplex solution times are very similar to the vanilla put, even
slightly better; whereas alternative methods appear to fare much worse.

The explicit method is certainly very fast for smaller numbers of space steps. However,
the stability problem eventually causes solution times to blow up for �ne spatial discreti-
sations, and is a constant headache when solving di�erent problems, especially when the
precise stability criterion is not known | for example, one small space step on the boundary
could cause severe stability problems.

A further feature of the simplex method is that, once an optimal basic solution has
been found, this solution may be rapidly recomputed after small changes in the variable
bounds, the right hand side or the objective function. This parametric simplex method
(for example the OSL routine EKKSPAR described in [16]) could be exploited for many
path-dependent options, such as continuous and discretely sampled lookback and Asian
options. For such options, the path-dependent parameter does not appear in the PDE,
and therefore the constraint matrix, but is simply a parameter of the payo� function and
boundary conditions, i.e. the variable bounds and right-hand side. This approach might
e�ectively reduce the two dimensional nature of these problems by almost one dimension
as far as solution times are concerned (see Dempster and Hutton [10] for more details).

More e�ort might also be directed towards an e�cient interior point solution of this
problem, a method which is very popular in the optimisation community | largely be-
cause of its e�ectiveness in solving very large problems, and the possibility of e�cient
parallelisation.

Probably the most interesting extension of the linear programming method is to higher
spatial dimensions, for example, to solve for the value function of American-style cross-
currency interest rate derivatives, in which case we have a banded (nested tridiagonal)
constraint matrix. Thought should be invested into exploiting such a structure. (See
Hutton [15] or Dempster and Hutton [10] for an application of �nite di�erence methods to
complex European-style cross-currency derivatives, driven by three stochastic variables.)
However, the conclusions about the superiority of explicit schemes to standard implicit
ones for a three state variable complex European option case in Hutton [15] will apply
equally to simplex solution of implicit schemes for American options in higher dimensions.
It appears, therefore, that the way to exploit the LP method in higher dimensions is to
solve one-dimensional implicit steps as part of an ADI method. It may also be that a
multi-grid method may be needed to obtain reasonable solution times, and it would be
very interesting to see how LP solution could �t into such a scheme.
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Risk- Vola- Geske & Crank- Explicit

free tility Johnson Implicit Nicolson time steps

rate r � Pan(1; 0) PLP (1; 0) PLP (1; 0) Mmin PLP (1; 0)

.125 .5 .1476 .1475 .1479 1625 .1479

.080 .4 .1258 .1255 .1256 1040 .1260

.045 .3 .1005 .1001 .1004 585 .1004

.020 .2 .0712 .0708 .0710 260 .0712

.005 .1 .0377 .0374 .0375 65 .0376

.090 .3 .0859 .0858 .0861 1585 .0861

.040 .2 .0640 .0637 .0639 260 .0640

.010 .1 .0357 .0354 .0355 65 .0356

.080 .2 .0525 .0525 .0526 260 .0527

.020 .1 .0322 .0319 .0320 65 .0321

.120 .2 .0439 .0439 .0440 260 .0440

.030 .1 .0292 .0289 .0290 65 .0291�P
e2i
� 1
2 = 9

�P
e2i
� 1
2 = 6

�P
e2i
� 1
2 = 5

Table 1: Accuracy of three American vanilla put �nite di�erence schemes
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Volatility � = :2

time steps M = 1000 Explicit

space PSOR Simplex M = maxf1000;Mming
steps I time (s) iterations time (s) iterations M time (s)

75 .83 17, 13 2.04 0, 3 1000 .05

150 1.56 17, 12 3.81 0, 6 1000 .1

300 2.69 17, 11 7.53 0, 13 1200 .2

600 3.50 16, 7 15.2 0, 27 4800 .61

1200 5.87 15, 6 31.3 1, 55 19200 4.9

2400 33.3 17, 16 66.2 7, 114 76800 37.0

4800 214 62, 47 144 17, 232 307200 317.0

9600 1270 214, 134 323 36, 468 1228800 5770

Volatility � = :4

time steps M = 1000 Explicit

space PSOR Simplex M = maxf1000;Mming
steps I time (s) iterations time (s) iterations M time (s)

75 .9 18,14 2.11 0, 9 1000 .05

150 1.55 18, 13 3.98 0, 18 1000 .1

300 1.99 18, 8 7.85 0, 38 1600 .32

600 3.29 18, 6 16.4 2, 78 6400 2.46

1200 19.1 20, 20 34.5 8, 159 25600 19.9

2400 122 72, 60 76.6 21, 323 102400 149

4800 807 250, 188 178 45, 650 409600 1280

9600 5080 831, 559 430 94, 1304 1638400 10500

Table 2: Comparative solution times for PSOR, simplex and explicit �nite di�erence algo-
rithms for varying space steps
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Figure 3: Comparative solution times versus number of space steps for volatilities � = :2
and :4
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time Space steps I = 600

steps M PSOR Simplex

10 .77 .31

20 .80 .53

40 .76 .85

80 .97 1.42

160 1.14 2.66

320 1.33 5.09

640 2.44 10.02

1280 5.97 19.4

2560 14.6 38.2

5120 35.0 76.7

10240 61.8 153

time Space steps I = 2400

steps M PSOR Simplex

10 28.4 2.86

20 29.6 3.65

40 29.1 5.61

80 29.9 8.57

160 32.0 14.4

320 31.6 24.6

640 33.0 46.0

1280 35.3 87.9

2560 38.7 171

Table 3: PSOR and Simplex times for varying time steps

Figure 4: PSOR and Simplex times for varying time steps
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Risk-

free Volatility �

rate r .05 .1 .2 .4 .8
.05 3.82 9.81 32.9 127 *
.1 3.26 9.15 32.6 122 *
.2 2.13 7.04 28.4 114 *
.4 1.64 3.80 21.1 101 *
.8 1.12 2.96 11.2 71.9 *

Risk-

free Volatility �

rate r .05 .1 .2 .4 .8
.05 24.7 26.6 31.0 41.7 46.1
.1 24.8 27.0 31.3 38.2 51.4
.2 24.8 25.3 25.9 32.8 44.9
.4 23.8 24.7 25.6 29.2 38.1
.8 23.4 24.3 25.6 26.8 33.1

Table 4: PSOR and Simplex times for varying riskless rate r and volatility � (* ) failure
to converge in 2000s)

Figure 5: PSOR and simplex times for varying r and �
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space PSOR Simplex Explicit Crank-Nicolson Implicit Explicit

steps I time (s) time (s) time (s) PLP (0; :5) PLP (0; :5) Pexp(0; :5)

75 .76 1.60 .08 .1091 .1091 .1091

150 1.36 2.85 .16 .1054 .1054 .1054

300 2.11 5.52 .66 .1036 .1035 .1036

600 3.63 11.4 5.27 .1026 .1026 .1026

1200 17.0 24.4 38.2 .1022 .1021 .1022

2400 102 54.9 315 .1020 .1019 .1020

4800 632 131 2580 .1018 .1018 .1018

9600 3330 324 21100 .1018 .1017 .1018

Binomial value .1017 .1017 .1017

Table 5: PSOR, simplex and explicit results for the American lookback put with varying
space steps
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Figure 6: (LP0) solution surface with true stock price axis

Figure 7: The computed optimal stopping boundary
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Figure 8: American lookback put value surface with exercise boundary

C S

Figure 9: The optimal stopping boundary of the American lookback put
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