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Abstract

This paper proposes a Gaussian estimator for nonlinear continuous time mod-
els of the short term interest rate. The approach is based on a stopping time
argument that produces a normalizing transformation facilitating the use of a
Gaussian likelihood. A Monte Carlo study shows that the finite sample per-
formance of the proposed procedure offers an improvement over the discrete
approximation method proposed by Nowman (1997). An empirical application
to U.S. and British interest rates is given.

JEL: C14, C22, G12

1 Introduction

Continuous time models of the interest rate are now frequently formulated in terms

of nonlinear stochastic differential equations. Econometric estimation of such models

has been intensively studied in the recent literature. Broadly speaking, three methods

have been proposed to estimate the parameters of such systems. The first method
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employs a discrete time approximation to the continuous system and estimation of

the discrete time model is conducted by nonlinear regression or maximum likelihood.

This is the approach used by Chan, Karolyi, Longstaff, and Sanders (1992) (CKLS,

hereafter) and Nowman (1997). The second method exploits the martingale property

of the diffusion process and approximates the transition function, the likelihood or

the moment conditions. Some of these approximations are based on simulations (e.g.

Duffie and Singleton, 1993), some are based on numerical approximations (such as Lo,

1988), while others are based on closed-form approximations (such as Ait-Sahalia, 1999,

2000)). A third approach seeks to estimate the drift and diffusion functions directly

by nonparametric kernel techniques (Florens-Zmirou, 1993, and Bandi and Phillips,

1999).

The approximation scheme used in the discretization method proposed by CKLS is

based on the Euler method. In comparison to the continuous time model, the discrete

time model is relatively easy to estimate. As a linear approximation, however, the

Euler method introduces a discretization bias since it ignores the internal dynamics

which can be excessively erratic. It is well known that ignoring such a bias can result

in inconsistent estimators (see Melino (1994)). The discrete approximation method

proposed by Nowman (1997) presents the first application of Gaussian methods of es-

timation for nonlinear continuous time models. It is based on the Gaussian estimation

method developed by Bergstrom (1983, 1984, 1985, 1986, 1990) for linear systems.

Since the general form of continuous time models of interest rates involve conditional

heteroscedasticity, however, the process is not Gaussian. So, in order to use Gaussian

estimation, Nowman (1997) assumes the volatility of the interest rate is constant over

each unit observation period, thereby facilitating the construction of a discrete time

version of the model. In essence, this procedure uses the Euler method to approximate

the diffusion term over the unit interval. In so doing, the method replaces a non-

Gaussian process by an approximate Gaussian one. Since only the diffusion term is

2



approximated, the Nowman method has the advantage of reducing some of the aggre-

gation bias relative to full discretization. Strictly speaking, the Nowman procedure is a

form of quasi maximum likelihood. While simulations or approximations can overcome

the difficulties involved in calculating the likelihood function or the moments of the

diffusion process, it is in generaly difficult to gauge the accuracy of the approximations.

The present paper proposes a different approach to forming a discrete time model.

It has the interesting feature that it produces a Gaussian approach to estimating non-

Gaussian diffusion processes. It is related to the Nowman discrete approximation

method in the sense that a discrete model is derived and used for estimation. However,

we use a very different mechanism to obtain an exact discrete model with Gaussian

errors and the discrete observations of the process that satisfy this model are no longer

equi-spaced. The proposed estimator uses this new discrete time model and is a Gaus-

sian estimator in the sense that it maximizes the Gaussian likelihood. The procedure

exploits the martingale property of the process driving the diffusion and uses a time-

change technique as a normalizing transformation to convert the process to a Gaussian

one. The time-change transformation is itself of empirical interest because it depends

on the properties of the process and, upon estimation, reveals the extent of the depar-

ture from Gaussianity during the observation period.

The paper is organized as follows. Section I reviews various continuous time models

of the short term interest rate and Nowman’s estimation method. Section II develops

the alternate approach of the present paper. Section III reports a simulation study of

the performance of the proposed approach in comparision with the Nowman method.

Section IV illustrates the procedure in an empirical application. Section V concludes.
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2 Continuous Time Interest Rate Models

Consider an interest rate diffusion process {r(t) : t ≥ 0} generated by

dr(t) = (α + βr(t))dt + σrγ(t)dB(t), (2.1)

where B(t) is a standard Brownian motion defined on the probability space (Ω,=B, (=B
t )t≥0, P ),

and α, β, σ, and γ are unknown system parameters.1 In this model, r(t) mean-reverts

towards the unconditional mean −α
β
, −β measures the speed of the reversion, and γ

determines the sensitivity of the variance with respect to the level of r(t). Assume

the data r(t) is recorded discretely at (0, ∆, 2∆, · · · , T∆) in the time interval [0, T∆],

where ∆ is a discrete time step in a sequence of observations r(t). If r(t) is the an-

nualized interest rate observed monthly (weekly or daily), then ∆ = 1/12 (1/52 or

1/250).

The specification of equation (2.1) allows a possible nonlinear diffusion term but

only a linear drift.2 Equation (2.1) nests some well-known models of short term interest

rate. Their specifications and the parameter restrictions are summarized in Table 1.

Except for a few special cases, maximum likelihood is difficult to use since the

likelihood function does not have a closed form expression. Also, in almost all practical

contexts the diffusion process is not Gaussian. For example, Cox, Ingersoll and Ross

(1985) show that when γ = 0.5 the distribution of r(t + 1) conditional on r(t) is

1Although we focus on the 1-factor model in this paper, there are many multi-factor models that
have been studied in the short term interest rate literature. Examples include Andersen and Lund
(1997), Babbs and Nowman (1999), Brennan and Schwartz (1979), Brenner, Harjes and Kroner (1996),
Chen and Scott (1992), Longstaff and Schwartz (1992), Duffie and Kan (1996). These extensions are
not considered in the present paper and the simple but popular model (2.1) is used to illustrate our
new approach.

2The specification of a linear drift has been criticized in the recent literature. For example, using
a nonparametric test, Ait-Sahalia (1996) rejected all parametric models and argues that the linearity
in the drift is a major source of misspecification. Stanton (1997) proposed nonparametric estimators
of the drift and diffusion functions and found that the estimated drift is highly nonlinear, especially
when the interest rate is more than 14%. However, a Monte Carlo study performed by Chapman
and Pearson (2000) indicates poor finite sample properties of the nonparametric estimators of Ait-
Sahalia (1996) and Stanton (1997). Pritsker (1998) found that the Ait-Sahalia (1996) test rejects the
true model too often. Some other recent work by Bandi and Phillips (2000) proposed nonparametric
estimators of the drift and diffusion that are applicable in nonstationary cases.
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non-central χ2[2cr(t), 2q + 2, 2λ(t)], where c = −2β/(σ2(1 − eβ)), λ(t) = cr(t)eβ, q =

2α/σ2 − 1, and the second and third arguments are the degrees of freedom and non-

centrality parameters, respectively.

When γ > 0, the conditional volatility of the model increases with the level of

the interest rate. This is the so-called “level effect”. Since the conditional variance

is not constant for γ 6= 0, the Gaussian estimation method proposed by Bergstrom

(1983, 1985, 1986, 1990) is not directly applicable. To use Bergstrom’s procedure,

Nowman (1997) assumes that the conditional volatility remains unchanged over the

unit intervals, [s∆, (s+1)∆), s = 0, 1, ..., and then approximates the stochastic equation

(2.1) over these intervals by the equation:

dr(t) = (α + βr(t))dt + σrγ(s∆)dB(t), s∆ ≤ t < (s + 1)∆. (2.2)

The corresponding exact discrete model of (2.2) then has the form (e.g., Bergstrom,

1984)

r(t) = e∆βr(t−∆) +
α

β
(e∆β − 1) + η(t), (2.3)

where the conditional distribution η(t)|=B
t−1 ∼ N(0, σ2

2β
(e2∆β − 1)(r2γ(t − 1))). With

this approximation, the Gaussian method can be used to estimate equation (2.3).

The Nowman procedure can be understood as using the Euler method to approx-

imate the diffusion term over the unit interval. Compared with the discretization

method where the Euler method is applied to both the drift and diffusion terms in

the diffusion process, the Nowman’s method can be expected to reduce some of the

temporal aggregation bias. Strictly speaking, however, the method is a form of quasi-

maximum method since (2.3) is not the true discrete model corresponding to equation

(2.1) but is merely a conditional Gaussian approximation.
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3 Gaussian Estimation using Random Time Changes

In this section a Gaussian method is developed to estimate the equation (2.1). The

approach is based on the idea that any continuous time martingale can be written as a

Brownian motion after a suitable time change. In particular, by the Dambis, Dubins-

Schwarz theorem (hereafter DDB theorm) - see Revuz and Yor (1999) - we have the

following result which gives a normalizing transformation for an arbitrary continuous

martingale.

Lemma (DDB Theorm) 3.1 Let M be a (=t, P )-continuous local martingale van-

ishing at 0 with quadratic variation process [M ]t such that [M ]∞ = ∞. Set

Tt = inf{s|[M ]s > t}. (3.4)

Then, Bt = MTt is a (=Tt)-Brownian motion and Mt = B[M ]t.

The process Bt is referred to as the DDB Brownian motion of M . According to this

result, when we adjust from chronological time in the local martingale M to time Tt we

transform the process to a Brownian motion. As we move along the new path in the

resulting Gaussian process, sampling speed needs to be varied in order to accomplish

the transformation. But this is something that can be done when we have finely spaced

data. The required time changes are given by equation (3.4), so they depend on the

quadratic variation of the process Mt. Since this process is path dependent, the time

adjustment will be made according to the observed path of the process.

We can use the lemma to extract an exact discrete Gaussian model for (2.1). First,

note that model (2.1) for r(t) has for any given r(0) the following solution

r(t) = [r(0) +
α

β
]eβt − α

β
+

∫ t

0

eβ(t−s)σrγ(s)dB(s), (3.5)

so that we can write for any h > 0

r(t + h) =
α

β
(eβh − 1) + eβhr(t) +

∫ h

0

σeβ(h−τ)rγ(t + τ)dB(τ). (3.6)
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Let M(h) = σ
∫ h

0
eβ(h−τ)rγ(t+τ)dB(τ). M (h) is a continuous martingale with quadratic

variation

[M ]h = σ2

∫ h

0

e2β(h−τ)r2γ(t + τ)dτ. (3.7)

We now use the time transformation (3.4) in the lemma to construct a DDB Brownian

motion to represent the process M(h). To do so, we introduce a sequence of positive

numbers {hj} which deliver the required time changes. For any fixed constant a > 0,

let

hj+1 = inf{s|[Mj]s ≥ a} = inf{s|σ2

∫ s

0

e2β(s−τ)r2γ(tj + τ)dτ ≥ a}. (3.8)

Next, construct a sequence of time points {tj} using the iterations tj+1 = tj + hj+1

with t1 assumed to be 0. Evaluating equation (3.6) at {tj}, we have

r(tj+1) =
α

β
(eβhj+1 − 1) + eβhj+1r(tj) + M(hj+1). (3.9)

According to the lemma, M(hj+1) = B(a) ∼ N(0, a). Hence, equation (3.9) is an

exact discrete model with Gaussian disturbances and can be estimated directly by

maximum likelihood. Although both (2.3) and (3.9) are exact discrete models, only

(3.9) is the exact discrete model with Gaussian disturbances. The time transformed

model (3.9) has both theoretical and practical significance. An interesting feature of

(3.9) is that the discrete time model does not have equispaced observations. One needs

to sample the process more frequently when the level of interest rates, and hence the

conditional volatility, is higher. Thus, the sampling process is endogenous. Figures 1

and 2 illustrate how the time transformation varies according to the generating process

and the sample path using the two real data sets from Section 5. In both figures the

vertical lines represent the sequence of sampling points {tj}. The finer they are, the

higher the sampling speed is. Obviously the sampling speed varies in both cases. For

example, for the US treasury bill rate, we have to sample all the observations available

to us when the market experienced high interest rates at the beginning of 1980s but
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sample much less frequently when the market experienced lower interest rates in 1960s.

Also, from equation (3.8) we note that the sampling points {tj} are more sensitive when

γ is larger. This is confirmed by Figure 1 and Figure 2 since γ is estimated to be 1.3610

in the US market and 0.2898 in the UK market.

Letting θ = (α, β, σ, γ) and defining L(θ) as minus twice the averaged logarithm of

the likelihood function of model

L(θ) =
1

N

∑
j

[2 log a +
(r(tj+1)− α

β
(eβhj+1 − 1)− eβhj+1r(tj))

2

a2
], (3.10)

where N is the number of sample points resluting from the transformation. Minimiza-

tion of equation (3.10) leads to the ML estimators of θ. It can be seen that in terms

of the estimation of α and β the above maximum likelihood procedure is equivalent to

least squares, i.e.

min
α,β

1

N

∑
j

(r(tj+1)− α

β
(eβhj+1 − 1)− eβhj+1r(tj))

2. (3.11)

The autorrelation properties of the sequence {r(tj)} are determined by the param-

eter β. It is well known that the ML estimate of the autorrelation parameter for a

sequence that almost has a “unit root” is downward biased (cf Andrews (1993)). Since

interest rates, when observed at the daily, weekly and even monthly frequencies, tend

to have large autoregressive coefficients, the ML estimate of β has a downward bias

which results in upward bias in the estimate of α. On the other hand, simulations we

have performed and which will be discussed below show that the Nowman estimates of

σ and γ are quite good in finite samples. In consequence, we propose to use the new

discrete time model to improve estimation of α and β but make no attempt to improve

estimation of σ and γ. To do so we take Nowman’s estimates of σ and γ and fix them

in our algorithm.
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4 Implementation and Simulation

In practice interest rates are observed at discrete, albeit short, time intervals. In

consequence, the time-change formula (3.8) is not directly applicable. Instead, we use

the discrete time approximation

hj+1 = ∆ min{s|
s∑

i=1

σ2e2β(s−i)∆r2γ(tj + i∆) ≥ a}. (4.12)

To use the proposed procedure, a value for a must be selected. Asymptotically, the

choice of a should not matter as long as a is finite, but the same is not true in finite

samples. If a is chosen too large, then the effective sample size is too small and we

cannot collect a sample with enough information. If a is too small, then we lose the

opportunity to adjust the sampling interval to transform the process to Gaussianity.

For practical implementation, we therefore propose to choose a in a data based fashion

to reflect the average volatility in the data. To do so, we select a as the ML estimate,

say â, in the following constant volatility model (ie the Vasicek model)

r(t + ∆) =
α

β
(e∆β − 1) + e∆βr(t) + ε, (4.13)

with ε ∼ N(0, a). Thus, a is the unconditional volatility of the error term in (4.13).

Implementation of the proposed method then proceeds as follows: (1) estimate

equation (4.13) using the ML method and obtain â; (2) estimate equation (2.3) using

the ML method and obtain α̂, β̂, σ̂ and γ̂, ie, obtain the Nowman’s estimates of model

(2.1); (3) set a, σ, γ as â, σ̂, γ̂ respectively and condition on them in the subsequent

step; (4) choose initial values of α, β to be the Nowman estimates and perform a

numerical optimization on (3.11) with hj+1 chosen according to the time change formula

(4.12). The numerical solutions of this extremum estimation problem are then the

desired estimates. This algorithm has the advantage of being simple and convenient

for practical implementation. It has the disadvantage that it depends (and conditions)

on first stage estimates of volatility parameters obtained from Nowman’s approximate
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model. The simulations reported below indicate that this procedure works well in

practice.

The objective function (3.11) has no direct analytic expression for its derivatives

with respect to β since both the sampling frequency and the total number of sample

observations depend on β. Consequently, the numerical optimization is carried out

using Powell’s conjugate direction algorithm (Powell (1964)).

To evaluate the finite sample performance of our method, we conduct a small Monte

Carlo study. Suppose that the interest rate r(t) follows the square-root process

dr(t) = (α + βr(t))dt + σrγ(t)dB(t), (4.14)

with γ = 0.5.

For any given parameter setting, a sample path for the square root diffusion is simu-

lated according to the 2-step method used by Chapman and Pearson (2000). To ensure

the validity of our method for the frequencies commonly used in practice, we choose

∆ = 1/12, 1/52, 1/250 which correspond to monthly, weekly, and daily frequencies,

respectively.

Table 2 shows the parameter settings and the sample size for all three frequencies.

The parameter values are close to what would be obtained from empirical applications

when a square-root diffusion model is fitted. For example, the parameter setting im-

plies that the long term mean for annualized interest rates is 6.0 percent for all three

frequencies. Daily interest rates revert more quickly to the long term mean than weekly

and monthly rates. Moreover, we try to choose the sample sizes close to what have

been used in actual empirical studies in the literature.

The model is fitted to the simulated sequence by both Nowman’s method and the

proposed method with γ treated as additional unknown parameter. We also fit the

sequence to the Vasicek model in order to obtain the ML estimate of a. We repeat the

experiment in 1,000 replications. The means, variances and mean square errors (MSE)

of the resulting estimates are displayed in Tables 3-5.
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One result emerging from these tables is that Nowman’s method provides very good

estimates of σ and γ in terms of both bias and MSE. The sample bias for σ is 3%, 7%, 1%

with monthly, weekly and daily data respectively, and 2%, 2%, 1% for γ and hence is

negligible. The result justifies the choice of Nowman’s procedure to estimate σ and γ.

On the other hand, the finite sample performance of Nowman’s estimates of α and β are

nowhere near as good. For example, the sample bias for α is 86.7%, 47.0%, 63.8% with

monthly, weekly and daily data respectively, and 94.3%, 46.4%, 53.6% for β. Moreover,

the sampling distribution of β is biased downward for all three frequencies. The bias

is still substantial even when the sample size is reasonably large. This is consistent

with the well known problems with estimation of first-order autoregressive/unit root

models, especially when the AR parameter is large. The downward bias for β implies

that the sampling distribution of α is biased upward for all three frequencies. This

bias is still present in our exact Gaussian estimates. However, it is smaller than that

of Nowman’s method . For example, our method produces 15%, 8%, 16% less bias

than the Nowman’s method when estimating α with monthly, weekly and daily data,

respectively, and 5%, 6%, 6% when estimating β. Furthermore, our method appears

to be more efficient than Nowman’s method. For example, in terms of the MSE, the

efficiency gain is 3%, 7%, 7% when estimating α with monthly, weekly and daily data

respectively, and 7%, 7%, 8% when estimating β.

5 Empirical Results

Two series of interest rates are used in the empirical study, including one British rate

obtained from Datastream and one US rate obtained from the Center for Research in

Security Prices (CRSP).3 The British rate was used also in Nowman’s (1997) study

and is the one-month sterling interbank middle rate over the period from 03/1975 to

3Source: CRSP, Center for Research in Security Prices. Graduate School of Business, The Univer-
sity of Chcago. Used with Permission. All right reserved. www.crsp.com.
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03/1995 (see Nowman for details). It contains 242 observations. The US rate is the US

Treasury bill one-month yield data over the period from 06/1964 to 12/1989. It has

307 observations. The same dataset is used also by CKLS (1992) and Nowman (1997)

(see CKLS for details).

In Table 6 we present the ML estimates of the Vasicek model, the Nowman estimates

in the CKLS model and our exact Gaussian estimates for the UK interest rate. We

also provide asymptotic standard errors of our exact Gaussian estimates.4 Our method

produces estimates that are similar to Nowman’s, but leads to smaller estimate of α

and a larger estimate of β, consistent with the findings from the Monte Carlo study.

The Nowman method provides an estimate of the unconditional mean of 10.20 percent

while our method leads to 9.821 percent, with implied estimates of the speed of the

reversion by our method of 0.3389, which is smaller than the Nowman estimate of

0.3490.

In Table 7 we present the ML estimates in the Vasicek model, the Nowman estimates

in the CKLS model, and our exact Gaussian estimates for the US interest rate. We

also provide asymptotic standard errors of our exact Gaussian estimates. In this case,

Nowman’s estimates are not very close to our estimates. Our method results in a

smaller estimate of α, once again consistent with the findings from the Monte Carlo

study. However, contrary to the findings in the Monte Carlo study, it results in a smaller

estimate of β. The Nowman estimate of the unconditional mean is 7.41 percent while

our estimate is 6.03 percent. The implied estimates of the speed of the reversion are

0.3330 for our method and 0.3277 for Nowman’s method.

4We should stress that the asymptotic standard errors given are conditional on the Nowman esti-
mates and they may understate the unconditional asymptotic standard errors.
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6 Conclusion

This paper gives an exact discrete time Gaussian model of a nonlinear continuous time

diffusion. The discrete model is suitable for Gaussian estimation of the short term

interest rate even when there are nonlinear volatility effects. Implementation of the

model involves the use of non-equispaced observations and the time change transfor-

mation shows how the process needs to be sampled more frequently when conditional

volatility is higher. Monte Carlo simulations show that the finite sample performance

of the proposed method compares well with estimates based on the alternate discrete

approximation of Nowman (1997). Nowman’s method provides very good estimates of

the two parameters in the diffusion term, but is less accurate in estimating the param-

eters of the drift. The new procedure reduces the finite sample bias and improves the

finite sample efficiency of Nowman’s method in our simulations for all frequencies that

are common used in empirical work. In an empirical application of both procedures

to British and US interest rates, it is found that the two procedures produce similar

estimates for British interest rates but different estimates for US interest rates, where

unconditional mean is estimated to be 19% lower by our procedure.
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discretely sampled data. Econometric Theory, 4:231–247, 1988.

[26] Longstaff, F. and E. S. Schwartz. Interest rate volatility and the term structure:

A two-factor general equilibrium model. Journal of Finance, 47:1259–1282, 1992.

[27] Melino, Angelo. Estimation of continuous-time models in finance. In Sims, C.A.,

editor, Advances in Econometrics: Sixth World Congress. Vol. II (Cambridge Uni-

versity Press, Cambridge), 1994.

[28] Merton, Robert C. Theory of rational option pricing. Bell Journal of Economics

and Management Science, 4:141–183, 1973.

[29] Nowman, K. Gaussian estimation of single-factor continuous time models of the

term structure of interest rates. Journal of Finance, 52:1695–1703, 1997.

[30] Powell, M.J.D. An efficient method for finding the minimum of a function several

variables without calculating derivatives. The Computer Journal, 7:155–162, 1964.

[31] Pritsker, M. Nonparametric density estimation and tests of continuous time in-

terest rate models. Review of Financial Studies, 11:449–487, 1998.

[32] Revuz, Daniel and Marc Yor. Continuous Martingales and Brownian Motion.

Springer-Verlag, 1999.

[33] Stanton, Richard. A nonparametric model of term structure dynamics and the

market prices of interest rate risk. Journal of Finance, 52:1973–2002, 1997.

[34] Vasicek, Oldrich. An equilibrium characterization of the term structure. Journal

of Financial Economics, 5:177–186, 1977.

16



Table 1: Alternative One-factor Short Term Interest Rate Models and Parameter Re-
lationship

Model α β γ

Merton (1973) dr(t) = αdt + σdB 0 0

Vasicek (1977) dr(t) = (α + βr(t))dt + σdB 0

Cox, Ingersoll and Ross (1985) dr(t) = (α + βr(t))dt + σr1/2dB 1/2

Dothan (1978) dr(t) = σrdB 0 0 1

Geometric Brownian Motion dr(t) = βr(t)dt + σrdB 0 1

Brennan and Schwartz (1980) dr(t) = (α + βr(t))dt + σrdB 1

Cox, Ingersoll and Ross (1980) dr(t) = σr3/2dB 0 0 3/2

Constant Elasticity of Variance dr(t) = βr(t)dt + σrγdB 0

CKLS (1992) dr(t) = (α + βr(t))dt + σrγdB

Table 2: Parameter Setting and Sample Size in the Monte Carlo Study

Monthly Weekly Daily

Sample Size 500 1000 2000

α 0.72 3.0 6.0

β -0.12 -0.5 -1.0

σ 0.6 0.35 0.25
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Table 3: Monte Carlo Study Comparing Nowman’s Method and Proposed Method for
Monthly Data

Nowman’s Method Our Method

α β σ γ α β σ γ

MEAN 1.344 -0.2332 0.6173 0.4919 1.2330 -0.2275 0.6173 0.4919

VAR 0.5897 0.1713 0.0099 0.0071 0.5732 0.1589 0.0099 0.0071

MSE 0.9791 0.1841 0.0102 0.0071 0.8363 0.1705 0.0102 0.0071

Note: A square-root model with α = 0.72, β = −0.12, σ = 0.6, γ = 0.5 is
used to simulate 500 monthly observations for each of the 1,000 replications.

Table 4: Monte Carlo Study Comparing Nowman’s Method and Proposed Method for
Weekly Data

Nowman’s Method Our Method

α β σ γ α β σ γ

MEAN 4.409 -0.7320 0.3762 0.4925 4.1650 -0.7011 0.3762 0.4925

VAR 4.0663 0.1109 0.0172 0.0357 3.8608 0.1030 0.0172 0.0357

MSE 6.0855 0.1647 0.0179 0.0358 5.2180 0.1435 0.0179 0.0358

Note: A square-root model with α = 3.0, β = −0.5, σ = 0.35, γ = 0.5 is
used to simulate 1,000 weekly observations for each of the 1,000 replications.
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Table 5: Monte Carlo Study Comparing Nowman’s Method and Proposed Method for
Daily Data

Nowman’s Method Our Method

α β σ γ α β σ γ

MEAN 9.8250 -1.5360 0.2521 0.4970 8.8440 -1.4750 0.2521 0.4970

VAR 19.1959 0.5219 0.0244 0.0746 17.822 0.4798 0.2521 0.4970

MSE 33.8266 0.8092 0.0244 0.0746 25.910 0.7054 0.0244 0.0746

Note: A square-root model with α = 6.0, β = −1.0, σ = 0.25, γ = 0.5 is
used to simulate 2,000 daily observations for each of the 1,000 replications.

Table 6: Empirical Study Comparing Nowman’s Method and Proposed Method Using
UK Short-Term Interest Rates

Model Estimation Method α β σ2(a) γ

Vasicek ML 3.8305 -0.3730 0.6767

CKLS Nowman 3.5615 -0.3490 2.1111 0.2898

CKLS Exact Gaussian 3.3283 -0.3389 2.1111 0.2898
(1.1693) (0.1122)

Note: The data used is the one-month sterling interbank rate from March
1975 to March 1995 (242 observations). The Vasicek model estimated by
ML is given by

dr(t) = (α + βr(t)) + σdB(t),

and the CKLS model estimated by Nowman’s method and our exact Gaus-
sian method is given by

dr(t) = (α + βr(t)) + σrγ(t)dB(t).

Asymptotic standard errors are in brackets.
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Table 7: Empirical Study Comparing Nowman’s Method and Proposed Method Using
US Short-Term Interest Rates

Model Estimation Method α β σ2(a) γ

Vasicek ML 4.1889 -0.6072 0.6554

CKLS Nowman 2.4272 -0.3277 0.0303 1.3610

CKLS Exact Gaussian 2.0069 -0.3330 0.0303 1.3610
(0.5216) (0.0677)

Note: The data used is the one-month sterling interbank rate from June
1964 to December 1989 (307 observations). The Vasicek model estimated
by ML is given by

dr(t) = (α + βr(t)) + σdB(t),

and the CKLS model estimated by Nowman’s method and our proposed
Gaussian method is given by

dr(t) = (α + βr(t)) + σrγ(t)dB(t).

Asymptotic standard errors are in brackets.
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Figure 1: time transformations for the UK interest rate
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Figure 2: time transformations for the US interest rate
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