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ABSTRACT 

 

A variety of continuous time series models of the short term riskless rate are 
estimated using Maximum Likelihood method on discretized models. Then the 
best model will be found that can fit the data better. A number of well-known 
models perform poorly in the comparison. Indirect Inference method is used 
for the best model in order to obtain consistent estimates. At the end, an 
empirical application of stochastic model for interest rates will be used for 
pricing the call options of Nokia Company. 
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1-Introduction 

 

The short term interest rate is one of the most fundamental and important prices 

determined in financial markets. More models have been put forward to explain its 

behavior than for any other issue in finance. Many of the more popular models currently 

used by academic researchers and practitioners have been developed in a continuous-time 

setting, which provides a rich framework for specifying the dynamic behavior of the short 

term riskless rates. A partial listing of these interest rate models include those by Merton 

(1973) , Brennan and Schwartz (1977,1979,1980) , Vasicek (1977) , Dothan (1978) , 

Cox, Ingersoll and Ross (1980 , 1985) , Constant inides and Ingersoll (1984) ,Shaefer and 

Shwartz (1984) , Sundaresan (1984) , Feldman (1989) , Longstaff (1989a) , Hull and 

White (1990) , Black and Karasinski (1991) , and Longstaff and Shwartz (1992). 

One of the key points in this area is how these models compare in terms of their ability to 

capture the actual behavior of the short-term riskless rate. The models mentioned above 

are nested in the general model defined as: 

 

dzrdtrd r

γσβα +




 +=

              (1.1) 

 

Chan et. al (1992) has compared these different nested models by estimating a discrete-

time specification of models. They used the GMM method to find the estimates of 

discretized model and they implemented the hypothesis testing methods developed by 

Newey and West (1987) in order to evaluate the restrictions imposed by various models 

on the unrestricted model defined in (1.1). 

 

This paper uses Maximum Likelihood Estimator for estimation of two Non-Nested 

models for interest rates: 

( )dwrdtrdr tσσβα γ
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                (1.3) 

 

The discretized models defined in (1.2) and (1.3) will be used for MLE estimation. Also 

three other models which are nested in model (1.2) will be estimated in the same way. 

Vuong (1989) has proposed a method for comparing different models estimated by MLE.  

By using the time series of monthly Eurodollars rates from 1970-2002, we reject model 

(1.3) in favor of model (1.2). Then we will estimate some models like CIR, GBM and 

Vasicek which are nested models in (1.2). CIR and Vasicek Models have been used a lot 

by researchers in this area to model short term interest rates. Since all of them are nested 

in model (1.2), we just used the LR test to compare them with the more general model 

defined in (1.2) in which all of them are rejected. 

 

Estimating discretized models has a bias. Since the discretized model is misspecified, the 

approximation of ML estimator is generally inconsistent. The indirect inference method 

will use simulations performed under the initial model, to correct for the asymptotic bias 

of the estimation. 

 

The remainder of this paper is organized as follows. Section 2 describes the short term 

interest rate models examined in the paper. Section 3 discusses the econometric approach. 

Section 4 describes the theory of model selection criterion used in this paper. Section 5 

describes the data. Section 6 presents the empirical results. Section 7 shows an example 

of option pricing for Nokia Company by using the interest rate model. Section 8 

summarizes the paper and makes concluding remarks. 

 

2- Interest Rate Models 

 

Stochastic differential equations have been used to define the interest rate processes. The 

general format of a one-factor diffusion model is as below: 

 

( ) ( )dwtrdttrdr t,, σµ +=
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Where ,dwt  is a Brownian motion process. Implementing different functional forms for 
µ and σ  ,will deliver various diffusion models. Researchers have tried to propose better 

models which have the capability to fit the data more efficiently and can be used for 

pricing the interest rate derivatives. Now some of these models which are used in this 

study, will be introduced: 

 

Model 1: Geometric Brownian Motion 

It is one of the interest rate models considered by Marsh and Rosenfeld (1983) and 

simply defined as: 

       rdzrdtdr σβ +=
   

 

Model 2 : Vasicek 

Vasicek model is the Ornstein-Uhlenbeck process used for deriving an equilibrium model 

of discount bond prices. This Gaussian process has been used extensively by others in 

valuing bond options, futures and other types of contingent claims. This process is 

defined as : 

dzdtrdr σβα +




 +=

   
 

Model 3 : Cox, Ingersoll & Ross Square Root; CIR SR 

This is the square root process which appears in the Cox, Ingersoll and Ross (1985) 

single factor general equilibrium term structure model. This model has also been used 

extensively in developing valuation models for interest rate contingent claims. The     

CIR SR model implies that the conditional volatility of changes is proportional in r. This  

model is defined as: 

dzrdtrdr 2
1

σβα +




 +=
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Model 4 : Generalized 1 Chan model 

This is the generalized format of the model proposed in Chan et al. (1992). The previous 

3 models can be nested in this model which is: 

( )dzrdtrdr σσβα γ

10
++





 +=

   
 

Model 5: Generalized 2 Chan model 

This is also another generalized format of Chan et al model in which the diffusion part is 

different from model 4 and is defined as: 

dwedtrdr t
r 





 ++





 += + σσβα γγ
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These different models can be used to define the interest rate patterns. One of the main 

challenging of the interest rate researches has been comparing different models and 

selecting the best one. Models 1-3 are classical models which their estimation have been 

easier than the last two one and the theory of pricing interest rate derivatives using these 

3 models, have been developed, which prohibits computational difficulties. 

 

4.  Econometrics Approach 

 

In this section, we describe the econometric approach used in estimating the parameters 

of the interest rate models and in examining their explanatory power for the dynamic 

behavior of short term interest rates. 

 

Let us consider a general form for a continuous time process satisfying stochastic 

differential equations: 

( ) ( ) wdrdtrdr tttt
,, θσθµ +=

   (4.1) 

 

Where W is a standard Brownian motion. If the only available observations correspond to 

integer dates 1,2,…, T, it is not possible in general to determine the analytical form of the 

likelihood function of the observations  
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( )θ;,...,
1 rrl T  

 

A common approach consists of replacing the initial continuous time model in (4.1) by its 

Euler discretization: 

( ) ( )εθσθµ ttttt rrrr ;; 111 −−− ++=
     (4.2) 

 

Where ε t is Gaussian white no ise. Next we estimate θ by the maximum likelihood 

method applied to the approximated model in (4.2) and likely conclude that the estimated 

parameter θ
^

 provides a good approximation of the unknown θ . The maximum 

likelihood estimator is defined as:  
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However, Since the Euler discretization is an approximation,  Model (4.2) is misspecified, 

causing an asymptotic bias of its estimators, which may be arbitrarily large. The indirect 

inference uses simulations performed under the initial model to correct for the asymptotic 

bias of 
^
θ  which is Maximum Likelihood estimator of the discretized method (Gourieroux 

et al (1993)).  

 

The idea is to introduce a second Euler discretization involving a very short time unit (i.e 

δ =0.1). More precisely, we define the process ( y
t

δ

, t=kd , k varying) such that  

ε δδ

δ

δ

δ

δ

δ

δ

δ
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+    

 

Where ε
δ )(

k , k varying , is a Gaussian white noise. This finer Euler discretization can be 

used to simulate the continuous time process. Let us denote by  

           
)(

)(
θ

δ

δ
y

s

k             ,            k=1, …., T/d 
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the simulated path corresponding to the parameter value ?, and )()( )()( θθ δδ rr s

tt
=  , 

t=1,…,T , the values corresponding to the observation dates. The indirect inference 

approach includes the three estimation steps outlines below: 

1) Estimation of ? from observations  
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2) Estimation of ? from simulations 
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3) Calibration  

 

 
( )[ ] ( )[ ]θθθθθθθ

θ
ˆˆˆˆ

/~ s
TT

s
TT

ArgMin −Ω−=
 

          In Calibration the minimization is done over θ which is the 

^

θ s
T  that is found 

from step 2. So the optimization has nested another optimization method in its inside, 

which makes the computational solution difficult and very time consuming. 

 

Gourieroux and Monfort (1996) have shown that for T sufficiently large the choice of O 

can be arbitrary. So we can assume O an Identity matrix. 

 

5. Model Selection 

 

Selecting models has been a popular theme in Econometrics. Log Likelihood ratio test 

(LR) can be used for testing a model which is nested in a more general model. It can be 

done by testing the hypothesis that the restrictions can be statistically accepted or not.  
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But in general case, we should compare two models which are defined as: 

{ }Θ∈= θθ
θ

;;|( zyfF  

{ }Γ∈= γγ
γ

;;|( zygG  
Based on Kullback_Leibler information criterion (KLIC) , Voung(1989) has proposed 

the following statistics under regularity conditions, for strictly non-nested models : 

( )
w

LRT
T

TTT

ˆ
ˆˆ ,2

1 γθ
−

    (5.1) 

Where γθ ˆˆ ,
TT  are MLE of models F θ and  Gγ and wTˆ is : 
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      The Vuong statistics is asymptotically distributed as standard normal distribution. So 

if the statistics is greater than a critical value we can accept the null hypothesis that F θ  

is better than Gγ . 

 

In general, this model selection can be used to compare different models estimated by 

using MLE method. 

 

 

6. Data 

 

The monthly Eurodollar interest rates in the period 1970-2002 are used in this study. 

Eurodollar deposits are dollar deposits held in banks outside United States and therefore 

exempt from Federal Reserve regulations. Appendix 1 shows the pattern of these market 

rates over the 32 years period which is 377 observations. Each observation is the average 

of the interest rate in each month. 
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7. Empirical Results 

 

In this section, we present our empirical results. The parameters of five models described 

in section 2 have been estimated by using MLE method on discretized models. Ten 

Matlab programs for this estimation are written (appendix 2), and the results are as 

follows: 

 

Model 1- GBM : 

  ß= -0.0001 , s=-0.0796 

Model 2- Vasicek : 

   a =0.1623 ,   ß= -0.0001 , s =-0.0796 

Model 3- CIR SR : 

   a=0.0525 ,   ß= -0.0084  , s =0.2350 

Model 4- Generalized 1 Chan : 

   a=-0.0340 ,   ß= 0.0070  , s 0 =0.2350 , ?= 1.7130 , s 1 = 8.0720 

Model 5- Generalized 2 Chan : 

   a=-0.0387 ,   ß= 0.0077  , s 0 =0.9566 , ?1= 0.0984 , s 1 = -0.4510 , ?2= -0.6962 

 

Vuong test has been used for comparison of models 4 and 5. The statistics defined in 

(5.1) is 4.3993 which based on the normality distribution of the statistics, we can claim 

that model 4 should be preferred to model 5. (A Matlab program named ModelSelect in 

the appendix 2 calculates the statistics).  

 

Now we can test the three models 1, 2, 3 relative to model 4. Since the 3 models are 

nested in model 4, we can use likelihood ratio test. This test shows whether the 

restrictions imposed on model 4 in order to produce the nested models , can be 

statistically accepted or not. The results are as follows: 

 

2LR for model 1  = 16.2008 

2LR for model 2  = 283.3434 
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2LR for model 3  = 110.7681 

 

Since the statistics are much greater than significant  levels, we can reject the GBM, 

Vasicek and CIR SR models in favor of Generalized Chan model (Model 4). 

 

Now that we could find the best among the models, we can use the indirect inference 

method to find asymptotically consistent estimators of model 4. Matlab programs shown 

in appendix 3 have been used to estimate the consistent estimators. For lowering the 

variance of the simulated data, the method of Antithetic variable technique 2 has been 

used (Hull (2003a)). The results are as follows: 

 

a=-0.0686 ,   ß= 0.0058  , s 0 =0.0024 , ?= 1.4934 , s 1 = 8.1381 

 

8. Pricing the option by using stochastic interest rates 

 

After finding the parameters of a diffusion model for interest rates, we can use it for 

pricing the contingent claims on interest rates or we can implement it for pricing the 

derivatives of other securities since interest rate is an important part of all no arbitrage 

contingent claim pricing. 

 

If we assume the stock price process has a dynamic which can be shown by a Geometric  

Brownian Motion:  

sdzsdtds σµ +=
  

Then the value of any contingent claim f(s) at time T can be written as (Black and Sholes 

(1973)): 

 

( )( )se T

rT
fÊ

−

                      (8.1) 

 

                                                 
2  I am grateful to Dr. Levon Goukasian for mentioning this technique. 
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Where r has been assumed as constant interest rate and expectation is the risk neutral 

measure defined as: 

       sdzrsdtds σ+=      (8.2) 

 

       Now if we want to be more realistic, we should relax the assumption of constant 

interest rate and use the stochastic interest rate model. Hull (2003b) has shown that (8.1) 

pricing still holds but we should just use average interest rate instead of r in (8.1) and 

(8.2), which is defined as : 

∫=
T

dssrT
r

0
)(1

 
 

Now we can use Monte Carlo Simulation method for pricing any derivative of a stock. 

The risk neutral distribution of stock price is  
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Where wT  is distributed as N(0,T). The idea of Monte Carlo Simulation is to generate N 

numbers of  ST   and calculating the contingent claim price by  
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And r is the average of stochastic r computed by: 
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Where )(tr s

is one realization of interest rate at time t which, is produced by using the 

diffusion model found in section 6. 
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As an example this method has been implemented to price the call options of Nokia 

Company with expiration date of January 2004 and strike prices 15 USD and 20 USD. 

The monthly price data of Nokia has been used to estimate the s , which is the variance 

of log difference of stock prices (Gurierex and Jasiak (2001)). Matlab program in 

appendix 4 is used to price these call options and these prices found: 

 

For strike price 15 USD = 3.7300 

For strike price 20 USD = 1.7099 

 

9. Conclusion 

 

In this paper , we compared five different models of short-term interest rate dynamics in 

order to determine which model best fits the short term Eurodollar yield data. Two 

models were strictly non-nested and the other three, were nested in one of the models. 

The results of the tests show that the popular models : GBM, Vasicek and CIR SR 

perform poorly relative to the Generalized model of Chan. Also, we found consistent 

estimator of this model by using Indirect Inference method.  

 

At the end, we used the stochastic model of interest rate to price the call options of Nokia 

Company. We used the Monte Carlo method for finding the price of call options. 

 

Much works remain to be done. One of the main assumptions of Vuong’s model selection 

criterion is that the data are i.i.d which normally does not hold for time series data. Rivers 

and Vuong (2002) have extended the model selection criterion to time series data, which 

should be used in this future stud ies in this area. 

Also with using the data of the interest rate derivatives’ prices, we can find the market 

price of risk for interest rate contingent claims, which can be used for pricing the swaps, 

futures, options of interest rates. 
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Appendix 1 
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Appendix 2 

Matlab files for Estimation of MLE of Discretized Models 
% Program for ML estimation of GBM model 
 
 initial=[   -0.0051   -0.7731 ] 
 options = optimset('maxfunevals',580,'maxiter',7000); 
 [tetas,fval,exitflag]=fminsearch(@likelim5,initial,options) 
 
% Defining the likelihood function for GBM Model 
function x=likelim5(param) 
 
r=wk1read('c:\user\datamonthly'); 
beta=param(1); 
sigma=param(2); 
nn=size(r); 
n=nn(1,1); 
v=zeros(n,1); 
for i=2:n, 
           
   v(i)=.5*log((sigma*r(i-1))^2)+.5*((r(i)-r(i-1)-beta*r(i-1))/(sigma*r(i-1)))^2; 
 
end 
  wk1write('c:\user\vmod5',v);   
 end, 
x=sum(v) 
 
% Program for ML estimation of Vasicek model 
 
 initial=[ 0.2623   -0.0232    0.1] 
 options = optimset('maxfunevals',580,'maxiter',7000); 
 [tetas,fval,exitflag]=fminsearch(@likelim4,initial,options) 
 
% Defining the likelihood function for Vasicek Model 
 
function x=likelim4(param) 
 
r=wk1read('c:\user\datamonthly'); 
alfa=param(1); 
beta=param(2); 
sigma=param(3); 
nn=size(r); 
n=nn(1,1); 
v=zeros(n,1); 
 
for i=2:n, 
           
   v(i)=.5*log(sigma^2)+.5*((r(i)-r(i-1)-alfa-beta*r(i-1))/(sigma))^2; 
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end 
 wk1write('c:\user\vmod4',v);   
end, 
x=sum(v) 
 
% Program for ML estimation of CIR SR model 
 
 initial=[   0.0525   -0.0084    0.2351] 
 options = optimset('maxfunevals',580,'maxiter',7000); 
 [tetas,fval,exitflag]=fminsearch(@likelim3,initial,options) 
 
% Defining the likelihood function for CIR SR Model  
function x=likelim3(param) 
 
r=wk1read('c:\user\datamonthly'); 
alfa=param(1); 
beta=param(2); 
sigma=param(3); 
nn=size(r); 
n=nn(1,1); 
v=zeros(n,1); 
 
for i=2:n,   
   v(i)=.5*log((sigma*(r(i-1)^0.5))^2)+.5*((r(i)-r(i-1)-alfa-beta*r(i-1))/(sigma*(r(i-1)^0.5)))^2; 
end 
  wk1write('c:\user\vmod2',v);   
 end, 
x=sum(v) 
 
%Program for ML estimation of Generalized 2 Model 
initial=[-0.0340    0.0070    0.0145    1.7123    8.0456]  
options = optimset('maxfunevals',580,'maxiter',5000); 
[tetas,fval,exitflag]=fminsearch(@likeli,initial,options) 
 
% Defining the likelihood function for Generalized 1 Model 
function x=likeli(param) 
 
r=wk1read('c:\user\datamonthly'); 
alfa=param(1); 
beta=param(2); 
sigma0=param(3); 
gama=param(4); 
sigma1=param(5); 
nn=size(r); 
n=nn(1,1); 
v=zeros(n,1); 
 
for i=2:n, 
           
    v(i)=.5*log((sigma0*(r(i-1)^gama+sigma1))^2)+.5*((r(i)-r(i-1)-alfa-beta*r(i-1))/(sigma0*(r(i-
1)^gama+sigma1)))^2; 
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end 
     
 wk1write('c:\user\vmod1',v);    
end, 
x=sum(v); 
 
% Program for ML estimation of Generalized 2 Model 
 
initial=[ -0.0387    0.0077    0.9566    0.0984   -0.4510   -0.6962] 
 options = optimset('maxfunevals',580,'maxiter',7000); 
[tetas,fval,exitflag]=fminsearch(@likelim2,initial,options) 
 
% Defining the likelihood function for Generalized 2 Model 
function x=likelim2(param) 
 
r=wk1read('c:\user\datamonthly'); 
alfa=param(1); 
beta=param(2); 
sigma0=param(3); 
gama1=param(4); 
sigma1=param(5); 
gama2=param(6); 
nn=size(r); 
n=nn(1,1); 
v=zeros(n,1); 
 
for i=2:n,         
    v(i)=.5*log((sigma0*(exp(r(i-1)*gama1+gama2)+sigma1))^2)+.5*((r(i)-r(i-1)-alfa-beta*r(i-
1))/(sigma0*(exp(r(i-1)*gama1+gama2)+sigma1)))^2; 
    
end 
  wk1write('c:\user\vmod2',v);    
end, 
x=sum(v); 
 
% Voung test for model selection of two different functional forms 
% Function name : modelselect 
 
n=377; 
vmod1=wk1read('c:\user\vmod1'); 
vmod2=wk1read('c:\user\vmod2'); 
lr=vmod1-vmod2; 
ws=var(lr) 
voung=(n^(-.5)*sum(lr))/ws
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Appendix 3 

Matlab files for Indirect Inference Estimation of Model 4 
% Function name: endmain 
% This is the main program for finding the parameters 
% from Indirect Inference method 
% This program calls optn function which tries to minimize 
% the objective function defined in calibration step 
 
tic; 
initial=[-0.0340    0.0070    0.0145    1.7130    8.0720] 
options = optimset('maxfunevals',500,'maxiter',200) 
[tend,fval,exitflag]=fminsearch(@optn,initial,options) 
toc 
 
 
% Function name: Simdat 
% This function gets the parameter of the model and generate the simulated data 
 
function xx=simdat(param) 
alfa=param(1); 
beta=param(2); 
sigma0=param(3); 
gama=param(4); 
sigma1=param(5); 
 
d=0.1; % d is the increment of simulation in each step 
m=1/d; 
n=50;  % n is the number of simulated paths 
 
for j=1:n 
    r(1,j)=5.66; 
  for i=2:377 
          t1(1)=r(i-1,j); 
          t2(1)=r(i-1,j); 
      for k=2:m+1 
          eps=randn(1); 
          t1(k)=t1(k-1)+d*(alfa+beta*t1(k-1))+sigma0*(t1(k-1)^gama+sigma1)*d^.5*eps; 
          t2(k)=t2(k-1)+d*(alfa+beta*t2(k-1))-sigma0*(t2(k-1)^gama+sigma1)*d^.5*eps; 
      end  
    r(i,j)=0.5*(t1(k)+t2(k));  % This is the Anthitetic variance reduction technique 
    if r(i,j)<0  
        r(i,j)=0; 
    end     
  end      
end 
xx=r; 
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% Function name: likelis  
% This function gets the parameter of the model and will produce the simulations  
% of the model with those parameters (via simdat function) and then produces the  
% likelihood function of the simulated data 
 
function x=likelis(param) 
 
alfa=param(1); 
beta=param(2); 
sigma0=param(3); 
gama=param(4); 
sigma1=param(5); 
 
f=wk1read('c:\user\sdat'); 
 
nn=size(f); 
m=nn(1,1); 
n=nn(1,2); 
v=zeros(m,n); 
 
for i=2:m 
    for j=1:n 
           
    v(i,j)=.5*log((sigma0*(f(i-1,j)^gama+sigma1))^2)+.5*((f(i,j)-f(i-1,j)-alfa-beta*f(i-
1,j))/(sigma0*(f(i-1,j)^gama+sigma1)))^2; 
     
    end  
end 
   
xx=sum(v); 
x=sum(xx); 
 
% Function name: optn 
% This function calcualates the valye of the objective function 
% in the calibration step 
 
function x=optn(param) 
 
teta=[-0.0340    0.0070    0.0145    1.7130    8.0720]; 
 
y=tetas(param); 
x=(teta-y)*(teta-y)'; 
wk1write('c:\user\optn',x); 
optn=x 
 
% Function name: tetas 
% This funcation finds the MLE estimation of the parameters 
% with the data that are simulated by simdat program 
 
function x=tetas(param) 
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initial=[-0.0340    0.0070    0.0145    1.7130    8.0720]; 
 
options = optimset('maxfunevals',500,'maxiter',60); 
 
gg=simdat(param); 
wk1write('c:\user\sdat',gg); 
 
[t,fval,exitflag]=fminsearch(@likelis,initial,options) 
x=t; 
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Appendix 4 

Matlab files for Pricing the Nokia Call Options 

% Function name : Nokiaoption 
% This function calculates the prices of two options of  
% Nokia Company which expires in January 2004 with strike  
% prices 15$ and 20$, on Kune 26th 2003. 
% This method uses stochastic interest rate model and  
% implements the Monte Carlo algorithm 
 
clc; 
clear; 
% In this part the program reads the time series of prices 
% and finds the standard deviation which will be used for 
% option pricing 
ss1=wk1read('c:\user\nokia'); 
ss=flipud(ss1); 
nss=size(ss); 
n=nss(1,1); 
for i=1:n-1 
    u(i)=log(ss(i+1)/ss(i)); 
end 
umean=mean(u); 
sigma=sqrt(12)*sqrt((1/(n-1))*sum((u-umean).^2)); 
% End of calculation of standard deviation 
 
% Now the program starts generating n generalization 
% of stochastic interest rates with d increments 
alfa=-0.0686; 
beta=.0058; 
sigma0=.0024; 
gama=1.4934; 
sigma1=8.1381; 
 
d=0.01; 
m=1/d; 
n=50; 
t=12 
 
for j=1:n 
    r(1,j)=3.2; 
     
  for i=2:t 
          t1(1)=r(i-1,j); 
          t2(1)=r(i-1,j); 
                   
      for k=2:m+1 
          eps=randn(1); 
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          t1(k)=t1(k-1)+d*(alfa+beta*t1(k-1))+sigma0*(t1(k-1)^gama+sigma1)*d^.5*eps; 
          t2(k)=t2(k-1)+d*(alfa+beta*t2(k-1))-sigma0*(t2(k-1)^gama+sigma1)*d^.5*eps; 
      end  
    r(i,j)=0.5*(t1(k)+t2(k));   
     
    if r(i,j)<0  
        r(i,j)=0; 
    end     
  end      
end 
 
rm=mean(r'); 
rmean=mean(rm)*0.01 
% End of calculating the mean interest rate until 
% options expire 
 
% Start of calculating the Monte Carlo estimation of 
% option prices 
s0=16.96; 
x15=15; 
x20=20; 
n=5000; 
t=7/12; 
for i=1:n 
    s(i)=s0*exp(rmean*t-0.5*sigma^2*t+sigma*sqrt(t)*randn(1)); 
    c15(i)=exp(-rmean*t)*(s(i)-x15)*((s(i)-x15)>0); 
    c20(i)=exp(-rmean*t)*(s(i)-x20)*((s(i)-x20)>0); 
end 
 
callprice15=mean(c15) % Call option price for strike price =15 
callprice20=mean(c20) % Call option price for strike price =20 
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