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OPTION PRICING BASED ON THE

GENERALIZED LAMBDA DISTRIBUTION

INTRODUCTION

Option pricing theory has advanced along many fronts since the pioneering breakthroughs by

Black and Scholes (1973) and Merton (1973). At the forefront of these advances has been the

development of option pricing solutions within the original framework of Black-Scholes-Merton,

in which security return volatility is a deterministic function of the underlying security price and

time, that is, σ = σ(S,t). Within this classic framework, options can be used to form a dynamic,

riskless hedge with the underlying security. An absence of arbitrage opportunities in financial

markets implies that the resulting option prices are independent of investor risk preferences (Cox

and Ross (1976), Harrison and Kreps (1979)).

The deterministic volatility approach to option valuation has been productive. The

famous Black-Scholes (1973) formula represents the special case of a constant volatility

diffusion process. Merton (1976) shows that substituting average volatility into the Black-

Scholes formula yields the solution where volatility is solely a function of time. Cox and Ross

(1976) derive the option pricing formula for the case of a constant elasticity relationship between

volatility and the underlying security price. These are well-known solutions. The actual number

of known solutions is too large for review in even comprehensive texts. Though large, this

number is a fraction of the plausible forms for the deterministic volatility function σ = σ(S,t), for

which no general solution exists.

Flanking the traditional approach of developing specific solutions from exact parametric

assumptions, several researchers have recognized the need for general solutions based on limited

assumptions. These solutions are intended to apply across varied stochastic process

specifications within the Black-Scholes-Merton framework, yet still provide sufficient accuracy
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to be useful to market participants. In an early effort, Jarrow and Rudd (1982) develop an option

pricing formula that supplements the Black-Scholes formula with Edgeworth expansion terms

related to the skewness and kurtosis of the underlying security price distribution. More recently,

Rubinstein (1994) and Jackwerth and Rubinstein (1996) implement a nonparametric method to

fit a security price distribution to observed options price data. In concert, Buchen and Kelley

(1996) and Stutzer (1996) suggest methods of fitting a maximum entropy distribution to

historical security returns data and currently observed option prices. Still another approach, well

exemplified by Ait-Sahalia and Lo (1998), makes use of growing computing power to extract a

price structure consistent with market data using kernel regression techniques.

Broadly described, a parametric option pricing model specifies in advance a stochastic

process for a security price from which a future security price distribution can be derived.

Evaluating this distribution on one side of a strike price yields the expected payoff to a European

option. This approach dates at least to Bachelier (1900), and has advanced to provide a rich

inventory of models with varied stochastic process assumptions. Most recent contributions focus

on stochastic volatility and interest rate assumptions; a partial list includes Amin and Jarrow

(1992), Amin and Ng (1993), Bailey and Stulz (1989), Bakshi and Chen (1997a,b), Bates (1996),

Heston (1993), Hull and White (1987), Scott (1997) and Stein and Stein (1991). Bakshi, Cao and

Chen (1997) provide extensive empirical tests based on an extended formula that nests varied

models as special cases. They conclude that each nested model is to some degree misspecified by

the criterion of internal parameter consistency, but each does in fact yield improved performance

relative to a constant interest rate and volatility specification.

By contrast, nonparametric models typically begin with a future security price

distribution, often estimated from observed market data. It is well known that a theoretically

justified estimate of a future security price distribution, or at least its risk-neutral cousin, can be

obtained from European options on the underlying security (Ross (1976), Breeden and

Litzenberger (1978)). Derman and Kani (1994), Dupire (1994) and Rubinstein (1994) take this

approach a step further to infer a stochastic process for a security price from its estimated price

distribution. In particular, Rubinstein (1994) develops an implied binomial tree algorithm that

yields a deterministic-volatility stochastic process from almost any plausible security price

distribution.
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The nonparametric methods cited immediately above share the practical advantage of

being data-driven, with a minimal reliance on specific parametric assumptions. Notwithstanding,

each approach has specific advantages and trade-offs in actual applications. The Jarrow-Rudd

method is one of the simplest to implement, since it adds only two parameters to the Black-

Scholes formula. Moreover, these two parameters are straightforward measures describing the

skewness and kurtosis of the underlying security price distribution. Similar simplicity is achieved

by the entrenched ‘street’ method of fitting a volatility smile to options price data. Dumas,

Fleming and Whaley (1998) conclude that fitting a quadratic function to a volatility smile works

as well in practical terms as more complex specifications. A quadratic implied volatility function

also adds only two parameters to the Black-Scholes formula, in this case describing the shape of

the volatility smile. By contrast, other methods cited earlier are parameter intensive, typically

requiring a lengthy vector of parameters that individually provide an incremental description of

the underlying price distribution. Nevertheless, parameter intensity is hardly a problem in actual

implementations, since modern computing power is fully adequate to the task. Rather, the issue

of parameter intensity pivots on the practical trade-off between underfitting a model to data with

too few parameters and overfitting with too many.

Table I reproduces a data set originally presented in Rubinstein (1994) comprising

16 S&P 500 index call option prices and the underlying dividend-adjusted index level. This is an

interesting data set because it reveals well some nettlesome characteristics of observed options

price data. In Table I, the first column lists strike prices, while the second and third columns list

the corresponding bid and ask call option prices for each strike. The next column reports bid-ask

price averages. The last column presents prices of butterfly positions centered on three adjacent

strike prices, reported only in instances where adjacent strikes are $5 apart. These butterfly prices

are calculated using bid-ask average prices. Each butterfly price represents a long butterfly

position created by buying a call for each of the two outer strikes and writing two calls for the

inner strike.

As shown in Table I, butterfly positions centered on the 345 and 380 strikes have

negative prices. These indicate points of non-convexity in the observed relationship between

option prices and strike prices. Such non-convexities are common in archival options price data

but do not necessarily represent arbitrage violations, since they may not reflect the full cost of
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trading at bid and ask prices.1 Nonetheless, bid-ask average prices are standard inputs for

estimating an implied distribution of future security prices from options price data (Jackwerth

and Rubinstein (1996), Dumas, Fleming and Whaley (1998)). Consequently, an estimation

method that allows overfitting an implied distribution function to options price data might yield

unduly small or possibly even negative density values over strikes with negative observed

butterfly prices. Indeed, Jackwerth and Rubinstein (1996) report that much of the difficulty

encountered in estimating an implied price distribution from options price data stems from the

trade-off between overfitting, which tends to produce jagged density estimates, and smoothing

procedures designed to avoid overfitting. The jaggedness of the butterfly prices reported in

Table I, typical in observed options price data, suggests that this not a trivial task.

This paper proposes the generalized lambda distribution as a flexible tool for modeling

non-lognormal security price distributions. Originally developed as a facile method for

generating random variables in Monte Carlo simulations, the generalized lambda distribution

was later suggested by Ramberg et al. (1979) as a supple model for fitting a distribution to data

since it permits a broad range of skewness and kurtosis values. Applied to the problem of fitting

an implied security price distribution to options price data, it combines elements of the simplicity

of Jarrow-Rudd and the versatility of Buchen-Kelley-Stutzer and Jackwerth-Rubinstein. Well

known among statisticians, the generalized lambda distribution has not yet been advanced as an

empirical tool in the finance literature.

The remainder of the paper is organized into six sections. The section immediately below

describes the generalized lambda distribution and highlights its more salient details. The next

section derives option pricing formulas based on the generalized lambda distribution. These

formulas are applied in the following section to the problem of recovering a probability

distribution implied by option prices. A procedure for exactly calibrating an implied binomial

tree to the generalized lambda distribution comes next. Then the following section develops a

multivariate version of the generalized lambda distribution. Finally, a summary and conclusion

reviews the major advantages of the generalized lambda distribution in financial applications.

                                                       
1 Other empirical anomalies in option prices have been documented. For example, Bakshi, Cao and
Chen (2000) show that option prices do not always move with underlying stock prices in the
theoretically predicted direction. Bergman, Grundy and Wiener (1996) provide a general
discussion of rational option pricing.
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THE GENERALIZED LAMBDA DISTRIBUTION

The generalized lambda distribution is primarily defined by its percentile function. For this

reason, it is frequently applied to algorithms generating random variables in Monte Carlo

simulations. The percentile function s(p) immediately below defines a generalized lambda

distribution with a zero mean and unit variance. The parameters λ3 and λ4 determine the shape of

the generalized lambda density, and p represents a probability measure.
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Ramberg et al. (1979) point out that the conditions λ3×λ4 > 0 and min(λ3,λ4) > -1/2 suffice to

ensure that s(p) is a continuous, monotonically increasing function of the probability measure p.

In Monte Carlo simulations, p-values drawn from a uniform random number generator enter the

generalized lambda percentile function s(p) to become random variables with population

skewness and kurtosis determined by the shape parameters λ3 and λ4.

Ramberg et al. (1979) show that existence of the nth moment of s(p) requires that

min(λ3,λ4) > -1/n. Thus, the condition min(λ3,λ4) > -1/4 ensures that fourth and lower moments

exist. In this case, coefficients of skewness and kurtosis are well-defined functions of the shape

parameters λ3 and λ4. Ramberg et al. (1979) provide these expressions for coefficients of

skewness and kurtosis, in which A and B are defined in equation (2) above:
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Inverting the first derivative of the percentile function s(p) yields the generalized lambda

density function dp/ds:

dp ds p p/ , / ( )= + −− −λ λ λ λ λλ λ
2 3 4 3

1
4

13 41b g c h

The condition λ3×λ4 > 0 along with the appropriate scaling function ensures that this density

function is non-negative everywhere on the probability measure p.

Figure 1 graphs four generalized lambda densities with zero means, unit variances and

increasing coefficients of kurtosis and negative skewness. The panel immediately below states

the skewness and kurtosis values for these densities, along with corresponding values for their

shape parameters λ3 and λ4. For any generalized lambda density, interchanging values for the

parameters λ3 and λ4 reverses the direction of skewness. The equality λ3 = λ4 yields a symmetric

density function with zero skewness.

Skewness = 0
Kurtosis = 3
λ3 = .134912
λ4 = .134912

Skewness = -1
Kurtosis = 6
λ3 = .038800
λ4 = .018738

Skewness = -3
Kurtosis = 30
λ3 = -.174915
λ4 = -.049470

Skewness = -6
Kurtosis = 2000
λ3 = -.248020
λ4 = -.047853

An analytic expression for the cumulative distribution function p(s) of the generalized

lambda distribution does not exist, except as the inverse of its percentile function s(p). This is not

a practical concern, since the same is true of the normal distribution and many popular

distributions for which numerical methods enable function evaluation. An iterative bisection

algorithm is perhaps the simplest method to evaluate the generalized lambda distribution

function p(s). That is, to obtain p(c) first compare the value of c with s(.5) and next with s(.75) or

s(.25) as c > s(.5) or c < s(.5), respectively. Iterate this bisection procedure until |s(p) - c| < ε,
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with ε determining the desired level of precision. Fortran programs for all numerical procedures

implemented in this paper are available from the author upon request.

The generalized lambda percentile function in equation (1) may be located and scaled to

any desired mean and variance without affecting the density shape. In a security market context,

setting the mean to s0e
rt and the variance to s e ert t

0

2 2

1c h e jσ −  yields the percentile function shown

in equation (4) below, in which s0 is a current security price, r an appropriate interest rate, t the

time to a future price realization and σ2 a variance parameter.
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The mean and variance of s(p) in equation (4) have a form identical to that of the lognormal

distribution adapted to a security market context (Jarrow and Rudd (1982)).

The percentile function in equation (4) generates random security prices from

distributions with arbitrary means, variances and coefficients of skewness and kurtosis.

Moreover, skewness and kurtosis values can be specified from a wide range of possible values.

There are several potentially interesting alternatives to the generalized lambda

distribution that share some of its flexible shape characteristics. Classical examples are the

Pearson family and the Johnson and Burr systems of distributions (Stuart and Ord (1987)). A

well-known example from the finance literature is the generalized beta distribution of the second

kind suggested by Bookstaber and McDonald (1987). Among these alternatives, only the Burr

system possesses a percentile function in closed-form similar to equation (1) and is therefore

well-suited to Monte Carlo simulation procedures. However, the Burr system has a limited range

of negative skewness values (Rodriguez (1977), Tadikamalla (1980)), which may be an

impediment in some applications.

Option pricing formulas consistent with the percentile function s(p) in equation (4) might

usefully supplement financial Monte Carlo simulations and other procedures involving options

by allowing arbitrary assumptions regarding the skewness and kurtosis of the underlying security

price distribution. Option pricing formulas for the generalized lambda distribution are developed

in the next section.
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OPTION PRICING FORMULAS BASED ON THE GENERALIZED LAMBDA

DISTRIBUTION

The basic formulas

Pricing formulas for European call and put options based on the generalized lambda distribution

(GLD) are readily derived from the security price percentile function in equation (4). With p(s)

representing a security price distribution on an option expiration date, equation (5) below states

the expected expiration-date payoff to a European call option with strike price k, wherein the

change of variable s(p) = s is applied in moving from left- to right-hand sides of the equation.

( ) ( ) ( ( ) )
( )

s k dp s s p k dp
k p k

− = −
∞z z1

(5)

In equation (5), p(k) denotes the probability that a call option expires out of the money.

Substituting equation (4) into the right-hand side of equation (5), completing the integration and

discounting the expected payoff yields this call price formula:
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(6.a)

Applying put-call parity results in this put price formula:

Put e k G s Grt= − − −− 1 12 0 1b g b g (6.b)

In actual applications, the first four moments of a target security price distribution are

matched to those of the generalized lambda percentile function in equation (4). Option prices are

then calculated using the corresponding formulas in equation (6.a) or (6.b). Intuition suggests

that the first four moments of a security price distribution will account for most of the stochastic

influences affecting the underlying security price.
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Comparisons with Black-Scholes formula values

A pertinent concern in many applications is how well the GLD option pricing formulas derived

above might perform in applications where the Black-Scholes (1973) formula yields exact

results. In the Black-Scholes model, future security prices are lognormally distributed with mean

s ert
0  and variance s e ert t

0

2 2

1c h e jσ − . These match the mean and variance of the generalized

lambda percentile function in equation (4). To adapt the generalized lambda distribution to

approximate the Black-Scholes model, skewness and kurtosis are matched to those of the target

lognormal distribution.

Expressions for lognormal skewness and kurtosis are these, in which q e t2 2

1= −σe j
(Jarrow and Rudd (1982)):

Skewness q q Kurtosis q q q q= + = + + + +3 3 16 15 63 2 4 6 8

For example, the volatility and time parameters σ = .4 and t = .167 imply lognormal skewness

and kurtosis values of .4975 and 3.4433, respectively. Identical skewness and kurtosis values for

the generalized lambda distribution are obtained with the parameter values λ3 = .054989 and

λ4 = .012446 in equation (4). The IMSL Fortran routine BCPOL efficiently computes values for

the parameters λ3 and λ4 from given skewness and kurtosis values, and is similar to the algorithm

used by Ramberg et al. (1979) to produce their reference tables.

Table II reports option price and price derivative values based on the Black-Scholes

formula and the GLD call price formulas in equation (6.a), with appropriately matched mean,

variance, skewness and kurtosis values. All formulas share common parameter values for the

security price s0 = 50, volatility σ = .4, time t = .167 and interest rate r = .05.

Table II reveals that call price formulas derived from the generalized lambda distribution

yield option price and price derivative values that differ from corresponding Black-Scholes

formula values by at most a few cents. These deviations are similar in magnitude to what is

obtainable using a binomial tree approximation of the Black-Scholes formula (Cox and

Rubinstein (1985), Breen (1991)) and small relative to the price ticks of exchange traded options.
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RECOVERING A PROBABILITY DISTRIBUTION IMPLIED BY OPTION PRICES

Option pricing formulas based on the generalized lambda distribution (GLD) adapt well to the

problem of recovering a probability distribution from observed option prices. The effectiveness

of such a recovery procedure is demonstrated here and compared with several alternative

procedures using the options price data listed in Table I. For these price data, option maturity is

164 days, the interest rate is 9 percent and the dividend-adjusted index level is 349.21.

Fitting a generalized lambda distribution to the call option price data in Table I involves

estimating the three parameters σ, λ3, λ4 by minimizing the sum of squares stated in equation (7)

immediately below. In equation (7), C(kj,σ,λ3,λ4) represents the GLD call price formula from

equation (6.a) with the arguments s0, t and r suppressed. C(kj) denotes an observed call price for

the strike price kj.

min ( ( , , , ) ( ))
, ,σ λ λ

σ λ λ
3 4

3 4
2C k C kj j

j

−∑ (7)

Minimizing this sum of squares using the GLD call price formula from equation (6.a)

yields the volatility and shape parameters σ = .168, λ3 = -.065042 and λ4 = -.020756. These

estimates for the parameters λ3 and λ4 imply skewness and kurtosis values of -1.58 and 8.55,

respectively.

Table III compares fitted option prices obtained via this least squares procedure with

fitted values obtained by Rubinstein (1994). Rubinstein’s algorithm produces an implied security

price distribution satisfying the restriction that all fitted option prices lie within observed bid-ask

spreads. This algorithm was later abandoned in Jackwerth and Rubinstein (1996), as it did not

yield solutions with some data sets. However, the fitted prices in the third column of Table III

represent a solution for this data set. For the reader’s convenience, strike prices and bid-ask

average prices from Table I are listed again in the first and second columns, respectively, of

Table III.

Table III also presents fitted option prices obtained using a volatility smile technique and

two density expansion models. The volatility smile technique is based on the quadratic

regression equation stated in equation (8) below, in which IV(k) denotes a fitted implied

volatility for an option with strike price k. Using this function adds just two parameters to the
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Black-Scholes model. Dumas, Fleming and Whaley (1998) demonstrate the effectiveness of this

parsimonious specification in modeling an implied volatility function.

IV k k s k s R( ) . . / . / .= − − =482 212 096 9950 0

2 2b g (8)

Summing coefficients in this regression yields an at-the-money (k = s0) volatility of σ = .173.

The high regression R2 value indicates that the volatility smile fits a parabolic shape quite well.

The fourth column of Table III reports fitted option prices for each strike computed by

substituting fitted volatility values IV(k) from equation (8) into the Black-Scholes formula.

The two density expansion methods are based on equation (9) below, in which CX

represents an expanded formula composed by a Black-Scholes formula price, denoted by CBS,

and skewness and kurtosis adjustment terms derived from the density function a(St) for the

expiration date security price. Coefficients c3 and c4 are measures related to skewness and

kurtosis deviations, respectively, from a normal or lognormal distribution depending on the

expansion employed.

C C
c da K

dS

c d a K

dSX BS
t t

= + +3 4
2

23 4!

( )

!

( )
(9)

In the Jarrow and Rudd (1982) model, equation (9) represents an Edgeworth expansion of the

lognormal density. Alternatively, equation (9) can represent an expansion of the normal density

(Rubinstein (1998)). Corrado and Su (1996, 1997a,b) show that both expansions are effective in

flattening empirical volatility smiles implied by S&P 500 index option prices.

Following least squares procedures to simultaneously estimate implied volatilities and

coefficients of skewness and kurtosis, the lognormal expansion model produces an implied

volatility of σ = .161 and skewness and kurtosis values of -1.253 and 3.188, respectively. The

normal expansion model produces an implied volatility of σ = .178 and skewness and kurtosis

values of -1.648 and 4.934, respectively. The fifth and sixth columns of Table III report fitted

call option prices for each strike using the lognormal and normal density expansion models,

respectively.

Beneath each column of fitted option prices in the third through seventh columns of

Table III are reported root mean squared deviations (RMSD) between fitted prices listed in that
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column and corresponding bid-ask average prices listed in the second column. These root mean

squared deviations of fitted prices from bid-ask average prices represent a goodness of fit

measure. The RMSD obtained from Rubinstein’s fitted prices and the fitted volatility smile are

$.27 and $.25, respectively. RMSDs based on the lognormal and normal density expansion

models are $.19 and $.21, respectively. In comparison, the GLD call price formula in

equation (6.a) produces call prices resulting in a RMSD of $.23. Differences in magnitude

among these RMSDs appear insignificant relative to the average bid-ask spread of $.78 for these

data.

Figure 2 presents probability densities inferred from the Rubinstein data using the three

recovery methods described earlier. In Figure 2, the smooth, but distinguishably bimodal density

is based on an expansion of the lognormal density. The bimodal density shape reported in

Figure 4 of Rubinstein (1994) is similar, though less pronouncedly bimodal. Not shown here, an

expansion of the normal density yields a recovered density shape that is also distinguishably

bimodal, though slightly less so than that produced by the lognormal expansion.

Figure 2 also plots two unimodal densities with nearly identical shapes. These are the

densities associated with the volatility smile in equation (8) and the GLD call price formula in

equation (6.a). Little visible difference exists between these two densities, except that the mode

of the generalized lambda density lies slightly to the left of the mode of the volatility smile

density.

CALIBRATING AN IMPLIED BINOMIAL TREE TO THE GENERALIZED LAMBDA

DISTRIBUTION

An implied binomial tree infers a stochastic process from a security price distribution and is

widely used to calculate prices for options on futures and other American-style options from

non-standard security price distributions. Rubinstein (1994) points out that his proposed implied

binomial tree algorithm can be used with almost any plausible distribution to obtain a discrete time

stochastic process with a valid limiting diffusion process. Construction of an implied binomial tree

begins by assigning to each of its terminal nodes a nodal value and a nodal probability. An

ordered sequence of N nodal values and probabilities uniquely defines an implied tree with N-1
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steps. This section describes a method to precisely calibrate the nodal values and probabilities of

an implied tree to the generalized lambda percentile function in equation (4).

The method is straightforward. To calibrate an implied binomial tree with N-1 steps

leading to N terminal nodes, first form an ascending sequence of N+1 strike prices from k0 ≡ 0

through kN ≡ ∞. The N intervals kj+1 - kj > 0, j = 0,1,2,..,N–1 need not be equally spaced, but in

practice at least a subset will normally be selected to match observed equally spaced strike

prices. Precise calibration to the generalized lambda percentile function in equation (4) occurs

when European option prices calculated on the tree for each of the first N strikes match exactly

prices calculated using the corresponding GLD option pricing formula. This requires satisfying

the N equalities stated immediately below, in which C(kj,N) denotes a call price calculated on an

implied tree with N terminal nodes and C k j( , , , )σ λ λ3 4  represents a call price calculated from

equation (6.a):

C k C k N j Nj j( , , , ) , , , , ...,σ λ λ3 4 01 2= ∀ =d i –1

The procedure for determining nodal values and probabilities needed to satisfy these equalities is

described immediately below.

Following the notation used earlier, the probability of a security price realization less than

or equal to the strike price kj is denoted by p(kj). The probability of a security price realization in

the interval kj+1 - kj is therefore p(kj+1) - p(kj), where p(kN+1) ≡ 1 and p(k0) = 0. The probability

p(kj+1) - p(kj) is assigned to node j.

In terms of the generalized lambda percentile function in equation (4), expected values of

security price realizations within the interval kj+1 - kj are specified in equation (10):
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The expected value E s k s kp j j< ≤ +1e j  is assigned to node j for j = 0,1,2,..,N–1.

These nodal values E s k s kp j j< ≤ +1e j  and probabilities p(kj+1) - p(kj) precisely calibrate

an implied binomial tree to the percentile function in equation (4). This is demonstrated by

summing expected values of all call option payoffs above the jth strike price to yield this call

price equality:.

C k N e E s k s k k p k p k

e E s k s k k p k

e E s p k

C k

j
rt

p i i j i i
i j

N

rt
p j N j j

rt
p j

j

,

max , ( )

( , , , )

d i c hd i b g b gc h

e je j d ie j
d i

= < ≤ − −

= < ≤ − −

= −

=

−
+ +

=

−
+

−

∑ 1 1

1

3 4

1

0

σ λ λ

(11)

In particular, the strike k0 = 0 yields the initial security price C(k0,N) = s0.

This calibration method might be implemented with other distributions. The principal

advantage of the generalized lambda distribution is its adaptability to Monte Carlo applications.

It also allows assigning any of a broad range of skewness and kurtosis values, while maintaining

a unimodal, bell-shaped density. This contrasts with density expansion methods that yield a

unimodal density within only a limited range of skewness and kurtosis values (Stuart and Ord

(1987)). For example, Rubinstein (1998) shows that an expansion of the normal density must

limit the absolute value of skewness to less than one to maintain a unimodal form. The next

section provides a multivariate extension of the generalized lambda distribution.

MULTIVARIATE GENERALIZED LAMBDA DISTRIBUTION

This section begins by developing a multivariate version of the generalized lambda distribution

that facilitates stochastic modeling of multiple, correlated security prices. Immediately

subsequent, the multivariate generalized lambda distribution is extended to a multi-index security

returns model.

Bradley and Fleisher (1994) suggest obtaining correlated generalized-lambda variables

via a transformation from normal variables. Their method proceeds by first generating correlated
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normal variables using a Cholesky decomposition of the correlation matrix R. They then

compute a univariate p-value for each generated normal variable. These univariate p-values are

then transformed into generalized-lambda variables as, for example, described earlier in this

paper. The correlation matrix G represents the resulting correlation structure among these

generalized-lambda variables.

Bradley and Fleisher (1994) point out that the generalized-lambda correlations and

normal correlations composing the matrices G and R, respectively, will differ somewhat.

Obtaining a precise target configuration for the matrix G requires making incremental

adjustments to the off-diagonal elements of R until the resulting correlation structure in G

converges to the target configuration. Bradley and Fleisher suggest a simulation algorithm to

compute the generalized-lambda correlations in G at each adjustment. However, the accuracy of

the algorithm depends on the size of the simulation and therefore may be computationally

burdensome. A direct approach involves computing generalized-lambda correlations via the

following integral, where the left-side expression γ λ λ λ λ13 14 23 24, , ,b g  denotes a correlation

between two generalized-lambda variables with the indicated shape parameters:

γ λ λ λ λ λ λ λ λ ρ13 14 23 24 1 13 14 2 23 24 1 2 1 2, , , ; , ; , , ;b g b gc h b gc h b g=
−∞

∞

−∞

∞ zz s N z s N z n z z dz dz

In the right-side integrand, s N zb gc h; ,λ λ3 4  is a unit-variance generalized-lambda variable (a la

equation (1)) generated by the normal probability N zb g  and shape parameters λ3 and λ4.

n z z1 2, ; ρb g  is a bivariate standard normal density with the correlation parameter ρ. The IMSL

Fortran routine TWODAQ performs this numerical integration quickly and efficiently.

The panel immediately below compares target generalized-lambda correlations with the

normal correlations required to obtain them for the four generalized-lambda densities presented

in Figure 1. The first two columns state skewness and kurtosis values for these densities. As

shown, the required normal correlations are somewhat larger in absolute value than the

generalized-lambda correlations they produce.
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Skewness Kurtosis
Target Generalized-Lambda

Correlations

Required Normal

Correlations
0 3 γ ρ
-1 6 .1 .104
-3 30 .3 -.5 .340 -.583
-6 2000 .5 -.3 -.1 .793 -.377 -.141

Development of the multivariate generalized lambda system in the context of a multi-

index model proceeds as follows: Equation (12) immediately below defines the security return yj

as a linear function of the security-specific return xj and the N orthogonal index returns and

factor weights fF and βF,j, respectively.2

y x fj j F j F
F

N

= +
=

∑ β ,
1

(12)

Exact expressions for the variance, skewness and kurtosis of the security return yj are

stated as
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This multivariate system lends itself to modeling the stochastic properties of portfolios.

Portfolio variance, skewness and kurtosis based on the weights wj, j = 1,2,..,P, for a portfolio of

P securities are stated by these expressions:

                                                       
2 Elton and Gruber (1987) review multi-index models and provide an extensive bibliography.
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These portfolio variance, skewness and kurtosis expressions might be used in conjunction with

the GLD option pricing formulas derived earlier to calculate accurate option values for security

market indexes or other security portfolios.

SUMMARY AND CONCLUSION

This paper introduced the generalized lambda distribution as a flexible tool for modeling non-

lognormal security price distributions. Major advantages of the generalized lambda distribution

include: the flexibility to assign almost any combination of skewness and kurtosis values, ease of

random number generation owing to the simple form of its percentile function, and ready

construction of a multivariate distribution in which each marginal distribution may be assigned

unique skewness and kurtosis values. These advantages suggest several financial applications,

including estimation of option-implied state price densities and risk analyses based on Monte
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Carlo simulations wherein varied distributional assumptions may be applied to portfolios of

primary and derivative securities.

The generalized lambda distribution is readily applied to the problem of recovering an

implied security price distribution from market-observed option prices. An example of such a

recovery procedure revealed that while estimates based on the generalized lambda distribution

are comparable to those obtained using other methods, generalized-lambda estimates ensure a

unimodal, bell-shaped density. Complementing the recovery of an implied distribution, a method

to calibrate exactly an implied binomial tree to a generalized-lambda density was demonstrated.

Finally, a multivariate version of the generalized lambda distribution was developed that

allows an arbitrary correlation structure among generalized-lambda variables. This development

was extended to a multi-index security returns model and skewness and kurtosis expressions for

linear combinations of correlated generalized-lambda variables were provided. This multivariate

system would be particularly useful in Monte Carlo simulations based on multiple correlated

securities where the experimenter wishes to assign arbitrary skewness and kurtosis values to the

target security price distributions.
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APPENDIX: CLAMPING THE GENERALIZED LAMBDA DISTRIBUTION

In the case of negative shape parameters, i.e., λ3,λ4 < 0, the range of support for the generalized

lambda distribution spans the real line, thereby assigning positive probabilities to negative security

price values. Jackwerth and Rubinstein (1996) impose clamping to force a price density to zero in

regions where a price realization is disallowed. This imposition is readily applied to the generalized

lambda distribution. The resulting security price percentile function that disallows negative price

realizations is this generalization of equation (1).
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The scaling function λ λ λ2 3 40( ( ); , )p  defined in equation (A.2) below, in which

β p x y,b g  denotes the incomplete beta function, correctly realigns the variance of s(p) in
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The resulting call price formula is this generalization of equation (6.a).
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Put-call parity yields the corresponding put price formula:

Put e k G s Grt= − − −− 1 12 0 1b g b g (A.4)

In equations (A.3) and (A.4), the scaling parameter is stated simply as λ2 but is taken from

equation (A.2). With p(0) = 0, equations (A.1), (A.3) and (A.4) all collapse to equations (4), (6.a)

and (6.b), respectively, and therefore are preferred as a more general implementation.

An implementation of clamping might also use these generalizations of the coefficients of

skewness and kurtosis from equation (3), in which A and B are defined in equation (A.2) above:
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It is worth noting that with plausible parameter values, the probability p(0) is typically

trivial. For example, the generalized lambda distribution was applied to fit an implied security

price distribution to the options price data listed in Table 1. Despite the strong negative skewness

exhibited by this fitted distribution, the derived probability of a negative price realization is only

p(0) = 8.4E-5. Extending the maturity from the original 164 days to 365 days, while retaining all

other parameter values, yields the probability p(0) = 9.0E-4.
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TABLE I

S&P 500 Index Call Options Data

Call option prices Bid-ask price Butterfly
Strikes Bid Ask averages prices

0 349.16 349.26 349.210
250 109.47 109.71 109.590
275 85.66 86.71 86.185
300 63.00 64.04 63.520
325 42.00 42.75 42.375
330 37.97 38.60 38.285 .130
335 34.01 34.64 34.325 .050
340 30.10 30.73 30.415 .285
345 26.45 27.13 26.790 -.030
350 22.79 23.48 23.135 .120
355 19.32 19.88 19.600 .195
360 15.98 16.54 16.260 .520
365 13.13 13.75 13.440 .215
370 10.52 11.15 10.835 .515
375 8.37 9.12 8.745 .370
380 6.65 7.40 7.025 -.050
385 4.91 5.60 5.255

Strike, bid and ask prices are reproduced from Figure 4 in Rubinstein
(1994). A butterfly price represents a long butterfly position created by
buying a call for each of two outer strikes and writing two calls for the inner
strike. Butterfly prices are based on bid-ask price averages and listed only in
cases where adjacent strikes are $5 apart.
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TABLE II

Comparison of Option Price and Price Derivative Values

Strike B-S GLD B-S GLD
Call price Delta

40 10.588 10.587 .933 .938
45   6.480   6.450 .782 .784
50   3.451   3.434 .553 .546
55   1.599   1.612 .326 .322
60     .652     .671 .163 .164

Gamma Theta
40 .016 .014 -.095 -.101
45 .036 .038 -.169 -.178
50 .048 .049 -.207 -.212
55 .044 .043 -.182 -.178
60 .030 .029 -.122 -.117

Rho Vega
40 .060 .060 .029 .029
45 .053 .055 .063 .064
50 .039 .040 .081 .082
55 .023 .024 .072 .071
60 .012 .013 .048 .048

B-S indicates Black-Scholes formula values. GLD indicates values based on
the generalized lambda distribution formula in equation (6.a). Delta, theta,
rho, vega values are based on derivatives with respect to security price,
time, interest rate and volatility, respectively. Gamma values are based on a
second derivative with respect to the security price. GLD derivative values
are computed numerically. Theta values are calibrated to reflect a one-week
time decay. Common parameter values are: security price s0 = 50, volatility
σ = .4. time t = .167 and interest rate r = .05.
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TABLE III

S&P 500 Index Observed and Fitted Call Prices

Fitted call option values
Bid-ask Rubin- Volatility Log-

Strikes average stein smile normal Normal GLD

250 109.590 109.71 109.59 109.20 109.11 109.84
275 86.185 86.70 86.22 85.83 85.91 86.47
300 63.520 63.90 63.53 63.72 63.82 63.69
325 42.375 42.09 42.13 42.50 42.46 42.14
330 38.285 37.99 38.09 38.36 38.31 38.07
335 34.325 34.01 34.17 34.30 34.26 34.11
340 30.415 30.16 30.36 30.36 30.32 30.28
345 26.790 26.45 26.70 26.56 26.54 26.59
350 23.135 22.90 23.20 22.95 22.95 23.07
355 19.600 19.55 19.87 19.56 19.59 19.73
360 16.260 16.45 16.74 16.43 16.47 16.61
365 13.440 13.65 13.84 13.58 13.62 13.73
370 10.835 11.15 11.18 11.03 11.06 11.11
375 8.745 8.96 8.79 8.79 8.80 8.78
380 7.025 7.07 6.69 6.85 6.83 6.75
385 5.255 5.45 4.89 5.21 5.15 5.04

RMSD .27 .24 .19 .21 .23

Bid-ask averages are based on bid and ask call option prices reported in
Figure 4 of Rubinstein (1994). Fitted call option values in the third column
are reproduced directly from Rubinstein. Fitted values in the fourth through
seventh columns are computed using the volatility smile specified in
equation (8), lognormal and normal density expansion formulas represented
by equation (9) and the GLD call price formula in equation (6.a). Root mean
squared deviations (RMSD) in third through seventh columns are based on
deviations from corresponding bid-ask averages in second column.
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