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Abstract

The objective of this paper is parametric inference for stochastic vol-
atility models. We consider a two-dimensional diffusion process * X + V ,
where V is ergodic and X has drift and diffusion coefficient completely
determined by V . The drift and the diffusion coefficient for V depend
on an unknown parameter θ , and our concern is estimation of θ from
discrete-time observations of X . The volatility process V remains unob-
served. We consider approximate maximum likelihood estimation: for
the k’th order approximation we pretend that the observations form
a k’th order Markov chain, find the corresponding approximate log-
likelihood function, and maximize it with respect to θ . The approxi-
mate log-likelihood function is not known analytically but can easily be
calculated by simulation. For each k the method yields consistent and
asymptotically normal estimators. Simulations from the model where
V is a Cox-Ingersoll-Ross model are used for illustration.

Keywords: Approximate maximum likelihood; Cox-Ingersoll-Ross process;

discretely-time observations; stochastic volatility models.
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1 Introduction

Our concern is approximate maximum likelihood estimation for continuous-

time stochastic volatility models. By stochastic volatility models we will

mean models for a pair of processes � X � V � where V is a latent, positive dif-

fusion process and the observable process X solves a stochastic differential

equation with diffusion term � V and drift determined by V as well. The pro-

cess V is called the volatility process. We consider parametric specifications

of the drift and the diffusion function for V , and the objective is estimation

from discrete-time observations of X .

For a start, consider the classical Black-Scholes model (or geometric

Brownian motion)

dPt � αPt dt � τPt dWt (1)

which is (or rather was) often used to model stock prices. The classical op-

tion pricing formula was derived under the assumption that the price of the

underlying stock evolved according to this model (Black & Scholes 1973). If

P solves (1) then logP has constant volatility (squared diffusion) and inde-

pendent, normally distributed increments. It is well-known that these prop-

erties are inconsistent with empirical findings: studies have revealed that

stock returns (and other financial data) most often are dependent, have

strongly leptokurtic marginal distributions and exhibit signs of randomly

varying variance over time.

In the discrete-time setting ARCH-type models and discrete-time stochas-

tic volatility models have been used for modeling such phenomena; see

Shephard (1996) for an overview of both model types. However, for deriva-

tive pricing (and related problems) it may be advantageous to use diffusion-

type models, retaining the Itô calculus at our disposal. Also, irregularly sam-

pled data are in general easier handled for continuous-time models than for

discrete-time models.

Of course one could generate the above features by simply allowing for

certain non-linear drift and diffusion functions for the price process. In the

stochastic volatility framework, however, the linear structure of the equation

for P is retained, but an additional source of variability is introduced: the

constant τ in (1) is replaced by the value of a latent diffusion process � V .

The modified equation for P is thus

dPt � αPt dt ��� Vt Pt dWt � (2)

In this paper we shall consider models given by

dXt � ξ � Vt � dt � � Vt dWt (3)

dVt � b � Vt � θ � dt � σ � Vt � θ � dW̃t � (4)

With P � eX it follows by Itô’s formula that this model is equivalent to (2)

if ξ � v � � α 	 v 
 2. Hence, a possible application of the model is for the loga-

rithm of stock prices. The drift and diffusion for V are parameter dependent,

and we shall be interested in estimation of θ from equidistant observations

X0 � X∆ � ����� � Xn∆ of X . The volatility process V remains unobserved.
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For the above model to make sense, V must be a positive process. Var-

ious models were suggested in the late eighties and early nineties: V was

modeled as a geometric Brownian motion (Hull & White 1987), as a Cox-

Ingersoll-Ross process (Hull & White 1988, Heston 1993), as the exponen-

tial of a Ornstein-Uhlenbeck process (Wiggins 1987, Chesney & Scott 1989)

and as a squared Ornstein-Uhlenbeck process (Scott 1987, Stein & Stein

1991).

All these papers focus on pricing of a European call option written on

a stock with price process P � eX . Pricing is investigated for fixed value of

the parameter θ in the equation for V , and the majority of the papers pay

no or little attention to estimation of θ . Only Scott (1987) and Chesney &

Scott (1989) address the problem seriously and derive moment-like estima-

tors for the parameters. More recently, several estimation approaches have

been suggested in the statistics literature. Below we briefly review the basic

ideas; see Sørensen (2000, Section 3.4) for a more detailed survey. Some

of the methods have been applied earlier for discrete-time versions of the

model (see the surveys by Shephard (1996) and Ghysels, Harvey & Renault

(1996)), but the continuous-time case is more troublesome, and in general

the methods do not carry over immediately from discrete time to continuous

time.

Genon-Catalot, Jeantheau & Laredo (1999) consider the approximation

that the increments Z1 � ����� � Zn are independent and identically distributed

with conditional distribution of Z1 given V equal to N � ∆ξ � V0 � � ∆V0 � . The es-

timators are consistent as n � ∞ only if the time-step ∆ decreases to zero

as n increases. For (large) fixed values of ∆ the bias may be considerable.

Also, only estimation of parameters from the stationary distribution of V is

possible. In another paper, Genon-Catalot, Jeantheau & Laredo (1998) con-

sider mean-reverting models for V . Then calculation of various moments

of the joint distribution of the increments is possible, and estimation is car-

ried out by matching theoretical and empirical moments. For any fixed ∆
the estimators so obtained are consistent and asymptotically normal as n
increases. However, the simulation study in Section 7 indicates that there

may be serious existence problems in practice.

The two above methods require no hard numerical computations or sim-

ulations and are thus quick in practice. As opposed to this most other meth-

ods (including the one suggested in this paper) are quite computationally

intensive. Nielsen, Vestergaard & Madsen (2000) use a filtering approach

where values of V are estimated together with the parameter. This requires

that n (that is, the number of observed increments) five-dimensional dif-

ferential equation are solved by numerical methods. Eraker (1998) uses a

Bayesian approach which requires Markov Chain Monte Carlo simulation of

values of θ as well as of V and X at a number of time-points in between those

where X is observed; see also Elerian, Chib & Shephard (2000). The so-

called efficient method of moments (Gallant & Tauchen 1996) is applied to

a stochastic volatility model by Andersen & Lund (1997). Finally, Sørensen

(1999) studies prediction-based estimating functions. Particular attention

is paid to the case where, for a function f and an integer k, each term in

the estimating function is given in terms of the value f � Zi � and its projec-

tion on some space determined by the previous k increments Zi � k � 1 � ����� � Zi.



4 Simulated likelihood approximations

Typically, the projections must be calculated by simulation.

The method suggested in this paper is somewhat related to the approach

just mentioned since we also choose a number k � 0 and base inference on

k lags of the increments. For a given value of k the idea is to pretend that

� Z1 � Z2 � ����� � is k’th order Markov, find the corresponding approximate likeli-

hood function, and maximize it with respect to θ . In particular k � 0 cor-

responds to pretending that observations are independent, drawn from the

stationary distribution (and may thus be interpreted as an improvement of

the method by Genon-Catalot et al. (1999) who use an approximation to the

stationary density), and k � 1 corresponds to pretending that observations

are Markov.

There is no explicit expression for the k-lag conditional density, but it

can be expressed in terms of expectations with respect to the distribution

of � Vt � 0 � t ��� k � 1 � ∆ and therefore calculated by simulation of V on the interval

from zero to � k � 1 � ∆. For any fixed ∆ and any k � 0 the corresponding

approximate score function in unbiased and (under regularity conditions, of

course) the estimator is consistent and asymptotically normal as the number

of observations increases. We use the model where ξ � 0 and V is a Cox-

Ingersoll-Ross process as an example and apply the method to simulated

data. In the simple (but unrealistic) case with only one parameter unknown

we obtain satisfactory estimates even for k � 0, whereas we for all three

parameters unknown must use a larger k, say 4, to get reasonable estimates.

The paper is organized as follows. In Section 2 we discuss the model and

some of its probabilistic properties. We introduce the likelihood approxima-

tions and the estimation method in Section 3 and discuss computational

aspects in Section 4. Asymptotic results are proved in Section 5 and effi-

ciency of the estimators is briefly discussed in Section 6. We discuss the

Cox-Ingersoll-Ross model in Section 7. Conclusions are drawn in Section 8.

2 Preliminaries

Let � W � W̃ � ��� � Wt � W̃t �	� t 
 0 be a standard two-dimensional Brownian motion

defined on a filtered probability space � Ω ��� ��� t � Pr � satisfying the usual

conditions, and let UX : Ω ��

and UV : Ω � � 0 � ∞ � be � 0-measurable ran-

dom variables, mutually independent and independent of � W � W̃ � . Further-

more, let θ be an unknown p-dimensional parameter varying in Θ � 
 p

and consider the stochastic differential equations (3)–(4). We shall as-

sume that UX , UV and the functions ξ : � 0 � ∞ � ��

, b : � 0 � ∞ ��� Θ ��


and

σ : � 0 � ∞ ��� Θ � � 0 � ∞ � are such that there exists a solution � X � V � with V
positive, stationary and ergodic:1

Assumption 2.1 For any value of θ � Θ

(A1) there exists a unique strong solution � X � V � to (3)–(4) with state space
 � � 0 � ∞ � and initial value � X0 � V0 � � � UX � UV � ;
1Simple integral conditions ensuring stationarity can be found in Karlin & Taylor (1981,

Section 15.6) or Karatzas & Shreve (1991, Section 5.5), for example.
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(A2) the process V is stationary and ergodic with invariant measure µθ and

V0 � UV � µθ .
�

It is natural to consider increments of X . Define for i ��� the random

variables Zi, Mi and Si by

Zi � Xi∆ 	 X � i � 1 � ∆; Mi �
� i∆

� i � 1 � ∆ ξ � Vs � ds; Si �
� i∆

� i � 1 � ∆Vs ds

and let furthermore Hi � � Mi � Si � . The sequence Z � � Z1 � Z2 � ����� � takes val-

ues in the space

 ∞ of real sequences. Denote by Pθ the distribution of Z

when V0 � µθ . It is not possible to characterize Pθ explicitly, but the fol-

lowing properties are well-known: Assume that condition (A1) holds. Then,

conditional on � Vt � t 
 0, the increments Z1 � Z2 � ����� of X are independent and the

conditional distribution of Zi is Gaussian with expectation Mi and variance

Si. If furthermore conditions (A2) and (A3) hold then H � � H1 � H2 � ����� � and

Z � � Z1 � Z2 � ����� � are strictly stationary and ergodic.

The random variables Z1 � Z2 � ����� are not (marginally) independent; nei-

ther is Z Markov. However, Pθ defines a hidden Markov model (Genon-

Catalot et al. 1998): Let H̃i � � Vi∆ � Mi � Si � . Then H̃ � � H̃1 � H̃2 � ����� � is sta-

tionary Markov (because V is stationary Markov and H̃i is a function of

� Vt � � i � 1 � ∆ � t � i∆), and conditionally on H̃ the increments Z1 � Z2 � ����� are inde-

pendent with conditional distribution of Zi depending on � i � H̃) via H̃i only.

Note that the hidden chain H̃ has continuous state space. Also note that Z is

reversible: for any n ��� , � Z1 � ����� � Zn � and � Zn � ����� � Z1 � have same distribution

(Sørensen 2000, Proposition III.2.3).

For later use we introduce some further notation on the distribution of

Z: let pk
θ � z1 � ����� � zk � denote the density at � z1 � ����� � zk � of the simultaneous

distribution of Z1 � ����� � Zk, k ��� . Then pk
θ � 0 so the k-lag conditional density

pc � k
θ � zk � 1 � z1 � ����� � zk � �

pk � 1
θ � z1 � ����� � zk � 1 �
pk

θ � z1 � ����� � zk �
at zk � 1 of Zk � 1 given � Z1 � ����� � Zk � � � z1 � ����� � zk � is well-defined and positive for

all z1 � ����� � zk � 1, k �	� . For k � 0 we let pc � 0
θ � p1

θ . Furthermore, let z j
i

be short

for the vector � zi � ����� � z j � , i 
 j.
Finally some comments on possible generalizations of the model. The

increments of X would be independent and Gaussian even if ξ and the dif-

fusion function for X were allowed to depend on an unknown parameter

η . The mean and variance of the Gaussian distributions would of course

depend on η , and estimation of η is easily built into the estimation method

below. However, if the Brownian motions W and W̃ are correlated or if ξ
or the diffusion term for X depend on X , then the conditional distribution

result above is no longer true, and estimation is very difficult. Such models

cannot be handled by the method in this paper.

3 Approximations to the likelihood function

We aim at estimation of θ from discrete-time observations X0 � X∆ � ����� � Xn∆
while the volatility process V remains completely unobserved. In this section
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we introduce a class of approximations to the likelihood function. Later we

discuss computational aspects (Section 4) and show that maximization of

any of the approximations leads to a consistent and asymptotically normal

estimator of θ (Section 5).

Motivated by the distributional result in Section 2 we consider the vec-

tor of increments � Z1 � ����� � Zn � . For an observation � z1 � ����� � zn � the likelihood

function is given by

Ln � θ � �
� n

∏
i � 1

1

� 2πsi

exp
�
	 � zi 	 mi � 2

2si � dπn
θ � hn � � Eπn

θ

n

∏
i � 1

ϕ � zi � Mi � Si � (5)

where hn is short for � h1 � ����� � hn � ��� � m1 � s1 � � ����� � � mn � sn ��� , πn
θ is the distribu-

tion of Hn and ϕ ��� � m � s � is the density of N � m � s � .
The likelihood (5) is the expectation with respect to the distribution of

Hn of a certain functional. In principle, this expectation could be calculated

to any precision as follows: (i) simulate a number of paths V up to time n∆
according to (4); (ii) calculate for each simulation (approximations to) the

integrals Mi and Si and the product in (5); (iii) calculate the average of the

simulated product values. Finally the (simulated) likelihood function should

be maximized in order to obtain an estimator of θ . However, this approach

is not feasible in practice because one needs a huge number of simulated

paths of V just to calculate the likelihood function for a single parameter

value. This is not strange since two paths of V over a large time interval can

be very different.

Our approach will be to maximize suitable approximations to Ln rather

than Ln itself. The approximations under consideration are easier to simu-

late, but of course this is at the expense of loss of efficiency.

With the notation from Section 2 the likelihood can be rewritten as

Ln � θ � � pn
θ � z � �

n � 1

∏
i � 0

pc � i
θ � zi � 1 � z1 � ����� � zi � �

n � 1

∏
i � 0

pc � i
θ � zi � 1 � zi

1 � � (6)

The idea is to approximate the conditional densities in (6) by k-lag con-

ditional densities for some k large enough. This makes sense because the

dependence between Zi and � Z1 � ����� � Z j � is weak when i is much larger than

j (at least under certain mixing conditions). To be specific, leave for k �
� 0 � ����� � n 	 1 � fixed the first k � 1 terms in (6) unchanged but approximate

for i � k � 1 � ����� � n 	 1 the conditional density pc � i
θ � zi � 1 � zi

1 � by pc � k
θ � zi � 1 � zi

i � k � 1 �
— recall that Z is strictly stationary. The corresponding approximation of

the likelihood is

Lk
n � θ � �

k

∏
i � 0

pc � i
θ � zi � 1 � z1 � ����� � zi �

n � 1

∏
i � k � 1

pc � k
θ � zi � 1 � zi � k � 1 � ����� � zi �

� pk � 1
θ � z1 � ����� � zk � 1 �

n � 1

∏
i � k � 1

pc � k
θ � zi � 1 � zi � k � 1 � ����� � zi � �

In particular k � 1 corresponds to a Markov approximation:

L1
n � θ � � p1

θ � z1 �
n � 1

∏
i � 1

pc � 1
θ � zi � 1 � zi �
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and k � 0 corresponds to independence of Z1 � ����� � Zn:

L0
n � θ � �

n

∏
i � 1

p1
θ � zi � �

No approximation is made for k � n 	 1, but the idea is to use a relatively

small k to make computations feasible in practice. Note that Lk
n would be

the true likelihood function if Z was k’th order Markov.

The estimator θ̂ k
n is of course defined as the value that maximizes Lk

n (for

the moment implicitly assuming that it exists and is unique). In practice we

shall minimize U k
n � 	 logLk

n 
 n rather than maximize Lk
n. If uk

θ � 	 log pk
θ and

uc � k
θ � 	 log pc � k

θ then

U k
n � θ � � 	 1

n
logLk

n � θ � � 1
n

uk � 1
θ � zk � 1

1 � � 1
n

n � 1

∑
i � k � 1

uc � k
θ � zi � 1 � zi

i � k � 1 � (7)

� 1
n

n � 1

∑
i � k

uk � 1
θ � zi � 1

i � k � 1 � 	 1
n

n � 1

∑
i � k � 1

uk
θ � zi

i � k � 1 � � (8)

It is important to realize that, although we use approximations of the

likelihood function, no bias is introduced and the estimators are consistent

(Section 5). The reason is that we use the true k-lag conditional densities

rather than approximations. For example, we use the true stationary den-

sity p1
θ for k � 0. This is a crucial difference from the approach taken by

Genon-Catalot et al. (1998): they apply an approximation to p1
θ and the

corresponding estimators are thus biased (unless ∆ � 0).

It is of course crucial that the parameter is identifiable from the condi-

tional distribution of Zk � 1 given Zk
1:

�
θ � Zk � 1 � Zk

1 ���� � θ � � Zk � 1 � Zk
1 � � θ �� θ � �

The distribution � Vt � 0 � t � ∆ depends on all parameters (otherwise the model

is overparametrized). Typically, this implies that the distributions of H1 and

Z1 depend on all parameters as well, such that the identifiability condition

is satisfied even for k � 0 (that is, where the above conditional distributions

above are replaced by marginals).

Another important property is that the k’th order approximate maxi-

mum likelihood estimator is invariant to data transformations: if g is a bi-

jective function from



to some subset of



then the estimator based on

g � Z1 � � ����� � g � Zn � is the same as that based on Z1 � ����� � Zn.

Finally some remarks on how to choose k (see also Section 6). Since

for increasing k, U k
n takes more of the dependence structure of the model

into account, it might be useful to plot the autocorrelation functions for

various transformations of the data (like the data squared and the absolute

values of the data). If the empirical autocorrelation coefficients from lag

k0 and onwards are negligible then it seems reasonable not to use k much

larger than k0. If we for some k0 have caught the important features of the

distribution then U k
n should be close to U k0

n for k � k0. Hence, so should the

corresponding estimates and one may try increasing values of k until the

parameter estimates and the minimal values of U k
n stabilize.
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4 Computational aspects

In this section we discuss how to compute U k
n � θ � in practice for a fixed but

arbitrary value of θ . Let us first focus on calculation of pk � 1
θ � z̃k � 1

1 � for arbi-

trary z̃1 � ����� � z̃k � 1 � 
 . An expression for U k
n � θ � follows almost immediately.

Replace n in formula (5) by k � 1 in order to write pk � 1
θ � z̃k � 1

1 � as an ex-

pectation

pk � 1
θ � z̃k � 1

1 � � Eπk � 1
θ

k � 1

∏
j � 1

ϕ � z̃ j � M j � S j � (9)

with respect to the distribution of � � M j � S j �	� j � 1 � � � � � k � 1. As above ϕ ��� � m � s � is

the density of N � m � s � . We compute (9) as an average

1
R

R

∑
r � 1

k � 1

∏
j � 1

ϕ
�
z̃ j � M � r �j

� S � r �
j � (10)

of R simulated product values, where� � M � r �1
� S � r �

1 � � ����� � � M � r �k � 1
� S � r �

k � 1
� � � r � 1 � ����� � R

are independent simulations of � � M j � S j �	� j � 1 � � � � � k � 1. By choosing R large

enough, (9) can be computed to any accuracy in this way.

The r’th simulation is calculated via a simulation, V � r � , of the volatility

process V from time zero to time � k � 1 � ∆ as follows. First, the initial value of

V � r � is chosen according to the stationary distribution, V � r �
0 � µθ � Next, split

the interval
�
0 � � k � 1 � ∆ � into N � k � 1 � ∆ subintervals of length δ � 1 
 N and

calculate values V � r �
lδ

, 1 
 l 
 N � k � 1 � ∆ recursively by the Millstein scheme

(say),

V � r �
lδ � V � r �� l � 1 � δ � b � V � r �� l � 1 � δ � θ � δ � σ � V � r �� l � 1 � δ � θ � ε � r �

l

� 1
2

σ � V � r �� l � 1 � δ � θ � σ � � V � r �� l � 1 � δ � θ � � � ε � r �l
� 2 	 δ � � 1 
 l 
 N � k � 1 � ∆

where σ � � ∂σ 
 ∂v is the derivative of σ with respect to the state variable

and the innovations ε � r �
1
� ����� � ε � r �� k � 1 � N are independent, identically N � 0 � δ � -

distributed random variables. Finally, let

M � r �j � 1
δ

jN � 1

∑
l � � j � 1 � N

ξ
�
V � r �

lδ � � S � r �j � 1
δ

lN � 1

∑
l � � j � 1 � N

V � r �
lδ

be the simple left Riemann approximations of M j and S j, j � 1 � ����� � k � 1.2

The same simulations of M j and S j can be used to calculate pk
θ � z̃k

1 � ; simply

replace the product in (10) from 1 to k � 1 by the product from 1 to k. Even

2Of course, one could use better approximations to the integrals. It would probably

not improve the calculation much though, since (i) the simple approximation introduces no

systematic error, and (ii) we do not know how the simulated path would behave had we

simulated it at points in between the lδ ’s.
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more important, we can use the same simulations for all arguments z̃k � 1
1 and

thus calculate U k
n � θ � as

	 1
n

n � 1

∑
i � k

log
1
R

R

∑
r � 1

k � 1

∏
j � 1

ϕ � r �
i � k � j � j �

1
n

n � 1

∑
i � k � 1

log
1
R

R

∑
r � 1

k

∏
j � 1

ϕ � r �
i � k � j � j (11)

where ϕ � r �
i � j is short for ϕ � zi � M � r �j

� S � r �
j
� , see (8). In particular, we need to

simulate V up to time � k � 1 � ∆ only in order to compute U k
n .

There are several “parameters” to choose: the number R of repetitions,

the number N of subintervals per ∆-interval, and of course the number of

lags k. We already commented on how to choose k in the end of Section 3.

The parameters N and (in particular) R determine how accurately the values

of U k
n are determined and must be large enough that the calculation of U k

n � θ �
is suitably stable.

The number of calculations needed to compute one single value of U k
n � θ �

increases approximately linearly in both R and k � 1, and if computing time

is limited one must compromize between stability and the number of lags

involved. Note that it might be necessary to increase R as k increases since

we must simulate longer paths of V and thus might need more simulations

to obtain numerical stability.

So-called antithetic variables may increase computational stability. Here

it means that we make simulations of V in pairs where we in one simulation

use the randomly generated ε ’s in the Millstein scheme and in the other one

use minus the ε ’s. For R sets of randomly generated ε ’s we thus compute

2R simulated paths of V , compute the ϕ � r � -values in (11) for each of the 2R
simulated paths of V , and average over all 2R simulations. The two ϕ � r � -
values corresponding to the same set of ε ’s (plus and minus) tend to be

negatively correlated. The computing time is approximately doubled when

we use antithetic variables, but hopefully we need R less than half as big as

without antithetic variables in order to obtain same precision.

It is indeed possible to compute suitably accurate values of U k
n in reason-

able time: for n � 500 observations from the model where ξ � 0 and V is

a Cox-Ingersoll-Ross process, it takes somewhat less than a minute to com-

pute a value of U 4
n with N � 10 and R � 10 � 000 on a Digital alpha running

at 500 MHz. This is only to give an idea of the computational burden — no

attempts have been made as to optimize the routine.

Finally a very important remark: As always when criterion functions (or

estimating functions) are simulated, it is crucial to use the same random

numbers for different values of θ . Otherwise R must be chosen extremely

large for the simulated criterion function to behave continuously.

5 Asymptotic results

In this section we prove consistency and asymptotic normality (as n � ∞) of

the estimator θ̂ k
n satisfying U k

n � θ̂ k
n � � infθ � ΘU k

n � θ � . The results hold for any

fixed values of k and ∆. The true parameter is denoted by θ0, and all results

are with respect to Pθ0
.

Note that the first term in (7) is negligible as n increases so we can focus

on the sum 1
n ∑n � 1

i � k � 1 uc � k
θ � zi � 1 � zi

i � k � 1 � . In the following we let � � � � � denote
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the usual Eucledian norm on

 p . Also, for d � 1 we let Pd

θ denote the Pθ -

distribution of � Z1 � ����� � Zd � and for a function g : 
 d � 

and a probability Q

on

 d we write Q � g � for the integral

�
gdQ.

5.1 Consistency

Let k � � 0 � 1 � ����� � and ∆ � 0 be fixed. Apart from Assumption 2.1 we need

the following regularity conditions for consistency of θ̂ k
n .

Assumption 5.1 The following conditions hold:

(B1) the parameter space Θ is a compact subset of

 p ;

(B2) for all θ � Θ there exist a constant δθ � 0 and a function ūθ : 
 k � 1 � 

in L1 � Pk � 1

θ0
� such that supθ � � Tθ � δθ

�� uc � k
θ � � zk � 1 � zk

1 �
�� 
 ūθ � zk � 1

1 � for all states

z1 � ����� � zk � 1 � 
 where Tθ � δ � � θ � � Θ : � � θ 	 θ � � � 
 δ � ;
(B3) the function θ � uc � k

θ � zk � 1 � z1 � ����� � zk � from Θ to



is continuous for all

z1 � ����� � zk � 1 � 
 ;

(B4) For any z1 � ����� � zk � 
 the conditional distributions of Zk � 1 given Zk
1 � zk

1

with respect to Pk � 1
θ and Pk � 1

θ � are different for θ �� θ � . �

Note that conditions (B1) and (B3) ensure that a minimum of U k
n exists,

but the minimum could be attained at the boundary of Θ and it need not be

unique. Condition (B2) expresses that uc � k
θ is locally dominated integrable

wrt. Pk � 1
θ0

. Condition (B4) is an identifiability condition ensuring that the

limit (in Pθ0
-probability) of U k

n has unique minimum at θ0; see the proof

below.

Theorem 5.2 Under Assumptions 2.1 and 5.1, θ̂ k
n is consistent for θ0, that is,

θ̂ k
n

� θ0 in probability wrt. Pθ0
as n � ∞.

Proof The proof is quite standard and follows Dacunha-Castelle & Duflo

(1986, Chapter 3), for example.

First, note that condition (B2) implies that uc � k
θ is in L1 � Pk � 1

θ0
� for all θ � Θ.

The ergodic theorem thus yields

U k
n � θ � � Pk � 1

θ0
� uc � k

θ � � Eθ0
uc � k

θ � Zk � 1 � Z1 � ����� � Zk �
as n � ∞ in Pθ0

-probability (even Pθ0
-a.s and in L1 � Pθ0

��� . Denote the limit by

Jk � θ � . By conditions (B2) and (B3), Jk is continuous. Furthermore, condi-

tion (B4) implies that Jk has unique minimum at θ0. Indeed, by definition

of Jk and Jensen’s inequality

Jk � θ0 � 	 Jk � θ � 
 log Eθ0

�
pc � k

θ � Zk � 1 � Zk
1 �

pc � k
θ0
� Zk � 1 � Zk

1 ���
� log

���
k

pk
θ0
� zk

1 �
���

pc � k
θ � zk � 1 � zk

1 � dzk � 1 dzk
1 � 0 (12)
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for all θ � Θ with equality if and only if θ � θ0.

Next, define Wn � η � � sup � � θ � θ � � � � η

��U k
n � θ � 	 U k

n � θ � �
�� , η � 0. By the triangle

inequality

Wn � η � 
 sup
� � θ � θ � � � � η

� ��U k
n � θ � 	 Jk � θ � �� � �� Jk � θ � 	 Jk � θ � � �� � ��U k

n � θ � � 	 Jk � θ � � �

 2 sup

θ � Θ

��U k
n � θ � 	 Jk � θ � �� � sup

� � θ � θ � � � � η

�� Jk � θ � 	 Jk � θ � � �� �
Here, the second term is deterministic and converges to zero as η � 0 since

Jk is continuous and defined on a compact set (condition (B1)). The first

term converges to zero in Pθ0
-probability. The proof of this is almost identi-

cal to that of Lemma 3.3 in Bibby & Sørensen (1995); see Sørensen (2000,

Lemma III.5.3) for further details. Consistency of θ̂ k
n now follows from stan-

dard arguments.
�

5.2 Asymptotic normality

In the following we shall assume that the criterion function U k
n is twice con-

tinuously differentiable with derivative U̇ k
n which takes values in


 p . A min-

imizer of U k
n is then either on the boundary of Θ or solves the equation

U̇ k
n � θ � � 0. Below we give a result on existence and asymptotic normality of

a solution to the estimating equation.

First, let us be more specific about the differentiability assumption and

introduce some further notation.

Assumption 5.3 Let Θ � denote the inner of Θ and assume that θ0 � Θ � .

Assume furthermore that the function θ � uc � k
θ � zk � 1 � zk

1 � is twice continuously

differentiable on Θ � for all z1 � ����� � zk � 1 � 
 .
�

Let u̇c � k
θ � � u̇c � k

θ � j � j � 1 � � � � � p � � ∂uc � k
θ 
 ∂θ j � j � 1 � � � � � p denote the p-vector of first deriva-

tives and üc � k
θ � � üc � k

θ � jl � j � l � 1 � � � � � p � � ∂ 2uc � k
θ 
 ∂θ j∂θl � j � l � 1 � � � � � p be the symmetric p �

p-matrix of second derivatives of uc � k
θ wrt. the parameter. With this notation

(and without the first, negligible term) the approximate score function U̇ k
n

is given by 1
n ∑n � 1

i � k � 1 u̇c � k
θ � zi � 1 � zi

i � k � 1 � .
Note that U̇ k

n is an unbiased estimating function, that is, Eθ U̇ k
n � θ � � 0 for

all θ � Θ � . Indeed,

Eθ u̇c � k
θ � j � Zk � 1 � Zk

1 � � Eθ Eθ

�
u̇c � k

θ � j � Zk � 1 � Zk
1 �

�� Zk
1 �

and, with obvious notation for the derivatives of pc � k
θ (and if differentiation

wrt. θ j and integration wrt. zk � 1 are interchangeable),

Eθ

�
u̇c � k

θ � j � Zk � 1 �
�� Zk

1 � zk
1 � � 	

�
ṗc � k

θ � j � z � zk
1 � dz � 	 ∂

∂θ j

�
pc � k

θ � z � zk
1 � dz � 0

for all z1 � ����� � zk � 
 and all j � 1 � ����� � p.

It is essential that the estimating function U̇ k
n , scaled properly and eval-

uated at the true parameter, converges in distribution. We shall impose a

version of the central limit theorem based on α-mixing (Hall & Heyde 1980)



12 Simulated likelihood approximations

which was also used by Genon-Catalot et al. (1998). For a stochastic process

Y � � Yt � t � T in discrete time � T � ��� � 0 � ) or continuous time (T � �
0 � ∞ � ),

define the α-mixing coefficients by

αY � t � � sup
t � 
 1

sup
A � B

�� Pr � A � B � 	 Pr � A � Pr � B � �� � t � T

where the second supremum is taken over sets A and B from the σ -algebras

generated by � Ys � s � t � and � Ys � s 
 t � � t respectively. We can think of the α-mixing

coefficients as measures of the temporal dependence in Y , and Y is said to

be α-mixing if αY � t � � 0 as t � ∞. See Doukhan (1994) for an exposition

on the general theory of mixing.

If the α-mixing coefficients for Z decrease to zero fast enough and if

u̇c � k
θ0

has moments of sufficiently high order (condition (C1) below) then

n1 � 2U̇ k
n � θ0 � converges in distribution (Hall & Heyde 1980). Note that the

α-mixing coefficients for V and Z satisfy αZ � m � 
 αV ��� m 	 1 � ∆ � for all m � 1
(Genon-Catalot et al. 1998), so it is sufficient to show that αV � m∆ � decrease

at a geometric rate, say. There are well-known, sufficient conditions for this

to hold (Genon-Catalot et al. 1998).

We need some further regularity conditions: an identifiability assump-

tion (condition (C3)) and locally dominated integrability of üc � k
θ (condition

(C2).

Assumption 5.4 Assume that

(C1) there exists an η � 0 such that u̇c � k
θ0 � j is in L2 � η � Pk � 1

θ0
� for all j � 1 � ����� � p

and such that the α-mixing coefficients for Z corresponding to θ0 sat-

isfy the condition ∑∞
m � 1 αZ � m � 2 � � 2 � η ��� ∞;

(C2) there is a neighbourhood T0 of θ0 such that for all θ � T0 and all j � l �
1 � ����� � p there is a constant δθ � jl � 0 and a function ūθ � jl : 
 k � 1 � 


in

L1 � Pk � 1
θ0

� such that for all z1 � ����� � zk � 1 � 
 , supθ � � Tθ � δθ � jl �� üc � k
θ � � jl � zk � 1 � zk

1 �
�� 


ūθ � jl � zk � 1
1 � where, as before, Tθ � δ ��� θ � � Θ : � � θ 	 θ � � � 
 δ � ;

(C3) the symmetric p � p matrix Ak � θ0 � � Pk � 1
θ0

� üc � k
θ0
� � Eθ0

üc � k
θ0
� Zk � 1 � Zk

1 � is

positive definite.
�

Theorem 5.5 Suppose that Assumptions 2.1, 5.3 and 5.4 hold. Then a solu-

tion θ̂ k
n to U̇ k

n � θ � � 0 exists with a probability tending to 1 as n � ∞. Moreover

� n � θ̂ k
n 	 θ0 � � N � Ak � θ0 � � 1Γk � θ0 � Ak � θ0 � � 1 � (13)

in distribution wrt. Pθ0
where the p � p matrix Γk � θ0 � is given by

Γk � θ0 � � Eθ0
u̇c � k

θ0
� Zk � 1 � Zk

1 � u̇c � k
θ0
� Zk � 1 � Zk

1 � T

�
∞

∑
m � 1

Eθ0
u̇c � k

θ0
� Zk � 1 � Zk

1 � u̇c � k
θ0
� Zk � m � 1 � Zm � k

m � 1 � T

�
∞

∑
m � 1

Eθ0
u̇c � k

θ0
� Zk � m � 1 � Zm � k

m � 1 � u̇c � k
θ0
� Zk � 1 � Zk

1 � T

and Ak � θ0 � is given in condition (C5).
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Proof It follows from Corollary 2.5 and Theorem 2.8 in Sørensen (1998)

that it suffices to show

n1 � 2U̇ k
n � θ0 � � N � 0 � Γk � θ0 � � (14)

in distribution wrt. Pθ0
as n � ∞ and

sup
θ � Tθ0 � η ��� n

�� Ü k
n � jl � θ � 	 Ak � θ0 �

�� � 0 (15)

in probability wrt. Pθ0
as n � ∞ for all η � 0 and all j � l � � 1 � ����� � p � .

As already noted (14) follows from condition (C1) and a version of the

central limit theorem (Hall & Heyde 1980). In particular the sums in Γk � θ0 �
are finite so that Γk � θ0 � is well-defined.

In order to show (15), define Ak � θ � � Pk � 1
θ0

� üc � k
θ � for θ � T0 (well-defined

because of condition (C2)) and let j � l � � 1 � ����� � p � and η � 0 be fixed. By

the triangle inequality�� Ü k
n � jl � θ � 	 Ak � θ0 �

�� 
 �� Ü k
n � jl � θ � 	 Ak � θ � �� � ��Ak � θ � 	 Ak � θ0 �

�� �
Choose N large enough that Tθ0 � η ��� N

� T0. Then, for n � N, Ak � θ � is well-

defined for all θ � Tθ0 � η � � n. One can now show that

sup
θ � T

θ0 � η � � N

�� Ü k
n � jl � θ � 	 Ak � θ � �� � 0

in Pθ0
-probability as n � ∞. The proof of this is almost identical to that

of Lemma 3.3 in Bibby & Sørensen (1995); recall that Tθ0 � η � � N
is compact.

Also, Ak is continuous in θ0. The convergence (15) follows immediately.

This proves both the existence assertion and the weak convergence result in

(13).
�

Note that although asymptotic normality is indeed a nice property of the

estimator, it is difficult to use in practice as we are not able to compute the

asymptotic variance. Also, the above conditions are all expressed in terms of

the distribution of Z and thus in general difficult (if possible at all) to check.

As noted above, condition (C3) is an exception.

Finally, let us stress that the above results hold for fixed value of k (and

∆) as n � ∞. In particular, the above results do not imply nice asymptotic

behaviour of the maximum likelihood estimator (which corresponds to k �
k � n � � n 	 1). The problem is of course that the terms in the log-likelihood

function Un � 1
n originate from different functions (pc � i

θ for observation zi � 1)

such that the usual limit theorems do not apply. As noted in Section 2 we can

think of the model as a hidden Markov model with continuous, unbounded

state space of the hidden chain H̃ given by H̃i � � Vi∆ � Mi � Si � . Asymptotic

results for the maximum likelihood estimator have been proved for hidden

Markov models for which the state space of the hidden chain is either finite

(Bickel & Ritov 1996, Bickel, Ritov & Rydén 1998) or compact (Jensen &

Petersen 1999). Neither approach can be applied in our setting and there

are in fact no results in the literature concerning asymptotic properties of

the maximum likelihood estimator for the models considered in this paper.
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6 Efficiency considerations

In this section we briefly discuss how the number of lags k influence the

quality of the estimators. The subject is essential but unfortunately we have

not been able to prove any very powerful results.

With the asymptotic results in mind, note that the number of lags, k,

is a question of efficiency rather than bias. Intuitively we would expect

the estimators to improve as k increases since further characteristics of the

distribution are taken into account. Put differently, we would expect the

asymptotic variance of θ̂ k
n to decrease with k (with the usual definition of

“ 
 ” for symmetric matrices: A 
 B if and only if the difference B 	 A is

positive semi-definite). We have not been able to prove results like this!

The problem is of course that the expression for the asymptotic variance

is so complicated that comparison between different k’s is impossible, even

for a one-dimensional parameter. Anyway, even if efficiency increases with

k, it should in applications be taken into account that computation time

increases with k as well.

The simulation study in Section 7 indicates that minimization of U k
n in

practice may give rise to identification problems even if the k-lag condi-

tional distribution uniquely determines the parameter (theoretically). The

problem seems to diminish as we use larger values of k suggesting that esti-

mation becomes easier (and improves in this particular sense) as k increases.

On the other hand: in a simpler situation with no identification problems

for any value of k we did not find any substantial differences among the

estimators for different values of k.

In principle we could improve estimation by introducing weight func-

tions as follows. Consider estimating functions on the form

Dk
n � θ � � 1

n

n � 1

∑
i � k

di � Zi
i � k � 1 � θ � u̇c � k

θ � Zi � 1 � Zi
i � k � 1 �

where dk � ����� � dn � 1 are function from

 k � Θ to



. Note that we for simplicity

have left out the contribution from the first k observations and that U̇ k
n (ex-

cept for the first k observations) corresponds to di � 1, i � k � ����� � n 	 1 . The

estimating function Dk
n is unbiased since for each i � k ����� � n 	 1

Eθ0
di � Zi

i � k � 1 � θ0 � uc � k
θ0
� Zi � 1 � Zi

i � k � 1 �
� Eθ0

di � Zi
i � k � 1 �

�
Eθ0

uc � k
θ0
� Zi � 1 � Zi

i � k � 1 � � Zi
i � k � 1 � � 0 �

Under regularity conditions similar to those of Assumptions 5.3 and 5.4 the

solution to Dk
n � θ � � 0 is a consistent and asymptotically normal estimator of

θ . By choosing the functions di cleverly we can obtain smaller asymptotic

variance than is the case for θ̂ k
n , see Sørensen (1999) for similar consider-

ations. This is only of theoretical interest, though, since it even in simple

cases is impossible to determine the optimal weights!

Finally, we prove a result concerning the approximate log-likelihood

functions U k
n rather than the corresponding estimators: the limit, in prob-

ability, of U k
n � θ0 � is decreasing in k. It holds for U k

n evaluated at the true

parameter only and is thus not very useful in practice. Nevertheless it tells

us that the approximations of the likelihood improve in this sense.



Example: The Cox-Ingersoll-Ross model 15

Proposition 6.1 Let 0 
 k � 
 k � � and assume that Condition (B2) is satisfied

for θ � θ0 and k � k � and k � k � � . Then

Eθ0
uc � k � �

θ0
� Zk � � � 1 � Zk � �

1 � 
 Eθ0
uc � k �

θ0
� Zk � � 1 � Zk �

1 � �
Consequently, Eθ0

U k � �
n � θ0 � 
 Eθ0

U k �
n � θ0 � and limn � ∞ U k � �

n � θ0 � 
 limn � ∞ U k �
n � θ0 �

where convergence means convergence in Pθ0
-probability.

Proof It will suffice to consider k � � k and k � � � k � 1 for k � 0 arbitrary. By

stationarity it follows that it is sufficient to show that

Eθ0
uc � k � 1

θ0
� Zk � 2 � Zk � 1

1 � 
 Eθ0
uc � k

θ0
� Zk � 2 � Zk � 1

2 � � (16)

By definition,

uc � k � 1
θ0

� Zk � 2 � Zk � 1
1 � 	 uc � k

θ0
� Zk � 1 � Zk

1 � � log
pc � k

θ0
� Zk � 2 � Zk � 1

2 �
pc � k � 1

θ0
� Zk � 2 � Zk � 1

1
�

so Jensen’s equality yields

Eθ0

�
uc � k � 1

θ0
� Zk � 2 � Zk � 1

1 � 	 uc � k
θ0
� Zk � 2 � Zk � 1

2 � � 
 logEθ0

pc � k
θ0
� Zk � 2 � Zk � 1

2 �
pc � k � 1

θ0
� Zk � 2 � Zk � 1

1
� �

Calculations similar to those leading to (12) show that the latter expectation

is one, which yields (16). The expectation assertion follows immediately by

U k � 1
n � θ0 � 	 U k

n � θ0 � � 1
n

n � 1

∑
k � 1

�
uc � k � 1

θ0
� Zi � 1 � Zi

i � k � 	 uc � k
θ0
� Zi � 1 � Zi

i � k � 1 � �
and the convergence result follows by the ergodic theorem.

�

7 Example: The Cox-Ingersoll-Ross model

We now discuss a particular model and present a tiny simulation study based

on ten simulated datasets. Of course, the results from such a small exper-

iment are by no means conclusive, but at best indicative, of the properties

of the estimators. The study demonstrates, however, that the approximate

likelihood method is indeed applicable in practice.

Consider the model where the observable process X has no drift and the

volatility process V is a Cox-Ingersoll-Ross process. This specification of the

volatility process was first considered by Hull & White (1987) and later by

Heston (1993). The model is given by the stochastic differential equations

dXt � � Vt dWt

dVt � α � β 	 Vt � dt � σ � Vt dW̃t

with parameter θ � � α � β � σ � varying in Θ � � � α � β � σ � : α � β � σ � 0 � σ 2 

2αβ � . The parameter β is simply the mean value of V whereas the “mean

reverting parameter” α can be interpreted as the size of the force pulling
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the process back to its mean. It is well-known that for any θ � Θ, V is posi-

tive, stationary, ergodic with geometrically decreasing α-mixing coefficients.

The invariant distribution is the Gamma distribution with shape parameter

2αβ 
 σ 2 and scale parameter σ 2 
 � 2α � , and we assume that V is started ac-

cording to this distribution.

It is easy to calculate various moments of the distribution of Z: for any

i � j � � with j � i we have Eθ Zi � 0, Varθ Zi � β∆, Covθ � Zi � Z j � � 0, and

Varθ Z2
i � 2β 2∆2 � 3βσ 2

α3 � α∆ 	 1 � e � α∆ �
Covθ � Z2

i � Z2
j � � βσ 2

2α3 e � α∆ � j � i � 1 � � 1 	 e � α∆ � 2 �
From these expressions it follows that the correlation between Z 2

i and Z2
j is at

most 1/5 for all j � i and that the excess kurtosis of the invariant distribution

of Z is at most 3. Hence, the model is not appropriate for data with very

heavy tails or with large correlations between squared observations.

Now, let us turn to the simulation study. It consists of ten simulated

datasets from the above model, each consisting of n � 500 observations. The

model parameter is � α � β � σ � � � α0 � β0 � σ0 � � � 0 � 1 � 1 � 0 � 35 � and the value of ∆
is 1. For all computations of U k

n below we have used N � 10 and R � 10 � 000,

cf. Section 4. The top of Figure 1 shows one of the simulated datasets of

increments. The bottom of the figure shows the corresponding path of the

volatility V from time 0 to time 500. Clearly the increments are more volatile

in periods with relatively large values of the volatility process V than in

periods with low values of V . Figure 2 is a QQ-plot of the increments; they

are clearly too heavy-tailed to be Gaussian. We shall use the data from

Figure 1 as example throughout the section.

In the following we consider two different set-ups, namely the one where

only one parameter, say α , is unknown whereas the two others are known

(Section 7.1) and the one where all three parameters are unknown (Sec-

tion 7.2). The first situation is of course not realistic but it provides insight

to the behaviour of the estimators. We refer to Sørensen (2000, Section

III.7) for further details on the experiment and the results, and also for

comments on the set-up where two parameters must are unknown and one

is known (essentially the conclusions are as for estimation of α solely when

α or σ is the known parameter and as for estimation of all parameters when

β is the known parameter).

7.1 Estimation of one parameter only

We choose α as the unknown parameter and consider β � β0 � 1 and σ �
σ0 � 0 � 35 known. Recall that the true value of α is α0 � 0 � 1.

Figure 3 shows the graphs of U k
n , k � 0 � ����� � 4 on the interval from 0.06

to 0.16 for the data from Figure 1. For this particular dataset the curvatures

of U3
n and U4

n are almost identical, and very similar to the curvature of U 2
n

and U1
n . The minimum points are thus close. The function U 0

n has different

curvature and minimum for a somewhat lower value of α . Note that U 4
n 


U3
n 
 U2

n 
 U0
n 
 U1

n at θ0 — almost in line with Proposition 6.1.
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Figure 1: Simulated values of Zi � Xi∆ 	 X � i � 1 � ∆ (top) and Vi∆ (bottom)

from the Cox-Ingersoll-Ross model for ∆ � 1 and i � 1 � ����� � n where

n � 500. The model parameter is � α � β � σ � � � 0 � 1 � 1 � 0 � 35 � .

The estimation results are illustrated in the first five “columns” of Fig-

ure 4, where each circle denotes a value of the estimator. All five values of

k yield reasonable estimates, with averages from 0.1027 (k � 1) to 0.1101

(k � 0) and standard errors from 0.0169 (k � 1) to 0.0281 (k � 0). In par-

ticular, the estimator α̂1
n is the best — and α̂0

n the worst — in this study with

respect to both bias and variance. The difference between the five estima-

tors is not substantial, though, and it is difficult to recognize any pattern in

the differences.

For comparison we have also calculated two different moment estima-

tors, that is, estimators obtained by matching theoretical and empirical mo-

ments (Genon-Catalot et al. 1998). Note that neither the first three mo-

ments of Z nor Eθ Z1Z j, j � 2 can be used since they do not depend on α .

Instead we have used the fourth order moments Eθ Z4
1 and Eθ Z2

1Z2
2 respec-

tively. There is a considerable bias and the standard errors are huge. Also,

the estimating equations have no solution for two of the datasets.

Finally, we have estimated α from the volatility data V0 � V∆ � ����� � Vn∆. Max-

imum likelihood estimation is in principle possible since the transition prob-

abilities are known (non-central χ 2-distributions), but for simplicity we have
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Figure 2: QQ-plot for the data in the top of Figure 1; quantiles of

the standard normal distribution at the x-axis, quantiles of data at the

y-axis.

used the (optimal) martingale estimating function based on the conditional

expectation one step ahead (Bibby & Sørensen 1995, Sørensen 1997). The

martingale estimates are plotted in the last “column” of Figure 4. The av-

erage of α̂V
n is 0.1097. As one would expect, α̂V

n has smaller standard error

(0.0154) than the estimators based on Z. It is slightly surprising, though,

that the standard error is only roughly 10% lower than that of α̂1
n .

7.2 Estimation of all three parameters

Estimation of α was succesful even for k � 0 and k � 1. At first glance it

seems promising to use k � 1 for estimation of all three parameters as well:

by the moment considerations above it follows that the three-dimensional

parameter is uniquely determined by the distribution of the pair � Z1 � Z2 � —

and thereby presumably also by the conditional distribution of Z2 given Z1.

In practive it turns out that U 1
n has severe difficulties distinguishing between

parameter values for which the invariant distribution of V is the same. This

distribution is determined by two parameters only. Hence, we must use a

larger value of k in order to obtain reasonable estimates.

We choose k � 4. It is important to find good initial points for the numer-

ical minimization routine. Moment estimators (Genon-Catalot et al. 1998)

are extremely easy to compute but unfortunately there are serious existence

problems: the equations requiring that the theoretical and empirical ver-

sions of Eθ Z2
1 , Eθ Z4

1 and Eθ Z2
1Z2

2 agree, have no solution for eight of the ten

datasets. (Also, we know from Section 7.1 that moment estimators may be

quite bad.) We are thus forced to come up with better alternatives.

Inspired by Genon-Catalot et al. (1999) we approximate the invariant
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Figure 3: Graphs of α � U k
n � α � β0 � σ0 � for the data from Figure 1,

k � 0 � ����� � 4, β0 � 1 and σ0 � 0 � 35. The true value of α is α0 � 0 � 1 �

distriution of S with a Γ-distribution. Denote by λ and τ the shape and scale

parameters. Since the Pθ -expectation of S1 is β∆ we let τ � β∆ 
 λ . If we

furthermore require the variance of Γ � λ � β∆ 
 λ ��� to equal the Pθ -variance of

S1, then we obtain σ 2 as a function of α , β and λ :

σ 2 � σ 2 � α � β � λ � � α3β∆
λ � α∆ 	 1 � e � α∆ � � (17)

Estimation is now performed as follows: (i) let β̃n � ∑n
i � 1 Z2

i 
 ∆ be a prelim-

inary estimate of β ; (ii) estimate λ by pretending that Z1 � ����� � Zn are inde-

pendent and identically distributed with distribution equal to that of � γε
where γ and ε are independent with γ � Γ � λ � β̃n∆ 
 λ � and ε � N � 0 � 1 � ; (iii)
minimize α � U 4

n � α � β̃n � σ � α � β̃n � λ̃n ��� in order to get preliminary estimates

α̃n and σ̃ 2
n � σ 2 � α̃n � β̃n � λ̃n � of α and σ 2; (iv) finally minimize U 4

n over Θ with

initial values � α̃n � β̃n � σ̃n � .
The two last steps are illustrated in Figure 5 which shows the level curves

of � α � σ 2 � � U4
n � α � β̃n � σ � for the dataset from Figure 1 together with the

dashed curve � α � σ 2 � α � β̃n � λ̃n ��� . Here β̃n � 0 � 7528 and λ̃n � 1 � 6732. The min-

imum along the curve is attained for α̃n � 0 � 1631, and the corresponding

value of σ is σ̃n � � 0 � 1549 � 0 � 3936. The point � 0 � 1631 � 01549 � is denoted by

a solid circle in Figure 5. In step (iv) the minimization routine moves from

the initial point (0.1631,0.7528,0.3936) to the global minimum point

� α̂4
n � β̂ 4

n � σ̂ 4
n � � � 0 � 1040 � 0 � 7441 � 0 � 2571 � �

Note that the estimate of β changes (slightly) in step (iv), too. The point

� α̂4
n � � σ̂ 4

n � 2 � is shown with a circle in Figure 5.
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Figure 4: The estimators α̂k
n for k � 0 � ����� � 4 (the first five “columns”)

and the martingale estimator α̂V
n based on V (the last “column”). The

true value of α is α0 � 0 � 1 (shown by the dashed line).

The estimators α̂4
n , β̂ 4

n and σ̂ 4
n are shown in the first, third and fifth

“columns” of Figure 6. The averages are 0.1113, 1.0037 and 0.3036 respec-

tively. This is not too bad. However, for three of the datasets, the estimators

of α and σ are very bad; this is reflected in huge standard errors.

In conclusion, k � 4 works reasonably well for seven of the ten datasets.

Of course we could have used other values of k, and informal studies indi-

cate that k � 3 would have worked fairly well for three of the simulations

and k � 2 for two simulations. In other words estimation seems to improve

as k increases. This leaves us with some hope that estimation would improve

even further if we used more than four lags. The hope is strengthened by in-

spection of the correlograms (not shown here) of the squared observations

for the three datasets that behaved badly for k � 4: all three datasets have

relatively large correlations (compared to the other datasets) on several lags

larger than four, indicating that U 4
n does not capture all information in data.

Finally, it is easy to compute estimators based on the volatility process as

solutions to simple martingale estimating equations (Sørensen 1997). These

estimators are superior to the approximate maximum likelihood estimators

based on Z; see Figure 6. Recall however that V would not be observed in

applications so martingale estimation based on V would not be an option!

Rather than giving up the idea of approximate maximum likelihood estima-

tion, we conclude that quite a lot of information is lost when Z is observed

instead of V .
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Figure 5: Level curves of � α � σ 2 � � U4
n � α � β̃n � σ � for the data from

Figure 1; α on the x-axis and σ 2 on the y-axis. The dashed curve

is given by (17) with β � β̃n � 0 � 7528 and λ � λ̃n � 1 � 6732. The solid

circle denotes the minimum point � α̃n � σ̃ 2
n � � � 0 � 1631 � 0 � 1549 � along the

dashed curve, and the circle denotes the global minimum — when

β varies as well — � α̂4
n � � σ̂ 4

n � 2 � � � 0 � 1040 � 0 � 0661 � . The true value of

� α � σ 2 � is � α0 � σ 2
0 � � � 0 � 1 � 0 � 1225 � .

8 Concluding remarks

We have discussed approximate maximum likelihood estimation for incre-

ments Z1 � ����� � Zn from a certain class of stochastic volatility models. The k’th

order approximation to the likelihood function was obtained by pretending

that Z1 � ����� � Zn are independent (k � 0) or k’th order Markov (k � 1). The cor-

responding estimator is consistent and asymptotically normal for any k � 0,

essentially because we use the true conditional densities given the k previous

observations.

The estimation procedure is applicable to other data types with a compli-

cated dependence structure, in particular for (other) hidden Markov mod-

els. The essential properties making simulation of the approximate like-

lihood functions easy are the following: (i) given the values of an unob-

servable process, the observations Z1 � ����� � Zn are independent with a known

distribution (up to some parameter) determined by the latent process; (ii)
the unobserved process is easy to simulate for all values of the parameter.

Note that the first property does not hold for stochastic volatility models if

the Brownian motions driving X and V , respectively, are correlated or if the

drift or the diffusion term for X depends on X itself. Hence, such models

cannot be handled by the approach from this paper.

Finally, let us stress that there are other possible approximations to the
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Figure 6: The approximate maximum likelihood estimators α̂4
n , β̂ 4

n ,

σ̂ 4
n in “columns” 1, 3 and 5, and the martingale estimators α̂V

n , β̂V
n , σ̂V

n
in “columns” 2, 4 and 6. The true values (0.1, 1 and 0.35) are shown

with the dashed lines.

likelihood function than those based on the k-lag conditional densities. For

example, one could split data into tuples of some length, and pretend that

the tuples are independent (Rydén 1994). Or one could both condition

forwards and backwards in time, i.e. base estimation on the conditional

densities pc � k
θ � Zi � Zi � k � ����� � Zi � 1 � Zi � 1 � ����� � Zi � k � given the k previous and the k

subsequent observations. We would get asymptotically well-behaved esti-

mators by these approximations as well. However, since time runs forward,

we feel that the approximations based on conditioning backwards in time

only, are the most natural.
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