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term Interest Rate” (by Chan, Karolyi, Longstaff and Sanders 

(1992) published in Journal of Finance) 

 

This excellent paper provides a comprehensive empirical 
comparison on a variety of well-known continuous-time short rate 

models in the finance literature in their abilities in explaining the 

actual behavior of short rate. The short rate models include Merton, 

Vasicek, CIR SR, Dothan, GBM, Brennan-Schwartz, CIR VR and 

CEV. First, a generalized form of continuous-time model is 

proposed in which the eight short rate models are nested. The 

generalized model possesses the mean-reverting property and the 

heteroskedastic property. The discrete-time econometric 

specification of the generalized model is an AR(1) model with 

time-varying volatility which depends on the current level of the 

short rate. The Generalized Moment of Moments (GMM) by 

Hansen (1982) technique is then employed for the estimation of the 

unknown parameters of the discrete time model. The test statistics 

inherent from the GMM are used for testing hypotheses on the 

unknown parameters and comparing the performance of various 

short-rate models in explaining the dynamic of the monthly T-Bill 

yields. Topics included in this presentation are listed as follows: 

 

Section 1:  Introduction    

Section 2: The Generalized short rate model and its discrete-time  

                 specification 

Section 3: Review on Generalized Method of Moments and its use  

                 for comparing short rate models 

Section 4: Empirical Results and Their Implications    
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Section 1: Introduction  
 

1. Background: 

 

� Many short-rate models have been proposed in the finance 

literature 

 

� A relatively little amount of work on comparing the short-

rate models in their abilities to incorporate the actual 

behavior of short rates 

 

2. Objectives:  

   

� Estimate the unknown parameters of the general form of 

continuous-time short-rate (called unrestricted model) 

through its discrete-time specification using the Generalized 

Method of Moments (GMM) 

 

� Perform students’ t test on each of the unknown parameters 

of the unrestricted model. In particular, the t test for the beta 

parameter indicates whether the mean-reverting effect exists 

or not while the t test for the gamma parameter indicates 

whether the volatility of the short rate model is changing or 

remains constant (i.e. homoskedastic or heteroskedastic)   

 

� Perform the chi-square test of goodness-of-fit for each of 

the eight nested models using the unrestricted one as 

benchmark using the GMM minimized criterion as a test 

statistic (i.e. the chi-square test statistic). This tells us the 

explanatory power of each nested models 
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� Provide pair-wise comparisons of nested models by 

constructing a R test statistic based on the difference 

between the GMM minimized criterion of each of the 

nested models and that of the unrestricted one. The test 

statistic R follows a chi-square distribution and the test 

resembles the likelihood ratio test  

 

� Construct a test for whether there is a structural break in the 

one-month T-bill yield due to the shift in Federal Reserve 

Monetary Policy in October 1979.  The structural break is 

incorporated by introducing a dummy variable. The test 

statistic is the GMM minimized criterion for the expanded 

model with the dummy variable  

 

3. Implications from the empirical analysis: 

 

� Identification of the most important parameter that 

differentiates short rate models 

 

� The volatility of the short rate process (i.e. homoskedastic or 

heteroskedastic). The relationship between the short rate 

volatility and the level of the short rate 

 

� Structural change in the short rate process in October 1979 

due to the shift in the Monetary Policy in U.S. 
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4. Some remarks: 

 

� This paper focuses on the comparison of different parametric 

          short rate models. It seems to be analogues the problem of  

          model selection among different parametric statistical  

          models based on some criteria, for instance, Akaike  

          Information Criteria (AIC) or Bayeisan Information Criteria  

          (BIC) in parametric time series models and parametric  

          regression models 

 

� The estimation and related empirical issues of semi-

parametric short-rate models and the non-parametric short-

rate models has been studied by several researchers, for  

instance, Jiti Gao, Yacine Ait-Sahalia and Andrew Lo   

 

� The short rate considered in the paper is the short-term 

nominal interest rate (i.e. without adjustment for inflation 

rate). The short-term interest rate that has been adjusted for 

inflation is called short-term real interest rate which is  

unpredictable due to the unpredictable nature of inflation rate 

 

� For modelling short-term nominal interest rate, it is desirable 

to have a stochastic model which ensures that the nominal 

short rate is positive any time almost surely. However, for 

modelling short-term rate interest rate,  a stochastic model 

which allows the real short rate taking negative values, for 

instance, the Vasicek model, the Merton model and the Ho-

Lee model, is also suitable due to the fact that the inflation 

rate may be greater than the nominal short rate 
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� The use of T-bill yields as a proxy for short rate can induce 

significant measurement error (see Pearson and Sun (1994) 

published in Journal of Finance). The presence of 

measurement error can make the time series analysis of short-

term nominal interest rate useless since the underlying short 

rate cannot be measured or observed (see Campbell, Lo and 

MacKinlay (1997)). In this case, one needs to consider the 

Kalman filtering state-space representation for the 

formulation of the short rate model with measurement error 

(i.e. the observation process is the observable time series of 

the T-bill yields while the state is the unobservable time 

series of short nominal rate)    

 

Section 2: The Generalized short rate model and its discrete-time  

                 specification 

 
1. The general form of the short rate model (or the unrestricted 

model): 

 

d rt = (α  + β  rt) dt + σ  rt
γ

 d Wt 

 

      {rt} – the short rate process or instantaneous interest rate  

                process 

  

{Wt} – a standard Brownian Motion 

 

β  – the mean-reverting parameter (i.e. non-zero if the effect  

       exists) 

 

γ  – the elasticity parameter that describes how the current level  

      of the interest rate affects the volatility of the change in  

      the short rate 
        

If γ  = 0, the short rate process is homoskedastic; otherwise, it is  

heteroskedastic 
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The general form include most of the short-rate models as nested  

models (see Table 1 in Page 1212)   

 

The nested short-rate models may be single-factor or multi- 

factor 

 

It seems that this paper only consider the single factor model 

 

Question: Can the general set up still apply for the multifactor  

                 model?   

 

 

 The general form cannot incorporate some short rate models,  

 for instance, the Ho-Lee model, the Hull-White model, and  

 the Pearson-Sun model. 

 

Ho-Lee: d rt = θ (t) dt +  σ  d Wt (i.e. θ (t) = α  => Merton) 

Hull White: d rt = (θ (t) – β  rt) dt +  σ  d Wt 

Pearson-Sun: d rt = (α + β  rt) dt +  σ  (θ 0 + θ 1 rt) 
1/2

 d Wt 

 

Pearson-Sun model is an extension of the square-root process  

(i.e. the CIR SR short rate model). If θ 0 = 0 and θ 1 ≠  0, Pearson- 

Sun model reduces to the square-root process. If θ 1 = 0 and  

θ 0 ≠  0, Pearson-Sun model becomes homoskedastic Vasicek  

short rate model 

 

Some ideas:  

 

To develop a new general form of short rate model that can  

incorporate or nest a wider class of short rate models in the  

literature 

 

By using an extended version of the model, it is possible to  

obtain a comprehensive and representative empirical 

comparison 
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     Since it is a continuous-time model, it is difficult to estimate its  

 unknown parameters directly via data from discrete sampling 

 
Quick solution: Consider the discrete specification of the general  

                          model 

 
2. The discrete-time heteroskedastic AR(1) specification: 

  

rt+1 – rt = α  + β  rt + et+1 

 

E(et+1) = α  + β  rt and SD(et+1) =σ  rt
γ

 

 

The volatility of the change in the short rate = SD(et+1) =σ  rt
γ

 

 

The heteroskedastic property of the discrete-time specification is  

in line with that of the continuous-time counterpart 

The discrete time specification is just an approximation and the   

approximation error has been shown by Campbell (1986) to be  

of second order important if the discrete-time sampling window  

is small 

 

Very heuristically, by Taylor’s expansion, 

  

 rt+dt – rt = (drt/dt) dt + (d
2
rt/dt

2
) dt

2
 + …  

 

As dt →  0, the second order and the higher order terms has been  

neglected 

 

It seems that a more rigorous justification can be found by  

employing Ito’s lemma 

 

    Four unknown parameters α , β , γ  and σ  are estimated by GMM 
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Section 3: Review on Generalized Method of Moments and its  

                  use for comparing short rate models 

 
1. Classical Method of Moments (MM): 

 

� Form a moment equation by matching a moment with its 

empirical estimate 

 

� Obtain a moment estimate of the unknown parameter by 

solving the moment equation 

 

� The number of moment equations is equal to the number of 

unknown parameters 

 

� A moment estimate of an unknown parameter is not unique  

 
2. A simple example of MM: 

 

     Suppose X1, X2,…,Xn iid ~ t(υ ) 

 

     Estimate υ  by the MM 

  

     E(Xi
2
) = υ  / (υ  - 2) if υ  > 2  

 

     By matching E(Xi
2
) with its sample version (∑

=

n

i 1

Xi
2
) / n, we get  

     the following moment equation: 

  

(∑
=

n

i 1

Xi
2
) / n = υ  / (υ  - 2) 

     

    The moment estimate υ e for υ  is given by:  

 

υ e = (2 ∑
=

n

i 1

Xi
2
) / (∑

=

n

i 1

Xi
2 
 - n) 
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3. Consistency: Weak consistency and Strongly consistency 

 

� Weakly consistent estimate: Converge to the ‘true’ value of 

the unknown parameter in probability as the sample size 

tends to infinity 

 

� Strongly consistent estimate: Converge to the ‘true’ value of 

the unknown parameter with probability one as the sample 

size tends to infinity 

 

� Consistency is the minimum requirement for an estimate  

 

� Other requirements include, for instance, sufficiency and 

efficiency 

 

4. The MM estimate is a consistent estimate 

 

5. It is a weaker method compared with maximum likelihood 

estimation (or Quasi maximum likelihood estimation)and least-

square estimation 

 

6. The MM estimate may not be an asymptotically efficient 

estimator. Recall that an unbiased estimator is said to be more 

efficient than the other if the variance of the former is smaller 

than the variance of the latter. An unbiased estimator is said to 

be asymptotically efficient if its variance tends to the inverse of 

the Fisher information evaluated at the value of the estimator 

which is the lowest variance bound of an unbiased estimator, 

namely the Cramer-Rao lower bound (i.e. The variance of an 

unbiased estimator must be greater than or equal to the Cramer-

Rao lower bound). Note that the Fisher information is defined as 

the negative of the expectation of the second derivative of the 

log-likelihood function with respect to the unknown parameter.  
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7. Both MLE and GMM estimates are efficient 

 

8. Since the moment estimate of an unknown parameter is not  

     unique, we can find another moment estimate based on another  

     moment equation  (e.g. We can find another moment estimate  

     for the degree of freedom υ  based on another moment equation  

     obtained from matching the fourth moment by its sample  

     version) 

 
9. One cannot choose the single parameter υ  so that it can satisfy  

     two different moment equations simultaneously 

 

10. One possible solution is to select υ  so that it can satisfy both of      

      the moment equations as close as possible  

   

11. Generalized Method of Moments (GMM): 

 

      Suppose X1, X2,…,Xn iid ~ t(υ ) 

 

      Write X(n) for the n-dimensional vector (X1, X2,…,Xn)   

 

      Estimate υ  by the GMM using the second and the fourth  

      moments: 

  

      E(Xi
2
) = υ  / (υ  - 2) if υ  > 2  

 

      E(Xi
4
) = 3υ

2
 / [(υ  - 2) (υ  - 4) ] if υ  > 4  

 

      Let h(υ , Xi) := (h1(υ , Xi), h2(υ , Xi))
T
,  

  

      where h1(υ , Xi) := Xi
2 
– υ  / (υ  - 2) and 

 

                 h2(υ , Xi) := Xi
4
 – 3υ

2
 / [(υ  - 2) (υ  - 4)] 
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      Prior sampling, Xi is random, and hence, so is h(υ , Xi) 

   

      In this case, we can define the ensemble average E(h(υ , Xi)) of  

      h(υ , Xi), where the expectation is taken over all possible values  

      for Xi 

 

      Let υ 0 denote the “true” value of the unknown parameter υ  

 

      By definition of the function h, we require that υ 0 satisfies the  

      following vector equation: 

 

E(h(υ 0, Xi)) = (0, 0)
T
 

 

      Let gn,1(υ , X(n)) := (∑
=

n

i 1

h1(υ , Xi)) / n  

                                  = (∑
=

n

i 1

Xi
2
) / n – υ  / (υ  - 2) 

 

      and 

             

            gn,2(υ , X(n)) := (∑
=

n

i 1

h2(υ , Xi)) / n  

                                  = (∑
=

n

i 1

Xi
4
) / n – 3υ

2
 / [(υ  - 2) (υ  - 4)] 

 

      Write gn(υ , X(n)) := [gn,1(υ , X(n)), gn,2(υ , X(n)) ]
T
  

 

      gn(υ , X(n)) is the sample average or the time average of h(υ , 

Xi) 

 

      Under the assumptions of strict stationarity and ergodicity for  

      the time series X(n), it is reasonable to use gn(υ , X(n)) to  

      approximate E(h(υ , Xi)) 

         

E(h(υ , Xi)) ≈  gn(υ , X(n)) 
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      Recall that 

 

� A time series {Xt} is said to be covariance-stationary or 

weakly stationary if its unconditional mean and 

unconditional auto-covariance are invariant over time  

 

� A time series {Xt} is said to be strictly stationary if any of 

its finite-dimensional distributions are invariant over time 

 

� A covariance-stationary time series {Xt} is said to be 

ergodic for the mean if its time averages (∑
=

n

t 1

Xt)/n will 

eventually converge in probability to the ensemble average  

      E(Xt) as n goes large    

 

     Since E(h(υ 0, Xi)) = (0, 0)
T
, we expect that gn(υ , X(n)) should  

     be as close as possible to (0, 0)
T
 when υ  = υ 0 

 

     In fact, the main idea is to find the estimate υ  of the “true”  

     value υ 0 so that gn(υ , X(n)) is as close as (0, 0)
T
  

 (i.e. We try to minimize the distance of each component  

 gn,i(υ , X(n)) (i = 1, 2) from 0) 

 

     Let W:= (wij) denote a (2×2) positive definite symmetric  

     weighting matrix which indicates the importance given to  

     satisfying each of the moment equations 

 

     For instance, the larger is w11, the greater is the importance  

     of being as close possible to satisfying the moment equation  

     given by the second moment        

 

     Define the criterion function Jn(υ , X(n)) in the following  

     quadratic form:  
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Jn(υ , X(n)) = gn(υ , X(n))
T 

W gn(υ , X(n)) 

     The GMM estimate υ g is given by: 

 

υ g = arg min υ  > 4 Jn(υ , X(n)) 

 

     Different names for this GMM estimate are “Minimium Chi- 

     Square” Estimator by Cramer (1946), “Minimum Distance”  

     Estimator, “GMM” estimator by Hansen (1982) in   

     Econometrica  

 
     Hansen (1982) was the first to provide the most general  

     characterization of the GMM approach and derive the   

     asymptotic properties for serially dependent process  

 

     A recent paper by Hansen (2001) investigated the estimation of  

     dynamic economic system using GMM from the time series  

     perspective 

 

The general formulation for the problem of GMM estimation by  

Hansen (1986) is given as follows: 

 

For illustration, we consider the case that observations are  

scalars. The case of vector observations can be generalized  

easily. 

 

Suppose X(T):= (X1, X2,…,XT) denote a T-dimensional random  

vector representing observations up to and including time T 

 

Let θ  denote an N-dimensional vector of unknown parameters 

 

Define a vector-valued function h: R
N 

×  R
 
→

 
R

M 
(where M ≥  N)  

 

The function h(θ , Xi) is used to characterize the moment   

conditions or the moment equations 
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Write θ 0 for the “true” value of the unknown parameter θ       

    

By definition of the function h, we require that θ 0 satisfies the  

following M-dimensional vector equation: 

 

E(h(θ 0, Xi)) = 0M, 

 

where the expectation E(h(θ 0, Xi)) is the ensemble average of  

h(θ 0, Xi)   

 

We call the M rows of the above vector equation orthogonality  

conditions 

 

Define the sample average or the time average gT(θ , X(T)) of  

h(θ , Xi) as follows: 

 

gT(θ , X(T)) = (∑
=

T

t 1

h(θ , Xt))/T, 

 

We call gT(θ , X(T)) the generalized sample moment 

 

Use gT(θ , X(T)) to approximate the generalized population  

moment E(h(θ , Xi)) under the assumptions of strict stationarity  

and ergodicity for {Xt} 

 

When θ  = θ 0, we expect that gT(θ , X(T)) should be as close as  

0M  

 

The main idea of the GMM is to find an estimate θ e for the  

“true” parameter θ 0 so as to make  gT(θ , X(T)) as close as  

possible to 0M  

 

Let WT denote the (M×M) positive definite symmetric weighting  

matrix, where WT may be a function of X(T) 
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     Define the criterion function JT(θ , X(T)) in the following  

     quadratic form:  

 

JT(θ , X(T)) = gT(θ , X(T))
T 

WT gT(θ , X(T)) 

 

      

JT(θ , X(T)) can be interpreted as the weighted sum of the  

squared distances between each component of gT(θ , X(T))  

and zero 

 

The GMM estimator θ e for θ 0 is given by: 

 

θ e = arg minθ  JT(θ , X(T)) 

 

The above non-linear minimization problem can be solved  

numerically 

 

Consider the problem of estimating the unknown degree of  

freedom υ  of the students’ t distribution 

 

By letting WT = 1, θ  = υ , h(θ , Xi) = Xi
2 
– υ  / (υ  - 2), the  

GMM method reduces the MM method     

    

Some of the commonly used estimation methods, for instance  

ordinary least squares (OLS) estimation, non-linear  

simultaneous equations estimators, instrumental variable  

estimation, two-stage least-squares, and in some cases MLE 

     

When the number of unknown parameters to be estimated N is  

exactly the same as the number of orthogonality conditions M,  

we set the weighting matrix as the diagonal matrix with each      

diagonal element being the reciprocal of N.  
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In this case, the objective function becomes: 

 

 JT(θ , X(T)) = gT(θ , X(T))
T 

gT(θ , X(T)) 

 

Then, the GMM estimator is given by solving the following N- 

dimensional vector equation:  

 

gT(θ e, X(T)) = 0N 

 

   If M > N, then objective function becomes the original one with  

   the general weighting matrix WT  

 

   In this case, the closeness between each of the components of   

   gT(θ e, X(T)) to zero depends on the amount of weight the  

   corresponding orthogonalility condition (i.e. the moment  

   condition or equation) is given by the weighting matrix WT 

 

   Theorems: 

 

� Suppose {Xt} is strictly stationary and ergodic and that the 

function h is continuous. Then, for any value of θ , the sample 

average or the time average of gT(θ , X(T)) of h(θ , Xi) converge 

in probability to the population average or the ensemble 

average E(h(θ , Xi)) as T tends to infinity. This is the weak law 

of large numbers. Recall that the strong law of large numbers is 

the one with convergence almost surely (i.e. with probability 

one)  
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� Suppose 

 

     (i) {Xt} is strictly stationary and ergodic 

     (ii) E(h(θ , Xi)) is a continuous function of θ  

     (iii) θ 0 is the unique solution to E(h(θ , Xi)) = 0M 

     (iv)The moment conditions are general enough (see the paper  

           by Hansen (1982) in Econometrica) 

   

    Then, the GMM θ e is a consistent estimate of θ 0 

         

11. The choice of the optimal weighting matrix WT 

 

� Assume that the process {h(θ 0, Xt)} is strictly stationary with 

mean 0M and r-th lag auto-covariance matrix given by: 

 

Ar = E(h(θ 0, Xt)h(θ 0, Xt-r)
T
 ) 

 

where  

 

(i) r ranges from the negative infinity to the positive infinity 

 

(ii) Ar is an (M×M) positive definite symmetric matrix. It  

      depends on θ 0 and is not known in advance 

 

� Assume that ∑
∞

−∞=r

∑
=

M

i 1

∑
=

M

i 1

 | hi(θ 0, Xt) hj(θ 0, Xt-r) | < ∞  

 

� Define the following sum S of auto-covariance matrices: 

 

S = ∑
∞

−∞=r

Ar 
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� Theorem:  

  

     Suppose {Zt} is a weakly stationary M-dimensional time series  

     with the unconditional (or marginal) mean vector and  

     variance-covariance matrix given as follows: 

 

E(Zt) = m and E((Zt – m)(Zt-r – m)
T
) = Ar 

  

 Consider a sample {Z1, Z2,…, ZT} of size T and define the    

 following sample average:  

 

MZ = (∑
=

T

t 1

Zt) / T 

      

Then, the sample average MZ satisfies: 

 

(i) MZ →  m in probability as T →  ∞  

 

(ii) T E((MZ – m)(MZ – m)
T
)  →  ∑

∞

−∞=r

Ar as T →  ∞  

 

Note that E((MZ – m)(MZ – m)
T
) is the variance-covariance  

matrix of the sample average MZ (i.e. It is an estimator for m).  

The statement (ii) provides the asymptotic (i.e. T →  ∞ )  

variance-covariance matrix for the estimator MZ 

 

� Now, we consider a sample {h(θ 0, X1), h(θ 0, X1), …, h(θ 0, XT)} 

of size T. Then, the sample average is given by: 

   

gT(θ o, X(T)) = (∑
=

T

t 1

 h(θ 0, Xt))/T 

    

     gT(θ o, X(T)) is an estimator for h(θ 0, Xi) 
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    By the above theorem, we have 

 

    (i) gT(θ o, X(T)) →   E(h(θ 0, Xi)) = 0M in probability as T →  ∞  

 

    (ii) T E(gT(θ o, X(T)) gT(θ o, X(T))
T
) →  ∑

∞

−∞=r

Ar = S as T →  ∞  

  

Hence, by the statement (i), the variance-covariance matrix for  

the estimator gT( θ o, X(T)) is given E(gT( θ o, X(T)) 

gT(θ o,X(T))
T
). 

From the statement (ii), we see that S is closely related to the  

asymptotic variance-covariance matrix of gT(θ o, X(T)) 

 

� Intuitively, the asymptotic variance of the GMM estimator θ e 

that is chosen to minimize depends on the choice of WT since 

the objective function JT(θ , X(T)) depends on WT 

 

 The asymptotic efficiency of the GMM estimator θ e can be  

 maximized by making the asymptotic variance-covariance as 

 small as possible via the choice of the weighting matrix  WT 

 

 It has been shown in Hansen (1982) that the optimal choice of 

 WT for minimizing the asymptotic variance-covariance matrix  

 for θ e is given by the inverse S
-1

 of the matrix S 

 

     In other words, the asymptotic variance of the GMM estimator  

     θ e minimized when θ e is chosen to minimize the following  

     objective function 

 

JT(θ , X(T)) = gT(θ , X(T))
T 

S
-1 

gT(θ , X(T)) 

 

The intuition behind the optimal choice of weighting matrix  

can be obtained by considering the use of the generalized least- 

squares (GLS) method (i.e. the weighted least-squares method) 
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for estimating linear models 

 

Section 4: Empirical Results and Their Implications    
 

 

 

~ End of the presentation~ 


