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Abstract

We study estimation of diffusion parameters for one-dimensional,
ergodic diffusion processes that are discretely observed. We discuss a
method based on a functional relationship between the drift function,
the diffusion function and the invariant density and use empirical
process theory to show that the estimator is /n-consistent and in
certain cases weakly convergent. The so-called CKLS model is used
as an example and a numerical example is presented.

Keywords: CKLS model; diffusion parameters; ergodic diffusion pro-
cesses; empirical process theory

*An extended version of this paper was printed as Paper II in Sgrensen (2000).



Estimation of diffusion parameters 1

1 Introduction

There is a vast literature on inference for diffusion processes observed at dis-
crete points in time. Important early references are Dacunha-Castelle and
Florens-Zmirou (1986) on the effect of discretization and Florens-Zmirou
(1989) on simple Gaussian approximations. Later work include Bibby
and Sgrensen (1995) on martingale estimating functions; Pedersen (1995),
Poulsen (1999) and Ait-Sahalia (1998) on advanced approximations to the
likelihood; and Elerian, Chib and Shephard (2000) on Bayesian analysis.

One direction of research has been particularly concerned with estima-
tion of the diffusion coefficient, and this paper is yet another contribution
to that area. Useful references in parametric settings are Dohnal (1987)
on the LAN/LAMN property of the model and lower bounds on the vari-
ance of estimators; Genon-Catalot and Jacod (1993), Jacod (1993) and
Genon-Catalot and Jacod (1994) on the LAN/LAMN property, contrast
estimation and, for the latter two, optimal random sampling times. Es-
timation in non-parametric models (with the diffusion coefficient either
time or state dependent) has been considered by several authors as well:
the estimators are based on kernel methods (Florens-Zmirou, 1993; Jiang
and Knight, 1997; Soulier, 1998; Jacod, 2000) or wavelet methods (Genon-
Catalot, Laredo and Picard, 1992; Hoffmann, 1997; Soulier, 1998; Hoff-
mann, 1999a; Hoffmann, 19995).

The asymptotic results in all the papers mentioned in the previous para-
graph concern sampling schemes where the final time-point of observation
is fixed, say 1, and the process is observed more and more frequently. As
opposed to this, the method from this paper provides consistent estima-
tors for any fized sampling frequency and final sampling time increasing
to infinity. This asymptotic scheme is appropriate if, say, daily or weakly
observations are available in a sampling period of increasing length.

The set-up is parametric but the estimation method is very much in-
spired by a non-parametric estimation procedure discussed by Ait-Sahalia
(1996). Both methods rely on the following relation: if b is the drift
function, ¢ the diffusion function, and y the invariant density for a one-
dimensional ergodic diffusion process with state space (I,7), then 2by =

(a2p), i.e.

b(z) = %((0—2)’(35) " 0—2(30)@), s (L) 1)

where a prime denotes differentiation with respect to the state variable.
Banon (1978) and Jiang and Knight (1997) use the relation for pointwise

estimation of the drift b, plugging in suitable (kernel) estimates of 0% and

its derivative. Ait-Sahalia (1996) uses the relation for estimation of o2,
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rather than b. He assumes that o2(z)u(z) — 0 as  — [ so that

o (z)pu() = 2 /l bwp(u)du, e (7). @)

For each z, 0?(x) is then estimated by dividing a kernel estimate of twice
the integral in (2) by a kernel estimate of u(z). The out-coming non-
parametric estimator of o2 is asymptotically well-behaved, but it is bound
to be quite variable in areas with only few observations.

If a non-parametric analysis indicates a certain form of 2, then it is
natural to specify the diffusion term parametrically and estimate the pa-
rameters. For a particular specification z — o(z,8) of the diffusion term
it is straight-forward to verify for which parameter values o2(z,8)u(z, 6)
actually tends to zero as z — [ such that (2) holds.

The aim of the present paper is to use the relation (2) — and a similar
relation involving the integral [ b(u)u(u,#) du — for parametric estima-
tion. Loosely speaking, the idea is the following. Let f = o%u. As we shall
see, it is easy for each z to define a consistent estimator f(z) of f(z,6).
We also have an analytical expression for f(z,#), and we estimate 6 such
that the “theoretical” function f(-,6) is close to the estimated version f
in the sense that the uniform distance sup ¢ | f(z,0)—f (:c)| is minimal.
The corresponding estimator is consistent under relatively weak regularity
conditions (Theorem 4.2) and weakly convergent under somewhat stronger
conditions (Theorem 4.7). The asymptotic results are proved by means
of empirical process theory. The so-called CKLS model (Chan, Karolyi,
Longstaff and Sanders, 1992) is used as an example, and the method seems
to work well in a numerical study.

The paper is organized as follows. The model and the basic assumptions
are presented in Section 2. We discuss the estimation approach in Section 3
and prove asymptotic properties in Section 4. The CKLS model is discussed
in Section 5. Finally, conclusions are drawn in Section 6.

2 Model and notation

In this section we define the diffusion model and introduce notation used
throughout the paper.

We consider a one-dimensional, time-homogeneous stochastic differen-
tial equation

dX; = b(X}) dt + o(Xy,0) dW, (3)

where 6 is an unknown p-dimensional parameter from the parameter space
©® C RP, W is a one-dimensional Brownian motion and b : R — R and
o:Rx© — (0,00) are known continuous functions. Note that the drift
function b does not depend on the parameter. We make the following
assumptions.



Estimation of diffusion parameters 3

Assumption 2.1 Assume that
1. the state space, denoted by I, is open and the same for all # € ©;

2. for any 6 € O there is a distribution py(dz) = p(z,0)dz on I such
that X is strictly stationary and ergodic if Xg ~ ug;

3. the drift function b is in L'(ug) for all § € ©. a

Since X is continuous, the state space I is an interval and we write
I = (l,r) where —oo <1l < r < 4o00. Simple integral conditions ensure
stationarity, see Karlin and Taylor (1981, Section 15.6) or Karatzas and
Shreve (1991, Section 5.5), for example: Define the scale density s(-,6) by
log s(z, 0 = -2 f b /o u 0) du where zy € I is fixed but arbitrary. If

1/Ko(0) = [/ (s (7,0))"!dz < +o0 and

/lzo s(z,0)dr = /{: s(z,0)dr = +o0 (4)

0

then Assumption 2.1.2 holds with
w(x,0) = Ko(0)(s(z,0)0%(x)) ™", (z,0) € T x O. (5)

In the following we let Py denote the distribution of X when Xy ~ uy and
Ey the expectation with respect to Py. Under Py all X; ~ .

The objective of the paper is estimation of the parameter 6 from obser-
vations Xa,... ,X,A at discrete, equidistant time-points. The estimation
method described below is based on the function f = o?u : I x © — (0, 00)
which by (5) is given by

folw) = 1(2,0) = jf;(‘;)) = Ko(0) exp (2 [ 02"((5,)9) du) -

0

For 6 fixed we will often write fy for the function f(-,0) : I — (0,00).
Differentiation of f with respect to z yields

of b o b
% - 2f0_2 =20 'u0'2 - zblu'a (6)
and f(zg,0) = Ko(0) so f(z,0) = —|—2f b(u)pu(u,0) du for z € T and

0 € O. In particular, for € fixed fg is bounded by Ky(0) +2Eg |b(Xp)|; the
limits fo(1) = f(1,0) = limg~y f(z,0) and fo(r) = f(r,0) = limg . f(z,0)

are well-defined and finite; and
F(z,0) = zo+2/'b sel (M)

flz,0) = r0—2/b z €l (8)
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The limits f(/,0) and f(r,0) are non-negative for all # € ©. For the
estimation method below to work at least one of the limits must be zero for
all @ € ©. Then fy is bounded by 2Ey |b(X()|. Note that (7) is identical to
(2) if f(1,0) = 0.

Some comments: () If the integral conditions (4) hold then f(I,0) =0
(f(r,0) = 0) holds automatically if [ > —oc (r < 4+00). In particular
f(1,0) = 0 for models with state space (0,00). (i) If I = (—o0,0) and
b = 0 so X is on natural scale, then fy is constant and the above integral
assumption is not satisfied. (i%i) If b(z) = « + Bz where 8 < 0 and if
the locale martingale part of X is a genuine martingale then z — = + /3
is an eigenfunction for the conditional expectation operator and f(l,0) =
f(r,0) = 0 holds automatically (Hansen, Scheinkman and Touzi, 1998, page
10). In particular f(1,6) = f(r,6) = 0 holds for the Ornstein-Uhlenbeck
process and the Cox-Ingersoll-Ross model. (iv) Generally, one must check
that [;" b(z)/0*(z,0)dz = +oo for all @ € © and/or [; b(z)/0*(z,0)dz =
—oo for all 8 € ©. These integral conditions are easily checked as they only
involve the drift and the diffusion functions.

3 Estimation

In this section we discuss how to define pointwise consistent estimators of
fo = f(-,0) and how to use them for estimation of #. Asymptotic results
for the estimators are proved in Section 4.

3.1 Basic ideas

If £(1,0) = 0 we see from (7) that

X
f(z,0) = 2/ b(u)p(u,d) du = 2E, (b(XO)l{qu}), zel, 0€0O.
l <
From the right hand side and Assumption 2.1 it follows that

fim(z) = %i(b(){m)l{xmg}) (9)

i=1

is an unbiased and (strongly) consistent estimator of f(x,6) with respect
to Py for all z € I: By fin(z) = f(,0) and f1 »(x)— f(z,6) almost surely
as n — oo. Also note that fi,(z) = 0 = f(I,0) for z < min{X;a : i =
1,...,n}, hence we write fl,n(l) =0.
Similarly, if f(r,6) = 0 then
Fan(@) = —2 3 (HXia) 1 xip50) (10)

i=1
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is unbiased and (strongly) consistent for f(z,6) under P for all z € I. We
write fo,(r) = 0 since fon(z) =0 for £ > max{X;a :i=1,... ,n}.

The estimated functions fl,n and fg,n are piecewise constant with jumps
at each data point Xpa; the jump size is 2b(Xga)/n. In particular fl,n and
fg,n are increasing (decreasing) at Xpa if fy is increasing (decreasing) at

Xka, cf. (6). Note that fi,(z) — fon(z) = %2?21 b(Xia) so the deviation
between fl,n(:v) and fg,n(w) is the same for all z € I.

As indicated, the idea is to estimate 6 by the value that makes the
function fy close to its estimator, f1,n or fQ,n. To be specific we define the
uniform distances

Ui,n(e) = Az,n(w) — fo(z)|,

i=1,2

xzel

and estimate 6 by the value 6, n that minimizes Uy, if f([,0) = 0 and by

the value 05, that if te th (0) is finit
e (o S ST S R0 e Cobhd e g
other measures of dlstance between fZ n and fp, such as (an approximation

to) the L?-distance. This will, however, not be discussed any further in this
paper.

Now, what if both f(l,6) and f(r,0) are zero? Then (9) and (10) are
both unbiased, consistent estimators of f(z,0). Note that Eypb(Xy) = 0
SO f1,n and fz,n are close for n large; for a moderate size of n, like 500, it
might however make a difference whether we use f1,n or fQ’n. Also note that
either fl,n or fg,n becomes negative (close to r or [) whereas fy is positive

n (I,r).

Instead of using either f1,n or fg,n we use a convex combination of the

two. For A(z) = (A1(z), A2(z)) with A1 (z) + A2(z) = 1, define fA,n by

Frn(@) = X (2) fra(@) + Xo(2) fon ()
= fin(z ——)\2 Zb Xin)-

With this notation fA,n = f1,n for A = (1,0) and fAA,n = fg,n for A = (0,1).

Tf A(z) is deterministic, then fy () is unbiased for f(z,0) and it makes
sense to choose A(z) such that the variance of f A,n(z) is minimal. In general
it is not possible to calculate the variance of f,\,n(zc) since it involves the
joint distribution of X;n and X;a for ¢ # j which we typically do not
know. It is easy, however, to minimize an approximation to the variance:
Straight-forward calculations show that if the observations Xa,...,XpA
were independent and identically pg-distributed, then the smallest possible
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value of Vary fAA,n would be obtained for

A (.’B) _ V9,2("E) +f2($59) _ E0b2(XO)1{X0>w}
T V(@) + Voa(z) + 2%(z,0) By 52(Xo)
_ Ey bQ(XO)l{XOSI}

)\972(.’1}) =1- )\971(1) =

Eg b2(X))

Of course, the observations are not independent so these weights are only
approximately optimal. Moreover, we do not know the expectations above,
but we can use their empirical counterparts and consider

. i1 P (Xia)1x, A "
AMon(z) = Zz_l (Xia) {Xi>z} and  Aon(z) = Zi—‘ }7’3()(@’_\)1{‘(

]
T

2 PP (Kia) i=1 0% (Xia)

In the following we write f,(z) = f;\n ,,(z) for the corresponding estimator.

For z close to | we have A (z) close to 1 and hence f,(z) close to flyn(a:).
Similarly f,,(z) is close to fo(z) when z is close to r. In particular, f,(z) = 0
for x outside the range of the observations. Note that fn(w) is consistent
for f(x,0) — even if b is not in L?(uy), because A, and Mg, are bounded
(by 1). However, f,(z) can be biased although fi ,(z) and fa ,(z) are both
unbiased.

For estimation of # the idea is of course to minimize the uniform distance

Un(0) = sup| fu(z) — fo(x)|. (11)

zel

between fn and fy. We let 6,, denote the corresponding estimator.

3.2 Important comments

Below follow some important remarks on the three estimators of fy and the
corresponding U-distances.

First an illustration of the difference between the three estimators of fy.
Figure 1 shows graphs of fl,n, fg,n and fn for 100 hypothetical data points
The data are simulated from the model dX; = (0.04—0.6X}) dt+0.2X, dW,
with true parameter value yp = 0.75 and A = 1. The model is discussed

in detail in Section 5. For this particular simulation Y "
in detail in Sectio p Zi:l b(Xia) > 0 s0

the graph of f1,n lies over the graph of fg,n. The graph of fn is in between;
close to f1,n for small data values and close to fgyn for large data values.
The figure also shows the graph of f corresponding to the true parameter
value.

Second, note that neither fl,n, fQ!n or fn would change if the order of
the observations was changed. In other words, the observations are treated
as if they were independent. This is of course unfortunate since they come
from a diffusion model with built-in dependence. For “large” values of A
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the dependence between observations is minor and we would thus expect
the method to perform better for “large” values of A than for “small”
values of A. Still, it turns out that the proposed estimators are consistent
as n — oo for any fixed value of A > 0 (Section 4.1).

Third, a practical remark. Despite the definition of U, (6) as a supre-
mum over the all of I, we can calculate Uy, () from the values of f5 and f,
at data points and points where b is zero. To be specific, let X; < --- < X,
be the observations ordered according to size and Xy = I. Then, because
fo is continuous and has a derivative with same sign as b, and because fn
is piecewise constant, Uy, (#) = max(Ny, N1, Ny) where

N, = kirlla}icn|fn(5fk) — fo(Xy)]

No = max [fu(%e1) - fo( %)

No= sup |fu(X(z0)) — fo(zo)|-
20:b(z0)=0

In the latter expression X(wo) = maxkzo,___,n{f(k : X, < Zo} is the largest
observation smaller than z( (or [ if all observations are larger than zg).
For the most commonly used models b is only zero at very few points.
Of course similar formulas apply to Ui ,,(0) (Uz,,(0)) as long as f(I,6) =0
(f(r,0) = 0) for all § € ©; simply substitute fn by an (fg,n) and remember
also to compare f1,n (fg,”) with fy at the endpoint r (I).

4 Asymptotic results

In this section we prove asymptotic results for the estimators 91,71, égyn
and én obtained by minimizing the uniform distances Ui ,, Uz, and U,
respectively. It is implicitly assumed that the estimators exist (for n large
enough).

4.1 Consistency

We first prove consistency. Let 6y be the true parameter value and let
U(6) = sup,¢;|fo(x) — fg,(z)| denote the uniform distance between fg and
fo,- Then U(6) = 0 if and only if § = 6y because fy and fy are identical
if and only if o(-,0) and o(-,6') are identical and because we do not allow
parametrizations where o(-,0) = o(-,0") for 8 # 6'. We shall assume that
0 is well-separated as a minimum of U in following sense.

Assumption 4.1 For all § > 0 it holds that C(d§) > 0 where

C(5) = inf{U(8) : ||0 — 6o]| > 6} O
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The assumption is for example satisfied (i) if & — fp(z) is increasing or
decreasing for all z € I which will often be the case (this makes sense
for one-dimensional parameters only); or (i:) if U is continuous and © is
compact; or (i47) if U is continuous and © is open with U bounded away
from zero at the boundary.

Theorem 4.2 Assume that Assumptions 2.1 and 4.1 hold and furthermore
that b changes sign only finitely many times on I. If f(1,0) =0 (f(r,0) = 0)
for all 6 € © then él,n (ég’n) is consistent for 0, and if f(1,0) = f(r,8) =0
for all 8 € © then 6y, is consistent for 0 as well.

Proof 1t is sufficient to show that the uniform distances converge in Py,-
probability (or almost surely with respect to Py,) to U(6), uniformly in 6
(van der Vaart and Wellner, 1996, Corollary 3.2.2).

First assume that f(I,0) = 0 for all # € ©. By the triangle inequality
for the uniform metric, it holds that |Ui,(0) — U(0)] < Ui pn(6y) for all
0 € © so it suffices to show

Ul,n(HO) = SléII) fl,n(m) - fﬂo(m) —0 (12)

Py,-almost surely. Pointwise convergence follows from the ergodic theorem
and Assumption 2.1.2. Recall that dfp,/0z has same sign as b and that f1,n
is piecewise constant with jump size b(Xya) at Xga. Uniform convergence
on each of the finitely many subintervals where fg, and fl,n are either
non-increasing or non-decreasing now follows exactly as in the proof of the
classical Glivenko-Cantelli theorem (Loeéve, 1963, page 20). Similarly if
f(r,0) =0 for all € ©. See Sgrensen (2000, Section II1.4) for more details.

Finally assume that f(I,0) = f(r,6) = 0 for all § € ©. Recall that

3 - f _ 23 n o
(@) = finl®) = 2220 (@) 227 4x,0) and 0 < don(z) < 1. By the
triangle inequality for the uniform metric,

|Un(8) = U(0)] < supgeq|fulx) — foo ()] .
A 1 b(X; ‘
< supxel‘fljn(x) — fgo(.’lf)‘ + 2‘n ; (Xin)
which converges uniformly in 6 to zero Pp,-almost surely since Eg, b(Xo) =
0. This proves consistency of 0,,. O

4.2 Rate of convergence of él,n and éz,n

In this section we show that \/n(6;,, — 6p) and v/n(fs, — 6p) are stochas-
tically bounded (Theorem 4.5). The similar result for 6, is proved in Sec-
tion 4.3.
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For simplicity we only list the assumptions for a one-dimensional pa-
rameter but the convergence results hold for multi-dimensional parameters
under similar conditions. One of the conditions concerns the temporal de-
pendence of X, expressed in terms of the S-mixing coefficients G, & > 1.
As usual for stationary Markov processes (3 is defined by

Br = / Sljlp|pkA,00($aA) — o, (A)| dpg, ()

where pga g, is the transition probability from time 0 to time kA and the
supremum is taken over all Borel subsets of I.

Assumption 4.3 The true parameter value 6y is an inner point of © C
R and for any z € I the function 8 — fy(z) = f(x,0) is continuously
differentiable in a neighbourhood © of 6y with first derivative f@ = 0fy/00
satisfying

1. fgo is continuous;

2. fgo is bounded, i.e. sup,¢; |f90 (z)] < o0;

3. supmef‘f.g(x) — f:go(l‘)‘ —0as 6§ — 6.
Furthermore,

4. b€ LP(ug,) for some p > 2;

5. there exist constants ¢; > 0 and 0 < ¢2 < 1 such that the S-mixing
coefficients for X satisfy G < clc’2C for all k£ > 1. O

Note that conditions 4.3.2 and 4.3.3 imply continuity of U at 6.
We first prove uniform weak convergence of

Mz,n(h) = Slé[[) n1/2 (fz,n(x) - f@o—l—h/\/ﬁ(x))‘ ) heH

for any compact subset H of R (Proposition 4.4). We write M;,(h) =
SuPzeI|M{,n($) — M,','(h,w)| where

M}, (z) = n'"?(fin(z) — fo(2))
M) (hy ) = 1% (foo ) ym (@) — foo ()

and note that the processes M, and M; ,, are well-defined for n large enough.

Recall that |fi,(z)| < %Z;‘Zl |b(X;a)| for all z € I and that |fa(z)| <
2Ey |b(Xp)| for all (z,0) € T x ©. Hence, M takes values in [*°(H x I)
(since H is compact), M, in I°°(I), and thus M;, in [*°(H). Here we have
used the notation [*°(T") for the set of uniformly bounded, real functions
on T; 1°(T') = {g : supyer |g()] < oo}
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The process M is non-stochastic and clearly M (h,z) — fg,(2)h point-
wise as n — oco. Under Assumption 4.3.3 the convergence is suitably uni-
form. Moreover, it is well-known that the finite-dimensional marginals of
M, converge in distribution to Gaussian limits (with quite complicated vari-
ance structure, however) see Florens-Zmirou (1989). As will be clear from
below, conditions 4.3.4 and 4.3.5 ensure that the convergence is uniform
implying uniform weak convergence of M; ,(h):

Proposition 4.4 Let H be an arbitrary compact subset of R. Under As-
sumptions 2.1 and 4.3, {Min(h)}}hen converges weakly if f(1,0) =0 for all
0 € © and {Myy(h)}hen converges weakly if f(r,0) =0 for all 0 € ©.

Proof Assume first that f(I,6) = 0 for all § € ©. We will use Theorem 2.1
from Arcones and Yu (1994) to show that {M] , (z)}ser converges weakly
to a Gaussian process. By Assumption 4.3.5 the required mixing condi-
tion is satisfied: kP/®~2)(logk)2~1)/P=2) 5, — 0 as k — oo with p from
Assumption 4.3.4.

Define for z € I the function F, : I — R by Fy(y) = 2b(y)1{y<s) and

let F = {Fy}zer. Then, Eg Fy(Xp) = fo(x) and by definition of fi ,,
n
M, (z) =n"?> (Fa(Xia) — By, Fo(Xo)).
i=1

The function F,(y) is jointly measurable in (z,y) and the envelope func-
tion sup,cy |Fy| = 2/b| of F has finite p’th moment by Assumption 4.3.4.
Furthermore, F is a so-called Vapnik-Cervonenkis (VC) subgraph class of
functions. This follows from lemmas in van der Vaart and Wellner (1996):
the indicator functions H(y) = 1{y<s} = 1f(—c0,0)} (¥ — 2) form a VC sub-
graph class of functions (Lemma 2.6.16) and F, = bH,; now use Lemma
2.6.18.

We conclude (Arcones and Yu, 1994) that M, converges weakly in
[°°(I) to a tight, Gaussian process with Py -almost all paths uniformly
bounded and uniformly continuous (with respect to the metric d on I given
by d(z,y)? = [ (F, — F,)2dy,).

Uniform convergence of M) follows from Assumption 4.3.3, and the
limit process M” given by M"(h,z) = fg,(x)h is in [°(H x I) by Assump-
tion 4.3.2 (since H is compact). It now follows by Slutsky’s Theorem that
Mj ,, — M, converges weakly in [°°(H x I) and finally by the continuous
mapping theorem that M, converges in [*°(H).

Similarly for My, if f(r,6) =0 for all 6 € ©. O

Theorem 4.5 Assume that Assumptifms 2.1, 4.1 and 4.3 hold and that
foo(z0) # 0 for an zo € I. Then /n(01, — 6y) is Op(1) if f(1,0) =0 for
all 0 € © and \/ﬁ(ég,n —0o) is Op(1) if f(r,0) =0 for all 6 € O.
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Proof Recall that 6;,, minimizes U; ,(8) = sup,c; | fin(z) — fo(z)| and that
Uin(0) = U(0) = sup,¢; | fo,(z) — fo(z)| Pgy-almost surely as n — co. We
first show that /nU (6;,,) is Op(1): By the triangle inequality

VU (0i) < VUi (0i,0) + vrlUi n(00) < 20/nU; 5(60)

and /nU; ,(6p) = M; ,(0) converges weakly and is hence Op(1).
Recall C(d) from Assumption 4.1 and note that P(\/ﬁ|éz,n —0| >9) <
P(v/nU ;) > v/nC(5/y/n)) for all § > 0. Hence, if

VRC(5/v/m) > ¢ (13)

for all 4 > 0, some constant ¢ > 0 not depending on ¢ and n large enough,
then \/ﬁ(éz’n - 90) is Op(l).

To prove (13), choose ¢,n > 0 such that U(0) > c|@ — 6| for all  with
|6 — 6p| < m. This is possible by differentiability of  — fj(zo) (use e.g.
¢ = |foo (0)]/2). Forn > 82/,

C(6/+/n) = inf{U(8) : |6 — 6| > 6/v/n}
= min(inf{U(0) : 6/v/n < |0 — 60| <0}, inf{U(0) : |0 — 80| > n})
- min(inf{U(e) L6/ < |0 — 0| <}, C(n)).
Now, C(n) > 0 by Assumption 4.1 and inf{U () : §/y/n < |6—6p| <n} — 0

as n — oo since U(fy) = 0 and U is continuous at 6. Hence, for n large
enough

O(6/y/m) = nf{U(0) : /v/n < [0 — o] <} > cb/Vn

which proves (13) and thus the theorem. O

4.3 Convergence in distribution of /n(8, — 6,)

We finally show that v/n (én—eo) is Op(1) and even converges weakly (Theo-
rem 4.7). Let M (z) = n'/?(fn(z) — foo(z)) and My (k) = supyes | ML (z) —
M]/(h,z)|. We first give a uniform convergence result for M,, similar to
Proposition 4.4.

Proposition 4.6 Assume that Assumptions 2.1 and 4.3 hold and f(1,0) =
f(r,0) = 0 for all 6 € ©. Then {M,(h)}hcy converges weakly for any
compact set H C R.

Proof Recall that fn = 5\1,” fl,n + j\g,n fgm where j\j,n converges pointwise
Py,-almost surely to A\j := Agy 4, 7 = 1,2 (see Section 3.1 for definitions
of the various \’s). The convergence is even uniform: indeed, note that
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A1 is continuous and decreasing and argue as in the proof of the classical
Glivenko-Cantelli theorem (Loéve, 1963, page 20).

We first argue that it suffices to consider A; fl,n + A ng’n instead of fn:
By adding and subtracting \; fl,n and Ao fg,n we get

fo=Cin = M) Fin+ Oon = X2) fon + M fin + Aafon
= (A — M) (Frn — fao) + (om — A2) (Fon — foo) + Mfim + Aafon

and hence,
M) = (A — M) M, + (Mg — A2) M5, + M, (14)

where M), (z) = nl/? (Al(.x)fl,n(:v) + /\z(zc)fg,n(a:) — fao()). In the proof

of Proposition 4.4 we showed that M{’n and Mé,n converge weakly, and it

now follows from Slutsky’s Theorem that M, converges in {*°(I) if M} .

does. ’
Now, let F = {Fy}zer where Fy : I — R is defined by

Fz(y) =2\ (w)b(y)l{ygw} - 2)\2(1‘)b(y)1{y>w}
= 2b(y) (Al ('T) - 1{y>m}), NS L

Then Eg F,(Xo) = fo(z) and M} ,(z) = n" 230 (Fe(Xin) — foo()).
The function F,(y) is jointly measurable in (z,y) and the envelope function
sup,cr | Fi| < 4|b| of F has finite p’th moment by Assumption 4.3.4.

Let @ be an arbitrary probability measure on I with b € L?(Q) and
let || - ||o be the L?(Q)-norm. By continuity and boundedness of A; and
z — " b?dQ it easily follows that the ||-||g-covering number N (e, F, ||-||q),
that is, the minimal number of || - ||o-balls of radius ¢ needed to cover F,
is at most 32 [ b2 dQ/e? (at least for small ). For further details, see the
proof of Proposition I1.8 in Sgrensen (2000). Similar arguments show that
N(e,F,|| - |lp) < C/eP where || - || is the LP-norm with respect to pg, (p
being the number from Assumption 4.3.4) and C' > 0 is a constant not
depending on e. This implies [;°(log N (g, F, || - ||5))*/?de < cc.

It follows (Arcones and Yu, 1994, Lemma 2.1) that M} , converges in
[®°(I)! and hence from (14) that M converges in [*°(I). Finally, weak
convergence of M) and M, follows as in the proof of Proposition 4.4. O

Theorem 4.7 Assume that Assumptions 2.1, 4.1, and 4.3 hold and that
f(1,8) = f(r,0) =0 for all 8 € ©. If, in addition, fgo(mo) # 0 for some
zo € I then n(B, — 6) is O,(1) and if furthermore fo(x) # 0 for all
z € I, then \/n(0, — 60y) converges weakly.

1This also follows from F being a F a Vapnik-Cervonenkis subgraph class of functions;
a quite tedious proof may be found in Sgrensen (2000, Lemma I1.12).
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Proof The stochastic boundedness of /1 (6, — y) follows exactly as in the
proof of Theorem 4.5. For the weak convergence it then suffices to show
that Py, -almost all paths of the limit M of M, has a unique minimum
(van der Vaart and Wellner, 1996, Theorem 3.2.2).

The limit process M has the form M (h) = sup,c;|M'(z) — fo,(z)h]|
where M’ is the Gaussian limit of M. All paths h — M (h) satisfy M (h) —
oo as h — oo since M(h) > |M'(z) — fgo(:c)h| and f, () # 0 for any
fixed z € I (for this it suffices that fy,(z0) # 0 for some o € I). All paths
are continuous since |M (hy) — M(h1)| < |hy — hi|sup,c; |fa,(z)| for all
hi,he € R and hence have a minimum. We must show that the minimum
is unique for almost all paths.

Now, it holds Pp,-almost surely that M’ is continuous and satisfies
M'(z) —» 0 as z \( [l and z ~ r (by Portmanteau’s theorem). Consider a
path h — M(h) for which this is the case and assume that h; < he both
minimize M. Let m = M (h;) = M(hg) be the minimum value. All paths
of M are obviously weakly convex so M(h) = m where h = (hy + h)/2 is
the mid point between h; and ho.

By definition, M(h) = supweI‘M'(m) — f'go(m)l_z‘. Choose a sequence
(zn) from I such that |M'(z,) — fgo(zn)i_z| > m — 1/n for each n > 1. For
j=1,2and alln >1,

m = M(h;) > |M'(zn) — foo(xn)h;]

implying that |f90(wn)‘(h2 — h1)/2 < 1/n (due to the special form of the
graph of z — |M'(z) — fa,(2)h;|). Hence, ‘fgo(:vn)‘ — 0 asn — oo.

Since fy, is continuous and fg, () # 0 for all z € I it thus holds for any
| < m1 < zy < rthat z, &€ [z1,z9] for n large enough and hence M'(z,) — 0
as n — oo. It follows that

m = M(h) = lim |MI($TL) - fHO(xn)m =0 (15)
n—0oQ

so M(hy) = M(he) = m = 0. This is not possible, though, since for any
z € T at least one of the values |M'(x) — fg,(x)hi1| and |M'(z) — fg,(2)ho)
is strictly positive.

We conclude that M has a unique minimum P -almost surely and hence
that \/n (Hn — 90) converges weakly. O

Parts of the above proof could be repeated with M; or My substituted
for M. If h and (z,) are as above with M replaced by M, say, then
it would still hold that z, could be made arbitrarily close to I or r by
choosing n large enough. But M (z) does not converge to zero as £ — r so
limn_)oo‘M{ (Tn) — fgo(xn)l_z|, corresponding to (15), need not be zero and
cannot be rejected as the minimum value of M;. That is, we cannot rule
out the possibility that M; has several minimum points. Similarly for Ms.
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The distribution of \/n(f, — 6y) converges to the distribution of the
minimum of the process M(h) = sup,c;|M'(z) — fo,(z)h|, where M is
the limit of M, (which has a quite complicated variance structure due to
the temporal dependence in X). The limit distribution cannot easily be
described more explicitly than that. In particular, there is no reason to
believe that the limit distribution is Gaussian (a small simulation study
indicates however that the limit distribution might be close to Gaussian,
see Section 5.1).

5 Example: the CKLS model
Consider now the so-called CKLS model
dX; = (a+ BXy) dt + o X dW, (16)

named after Chan et al. (1992) who first discussed it in this generality.
The geometric Brownian motion, the Ornstein-Uhlenback process and the
Cox-Ingersoll-Ross model all occur as special cases.

Let « >0, 8 <0and o >0. If 1/2 <y < 1 then Assumption 2.1 holds
with I = (0, 00) and the value f(, () is for fixed @ and 8 given by

Ko(a, B8,7,0) exp (ﬁxlh + ﬁﬁ”) , >0
which converges to zero as £ — 0 and z — oo. Hence, the appropriate
estimator of f is f,. There is no explicit expression for the normalizing
constant K, but we can calculate it numerically.

In the following we apply the estimation technique from Section 3 to
simulated data from the above model. Related studies may be found in
Honoré (1997), Poulsen (1999) and Elerian et al. (2000), all investigating
estimation techniques far more computationally demanding than those con-
sidered here.

5.1 Investigation of the limit distribution in a simple case

First, consider the simple (and unrealistic) case where «, § and o are
known and only 7 should be estimated. From Section 4 we know that the
estimator 4,, obtained by minimizing U, is consistent and converges weakly
(when centered and scaled properly).

Figure 2 shows a histogram (to the left) and a QQ-plot (to the right)
for 1000 simulated values of v/n(%, — 7). Each value of 4, was computed
as follows: a path of X was simulated from time zero to time 1000 (by
means of the Euler scheme with time-step 1/1000); the values at time-
points 1,2,... ,1000 (corresponding to A = 1) were recorded; and 4, was
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calculated based on these 1000 observations. The true value of v was vy =
0.75 and the known parameters were fixed at («, 8,0) = (0.04,—0.6,0.2).

The histogram and the QQ-plot both indicate that the asymptotic dis-
tribution of /n (9, — o) is quite close to Gaussian.

5.2 Comparison with two other methods

Consider now the more realistic case where «, 3, v and o are all unknown.
The method from Section 3 does not apply immediately (as the drift is no
longer known). Instead we use the following adjusted strategy.

First, the drift parameters, « and 3, are estimated by a least squares
(LS) approach as suggested by Ait-Sahalia (1996). Specifically, estimators

A d btained b inimizati £y "
&y and [, are obtained by minimization o Eizz(Xz'A _ ‘P(X(z'—l)Aaaaﬁ))Q

where

[0
QD(.Q?,O&,,B) = Ea,ﬂ,fy,o(XA|X0 = .7,‘) = eﬁA (3; 4+ %) - B (17)

is the conditional expectation one step ahead (which does not depend on
v and o). This is equivalent to estimation via a martingale estimating
function (Bibby and Sgrensen, 1995). Next, the diffusion parameters,
and o, are estimated as described in Section 3 — except that the true drift
function is now replaced by the estimated version &,, + an (in both fn and
f). Note that we have no evidence that these estimators for v and o have
nice asymptotic properties since the proofs in Section 4 do not take into
account the errors introduced by estimation of the drift parameters.
Below we compare the above estimation technique to two other simple
methods in a small simulation study. In the first approach « and g are
estimated as above, and v and ¢ are thereafter estimated by maximizing

n
In(v,0) = Zi:l log 1+(XiA, @n, Bn, 7, o) which would be the log-likelihood if
the observations were independent and identically distributed with density
N‘('a OA‘na /Bna e O')-

The second method is the one suggested by Chan et al. (1992) them-
selves — based on rough approximations of the conditional moments one
step ahead. To be specific, define ¢; = X;a — X(;_a — (@ + BXi_1)a)A
and solve the equation

n

2 1+2
Z <€i,€iX(i—1)A7 P AUZX(@A)A’Q?X(Z‘—I)A - AU2X(¢—1§A) =0.
i=2

wrt. (@, 3,7, 0). The estimating function — and thus the estimators — can
be considerably biased when A is not “small”.

Table 1 reports empirical means and standard errors of simulated values
of the above-mentioned estimators (with obvious names). The estimators
have been computed for 100 simulated datasets, each of length 500 and

[Figure 2]
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with the same parameter values as in Section 5.1.  The CKLS-estimates
are clearly biased (in fact half the y-estimates are less than 1/2 and should
strictly speaking have been excluded). Of course, 100 simulations are far
too few too draw any final conclusions on the two remaining estimators,
but the study indicates that they are both quite reasonable. See Sgrensen
(2000, Section I1.7) for further details on the study, in particular for a
discussion on some numerical problems related to the optimizations.

Informal studies indicate that the non-parametric procedure suggested
by Ait-Sahalia (1996) yields quite reasonable estimators of the diffusion
function in the central area of the distribution but the estimator is of course
extremely variable in areas with few observations.

6 Concluding remarks

In this paper we have discussed a method for estimation of parameters in
the diffusion function. It provides consistent and in some cases also weakly
convergent estimators. The usual limit theory does not apply; instead
we used empirical process theory for proving the asymptotic results. We
applied (an adjusted version of) the method to simulated data from the
difficult CKLS model and obtained satisfactory (though presumably not
efficient) estimators. From a theoretical point of view the application of
empirical process theory is perhaps most interesting.
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Figure 1: Graphs for the estimators fl,na f2,n and fn for 100 simulated data from the model dX; = (0.04 — 0.6 X;) dt +

0&? dW; with true value g = 0.75 together with the graph of corresponding to the true parameter value. The
value of A is 1.
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Figure 2: Histogram (to the left) and Q-plot (to the right) for 1000 simulated values of v/ 7(5n —70). The values

of a, # and o are considered as known. The curve on the left is the density for normal distribution with mean and
standard error equal to those of the empirical distribution of the estimates (0.0716 and 0.4071 respectively).



Method | Failues | @ (009 By (-0.60) An (0.75) &y (0.20)
mean S.€. mean S.e. mean S.e. mean S.e.
LS-minU, 6 0.0411 0.0050 | -0.6166 0.0785 | 0.7386 0.0958 | 0.2009 0.0531
LS-1ID 7 0.0411 0.0050 | -0.6166 0.0785 | 0.7467 0.0800 | 0.2039 0.0439
CKLS (49) | 0.0306 0.0027 | -0.4586 0.0422 | 0.5076 0.1328 | 0.0862 0.0352

Table 1: Empirical means and standard errors of various estimators for 100 realizations of the CKLS model. The
true parameters are given in the top line, n = 500, and A = 1. In the two top lines ‘Failures’ reports the number of
simulations for which the optimization problem did not have a solution; in the bottom line it reports the number of
~v-estimates less than 1/2 (note that we have averaged over all 100 values anyway).



