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HEDGING VOLATILITY RISK 

 
Abstract 

 
 Volatility risk plays an important role in the management of portfolios of 

derivative assets as well as portfolios of basic assets. This risk could have been managed 

more efficiently using options on volatility that were proposed in the past but were never 

offered for trading mainly due to the lack of a cost efficient tradable underlying asset. 

The objective of this paper is to introduce a new volatility instrument, an option 

on a straddle, which can be used to hedge volatility risk.  The design and valuation of 

such an instrument are the basic ingredients of a successful financial product. Unlike the 

proposed volatility index option, the underlying of this proposed contract is a traded at-

the-money-forward straddle, which should be more appealing to potential participants.  In 

order to value these options, we combine the approaches of compound options and 

stochastic volatility. Our numerical results show that the straddle option price is very 

sensitive to the changes in volatility which means that the proposed contract is indeed a 

very powerful instrument to hedge volatility risk.  
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I. Introduction 
 
 Risk management is concerned with various aspects of risk, in particular, price 

risk and volatility risk. While there are various efficient instruments (and strategies) to 

deal with price risk, exhibited by the volatility of asset prices, there is practically only 

one  instrument which deals with volatility risk, namely “volatility swaps”, which is 

basically a forward contract on realized volatility1. In this paper we are introducing a new 

volatility instrument, an option on a forward-start straddle, which in our opinion 

dominates the usefulness of existing alternatives, including “volatility swaps”.  

While option traders, in general, are subject to volatility risk, as well as other 

risks, the main concern of delta-neutral volatility traders is the risk that volatility may 

change. Though many players may be betting on the direction that volatility may take in 

the future and would not protect their downside risk, some may seek to hedge their bets at 

least against large movements in volatility2. It is true that one can bet on volatility 

changes (or hedge them) with a strategy that combines holding of static options, all the 

out-of-the money ones, and dynamically trade the underlying asset (see Carr and Madan 

(1998)). Such a strategy, however, may be very costly and not practical for most users. 

                         Given the large and frequent shifts in volatility in the recent past3 especially in 

periods like the summer of ’97, the fall of ’98 and the fall of 2001, there is a growing 

need for instruments to hedge volatility risk.  Past proposals of such instruments included 

futures and options on a volatility index4.  The idea of developing a volatility index was 

suggested by Brenner and Galai (1989) and (1993)5.  In 1993 the Chicago Board Options 

Exchange (CBOE) has introduced a volatility index, named VIX, which was based on 

implied volatilities from options on the SP100 index6. No options, or futures, were 
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offered on this index.  The main reason, in our opinion, that such derivatives were not 

introduced is the lack of a cost-efficient tradable underlying asset which market makers 

could use to hedge their positions and to price them. 

            The first theoretical paper7 to value options on a volatility index is by Grunbichler 

and Longstaff (1996).  They specify a mean reverting square root diffusion process for 

volatility.  Their framework is similar to that of Hull and White (1987), Stein and Stein 

(1991) and others.  Since volatility is not trading they assume that the premium for 

volatility risk is proportional to the level of volatility.  This approach is in the spirit of the 

equilibrium approach of Cox, Ingersoll and Ross (1985) and Longstaff and Schwartz 

(1992). A more recent paper by Detemple and Osakwe (2000) also uses a general 

equilibrium framework to price European and American style volatility options. They 

emphasize the mean-reverting in log volatility model. 

              Recently, the CBOE has changed the methodology that was used to calculate 

VIX. The new forward-looking volatility index uses current option prices to predict the 

next 30 days realized volatility. In essence, the volatility index uses the S&P500 at-the-

money put and call and all out-of-the-money options weighted by the inverse of the 

square of their strike prices. This approach is based on the work by Derman et al. (1996) 

and Carr and Madan (1998). Demeterfi et al. (1999) provide a detailed description of 

volatility and variance swaps. Following the introduction of futures the CBOE is now 

planning to introduce options on the new VIX. The exchange argues that derivatives on 

this index will be an efficient tool to trade volatility. Since, however, the underlying asset 

for these derivatives is a combination of all available options with different strikes it will 

not be a practical replicating portfolio.  
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              Rather than an option on an implied volatility index or an option on an index 

computed from the prices of many options, some of which hardly trade, we propose an 

option on a straddle (STO). The key feature of the straddle option is that the underlying 

asset is an at-the-money-forward (ATMF) straddle. The ATMF straddle is a traded asset 

priced in the market place and well understood by market participants8.  Since it is 

ATMF, its relative value (call + put)/stock is mainly affected by volatility.  Changes in 

volatility translate almost linearly into changes in the value of the underlying, the ATMF 

straddle9.  Thus options on the ATMF straddle are options on volatility.  We believe that 

such an instrument will be attractive to market participants, especially to market makers. 

Since the CBOE is planning to introduce options on the new VIX it is interesting to 

compare the new VIX with the volatility index computed from our ATMF straddle using 

the same stochastic volatility parameters. In Figure II we present graphically the two 

indices. Though VIX is less linear than NST (our Normalized Straddle) the values are 

very close. This implies that traders in VIX options should consider hedging with the 

ATM straddle which seems to be the best possible alternative. 

An additional benefit of such an innovation is that it will provide a market price 

for volatility risk. A few recent papers have examined this issue empirically (e.g., Coval 

and Shumway (2001), Bakshi and Kapadia (2003), Buraschi and Jackwerth (1999)). 

Examining different strategies they conclude that the volatility risk premium is negative. 

Currently there is no market that calibrates this premium as, for example, the risk 

premium in the stock market.  The return on the underlying of the proposed product, an 

always ATMF straddle, will provide such a calibration.   
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In the next section we describe in detail the design of the instrument.  In section 

III we derive the value of such an option. Section IV provides the conclusions. 

 

II. The Design of the Straddle Option 

 
            One natural group of users of these options are volatility speculators who buy and 

sell volatility using standard call and put options which are affected by changes in the 

underlying asset and by interest rates in addition to changes in volatility. It’s a package 

which they may not be interested in and, as expected, is more expensive than a direct bet 

on volatility. The other potential groups of users are hedgers who mainly trade in the 

options market, like market makers in options, and portfolio managers who allocate   

funds between stocks and bonds using a mean-variance analysis.  Since their allocation, 

and performance, may be affected by an unexpected change in volatility they may want 

to insure against volatility risk. Again, this can be done simply using standard straddles 

but this approach is inefficient since it insures against both: volatility changes (vega) and  

changes in delta (gamma). The price of the straddle reflects the broader coverage which 

is not sought after. To isolate the volatility risk one could dynamically trade the straddle 

such that it always is ATMF but such a strategy entails transactions costs that become 

very high depending on the frequency of rebalancing which in turn depends on volatility 

itself. Thus, the desired instrument, proposed next, would be a hedge against volatility 

risk only and should cost less than the alternatives, including transactions costs.     

To manage the market volatility risk, say of the S&P500 index, we propose a new 

instrument, a straddle option or STO ),,( 21 TTKSTO  with the following specifications.  At 

the maturity date 1T  of this contract, the buyer has the option to buy a then at-the-money- 
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forward straddle with a pre specified exercise price STOK .  The buyer receives both, a call 

and a put, with a strike price equal to the forward price, given the index level at time 1T .  

The straddle matures at time 2T . 

Our proposed contract has two main features: first, the value of the contract at 

maturity depends on the volatility expected in the interval 1T  to 2T  and therefore it is a 

tool to hedge volatility changes. It is sensitive to volatility but not to interest rates or  

changes in the spot.  Second, the underlying asset is a traded straddle10. We believe that, 

unlike the volatility options, this design will greatly enhance its acceptance and use by 

the investment community.  Compared to the available alternatives it is the most cost 

effective.   

The proposed instrument is conceptually related to two known exotic option 

contracts:  compound options and forward start options11.  Unlike the conventional 

compound option our proposed option is an option on a straddle with a strike price, 

unknown at time 0, to be set at time 1T  to the forward value of the index level.  In 

general, in valuing compound options it is assumed that volatility is constant (see, for 

example, Geske (1979)).  Given that the objective of the instrument proposed here is to 

manage volatility risk, we need to introduce stochastic volatility.  

 

 

III.  Valuation of the Straddle Option 

In this section we first value the straddle option (STO) assuming deterministic 

volatility as our benchmark case.  We then apply a specific stochastic volatility (SV) 

model to value the straddle option and illustrate its properties. 
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A.  The Case of Deterministic Volatility 

We first analyze the case where volatility changes only once and is known at time 

zero.  We assume a constant volatility 1σ  between time 0 and 1T   (expiry date of STO) 

and a constant volatility 2σ  between 1T  and 2T  (maturity date of the straddle ST). Given 

its compound option feature, the derivation of time 0 value of STO involves four steps: 

Value of the underlying straddle ST at its maturity 2T , ( )2TST , and next at 1T , ( )1TST . 

And then payoff of STO at its expiry 1T , ( )1TSTO , and finally at time 0, ( )0STO . 

The payoff of straddle ST at its maturity 2T  is:     

   ( ) ( ) ( ) ( ) STKTSTputTcallTST −=+= 2222    (1) 

where ( ) ( )12
1

TTr
ST eTSK −=  and ( )TS  is the stock price at T. 

Assuming that the call and put in the straddle are European as is the typical index 

option and that the Black-Scholes assumptions hold, and using Brenner and 

Subrahmanyam (1988) approximation for ATM options, we have  

   122
1

1111 2
)(2)()1)(2(2)()( TTTSTSdNTSTST −≈−=⋅≡ σ

π
α ,              (2) 

where 1221 2
1 TTd −= σ . The straddle is practically linear in volatility.  The relative 

value of the straddle, )(/)( 11 TSTST=α  is solely determined by volatility to expiration.   

The payoff of the straddle option (STO) at its expiration 1T  is  

( ) ( ){ } ( ){ }STOSTO KTSKTSTTSTO −⋅=−= 111 max0,max α     (3)   
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Thus, the price of the STO at any time t, 10 Tt <≤  is, using the B-S model: 

 )()( 11
)( 1 tTdNeKdNSSTO tTr

STOtt −−⋅−⋅⋅= −− σα  ,                                   (4) 

where )(xN  is cumulative normal distribution function and  

                           
tT

tTrKS
d STOt

−
−++

=
11

1
2
12

1 ))(()/ln(
σ

σα
.                                       

The sensitivity of STO to the volatility in the first period 1T , called 1Vega , is 

)('1
1

1 dNtTSSTOVega t
t ⋅−=

∂
∂

=
σ

,                                         (5) 

where )(' dN  is the normal density function, which is a standard result for any option 

except that d is also determined by α  which is in turn determined by 2σ . Thus, Vega in 

the first period is affected by volatility in the second period which makes sense since the 

payoff at expiration of STO is determined by the volatility in the subsequent period.   

The sensitivity of STO to the volatility in the second period 12 TT − , called 2Vega , 

is given by 

    )('2)()( 112
22

2 dNTTdNSdNSSTOVega tt
t ⋅−⋅=

∂
∂

=
∂
∂

=
σ
α

σ
.                      (6)  

Therefore, 2Vega  is also a function of the volatility in the current period, not just the 

volatility of the subsequent period.   

Vega1 and Vega2 are proportional to the square root of the length of each period. Each of 

them depends on the volatility in both periods but primarily on the volatility in its own 

period. Thus, Vega1 could be smaller or larger than Vega2 depending on the volatility in 

each period.12  
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B.  The Case of Stochastic Volatility  

We now turn to the case which is the very reason for offering a straddle option, 

the stochastic volatility case. We assume a risk-neutral diffusion process and a stochastic 

volatility (SV) model similar to the one by Stein and Stein (1991): 

   1
ttttt dBSdtrSdS σ+= ,                                                 (7) 

   2)( ttt kdBdtd +−= σθδσ .                                           (8) 

Equation (7) describes the dynamics of an equity index tS  with a stochastic volatility tσ .  

Equation (8) describes the dynamics of volatility itself which is reverting to a long run 

mean θ  where δ  is the adjustment rate and k is the volatility of volatility. 1
tB  and 2

tB  are 

two independent Brownian motions. r is the risk-free rate.   

The conditional probability density function of TS  is given by 

  )(),,,,;,|( )(
0

)( tTr
T

tTr
ttT eSfektTrSSf −−−−=− θδσ                              (9)                

where                          

 ∫
∞

∞−















 −






 +








= ηηη

π
d

S
StTI

SS
SSf

t

T

tT

t
T lncos

24
11

2
1)( 2

2/3

0             (9a) 

in which the function )(λI  is given by equation (8) of Stein and Stein (1991)13. 

The transition probability density function of Tσ  is normal with mean )()( tT
t e −−−+ δθσθ  

and variance δδ 2/)1( )(22 tTek −−− , 

  ( )



















−

−−−
−

−

=−
−−

−−

−− )1(

)(exp
)1(

1),,,;|(
)(2

2

2)(

)(2
2

tT

tT
tT

tT
tT

ek
e

ek
ktTf

δ

δ

δ

δ

θσθσ

δ
π

θδσσ .      (10) 
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The joint distribution of TS  and Tσ  is 

    )()(),( TTTT fSfSf σσ =                                              (11) 

since the two Brownian motions are assumed independent.   

Using risk-neutral valuation with the above joint distribution, the value of the 

straddle ST at time 1T  is                                                                                                                   

 

212
)12(

1

12

12

12

1
)|()(2 )()(

TTT
eS

TTr
TT

TTr
T dSSSfeSSeST

TTr
T

∫
∞

−−−

−

−=  

          ),,,,;(2 1211
krTTFS TT θδσ −≡                                                      (12) 

where the strike price STK  is 2 1( )
1

r T T
TS e − , and function )(

1TF σ is defined by the second 

equal sign. 

Given the values of the straddle ST, the price of the straddle option, STO, at time 

0=t  can be computed as 

     ∫
∞

=
0

00 111
)|()( TTT dfGSTO σσσσ                                                      (13) 

where                 

 
11

1

1

1

1

11
)|(

)(2
)(2)( 0

)(2

TT

F
K T

STO
T

rT
TT dSSSf

F
KSeFG

T

STO

∫
∞

−











−=

σ

σ
σσ           (14)  

The values of STO are computed numerically and presented in Table 1a and in 

Figures 1a to 1d using a range of parameter values.  Next to the values from the SV 

model, in 1a, we present the values using the BS model (k=0).  As expected, the value of 

this compound option using the SV model is larger than the value of this option using the 
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BS model.  The difference between the two depends on the values of the other parameters 

in the SV model and the strike price STOK .  For relatively low strike prices, STOK , the 

effect of stochastic volatility is rather small and the values are not that different from a 

BS value, ignoring stochastic volatility.  For higher strike prices (out of the money) the 

effect of k, the volatility of volatility, is much larger.  For STOK =12, slightly out-of-the-

money, the value of STO at k=.3 is about 1.6 times larger than STO at k=.1 (1.22 vs. 

0.47) while the BS value is only 0.36. Figure 1b shows the effect of initial volatility, 0σ .  

At low strike prices an increase in initial volatility has a small effect on the values of 

STO.  At high strike prices the value of STO is lower but the marginal effect of 0σ  is 

much higher. Figure 1c shows the effect of θ , the long-run volatility on STO.  For low 

values of θ , the value of STO is declining as we get to the ATM strike.  Hedging against 

changes in volatility in a low volatility environment is not worth much. Figure 1d shows 

the combined effect of volatility and k, volatility of volatility, at the ATM strike of STO. 

As expected, the value of STO increases in both and is rather monotonic. Stochastic 

volatility has a relatively bigger effect in a low volatility environment. 

The effect of the various parameters on the value of STO could be discerned from 

the previous table and graphs but a better understanding of the complex relationships can 

be obtained from an examination of the various sensitivities given in Figures 2a and 2b.  

Figure 2a provides the sensitivity of STO to changes in volatility, which is the main issue 

here.  Figure 2a displays these values at 5 levels of initial 0σ .  The values are high at all 

levels of initial volatility, though they tend to decline as volatility increases, indicating 

that changes in volatility could be effectively hedged by the straddle option.  It becomes 

less effective as the strike price STOK  increases, the option is out-of-the-money. Figure 2b 
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displays values for the sensitivity of STO to k, volatility of volatility.  The higher is k, the 

higher is the “vega” of STO.  It is most sensitive at intermediate values of the strike price 

and approaches zero as the strike price increases. We also find, the graph is not presented 

here, that the sensitivity with respect to the time to maturity of the straddle itself, 12 TT − , 

is higher for a maturity of 3 months than for a longer maturity, 6 months or a year, 

because the incremental value of STO at a shorter maturity is larger than at a longer 

maturity where the value is already high. 

An interesting observation regarding the value of STO emerges.  Does STO have 

a higher value, relative to BS value, in markets with higher volatility?  It seems that 

higher σ , for a given k (volatility of volatility), tends to reduce the differences between 

SV values and BS values since σ  is the dominant factor in the valuation.  However, if 

higher σ  is accompanied by higher k, STO values will be served little by a stochastic 

volatility model.  

 

IV.  Conclusions 

The stochastic behavior of volatility, which has always affected options premiums, has 

been, for the most part, ignored by most participants. However, any risk management 

system must cope with volatility risk and it can do so in several ways, using existing 

instruments and/or a dynamic strategy. In this paper we propose a derivative instrument, 

an option on a straddle that can be used to hedge the risk inherent in stochastic volatility.  

This option could be traded on exchanges and used for risk management.  It compares 

favorably with other possible alternatives; it is sensitive only to volatility, the underlying 

asset is tradable and it is the most cost effective instrument. 
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Since valuation is an integral part of using and trading such an option we derive 

the value of such an option using a stochastic volatility model.  We compare the value of 

such an option to a benchmark value given by the BS model.  We find that the value of 

such an option is very sensitive to changes in volatility and therefore cannot be 

approximated by the BS model. 
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Figure I
S&P 500 Volatility Index (VIX) 
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Figure I  Closing level on the S&P 500 Volatility Index (VIX). The sample period is 
November 1, 1997 – December 31, 2002. Source: CBOE. 
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                                                                FIGURE II 

Volatility Index based on ATMF straddle (NST) and the new VIX for different values of initial 
volatility at a high level of stochastic volatility 
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Table 1a: The value of the Straddle Option, STO, at t = 0 for a combination of strike 
price KSTO and volatility of volatility k. S0 =100, r = 0, σ0 ,intial volatility,= 0.20, θ, long-
run volatility  = 0.20, δ, reversion parameter = 4.00, T1 =0.5, T2 = 1.0. 
 
 
 
           k 
KSTO 

0 (BS) 0.10 0.20 0.30 0.40 0.50 

0 11.274  11.352  11.580  11.841  12.146  12.564 
1 10.274  10.352  10.583  10.874  11.231  11.699 
2   9.274 9.352  9.585 9.904  10.311  10.829 
3   8.274 8.352 8.587 8.933 9.388 9.957 
4   7.274 7.352 7.590 7.962 8.465 9.083 
5   6.274 6.352 6.592 6.990 7.542 8.210 
6   5.274 5.352 5.594 6.020 6.619 7.338 
7   4.274 4.352 4.601 5.054 5.700 6.467 
8    3.277 3.360 3.629 4.111 4.793 5.602 
9    2.308 2.408 2.713 3.222 3.919 4.754 
10    1.439 1.564 1.907 2.428 3.113 3.942 
11    0.774 0.908 1.254 1.757 2.406 3.195 
12    0.355 0.470 0.771 1.223 1.812 2.538 
13    0.140 0.218 0.446 0.820 1.331 1.981 
14    0.048 0.092 0.245 0.531 0.957 1.521 
15    0.014 0.035 0.129 0.335 0.674 1.152 
16    0.004 0.013 0.065 0.206 0.466 0.861 
17    0.001 0.004 0.032 0.124 0.318 0.636 
18    0.000 0.001 0.016 0.074 0.215 0.466 
19    0.000 0.000 0.007 0.044 0.144 0.339 
20    0.000 0.000 0.003 0.026 0.096 0.245 
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FIGURE 1a 
The value of STO for a combination of strike prices KSTO and volatility of volatility k 
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FIGURE 1b 
The value of STO for a combination of strike price KSTO and initial volatility 
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FIGURE 1c 
The value of STO for a combination of KSTO and the long-term level of volatility 
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FIGURE 1d 
The value of STO for different combinations of initial volatility and volatility of 

volatility
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FIGURE 2a 
The sensitivity of STO to KSTO at different levels of initial vol. 
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Figure 2b 

The Sensitivity of STO to KSTO  at different levels of k 
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Endnotes 
                                                 

1 A comprehensive analysis of volatility and variance swaps is provided in 

Demeterfi, Derman, Kamal and Zou (1999). 

2 One of the strategies used by Long-Term-Capital-Management (LTCM) was 

to sell volatility on the S&P 500 index and other European indices (see 

Lowenstein R. (2000), p. 123). 

3 The volatility of volatility can be observed from the behavior of a volatility 

index, VIX, provided in Figure 1.  Though different, the new VIX exhibits a 

very similar behavior. 

4 There were several attempts to introduce volatility derivatives (e.g., the 

German DTB launched a futures contract on the DAX volatility index) but 

those attempts were largely unsuccessful.  

5 Gastineau (1977) and Galai (1979) have proposed an index of option prices 

which corresponds to some implied volatility index.  Such an index is also 

described in Cox and Rubinstein (1985). 

6 Brenner and Galai (1993) have introduced a volatility index based on implied 

volatilities from at-the-money options of two near term maturities.  The old 

VIX used a similar methodology. 

7 Brenner and Galai (1993) use a binomial framework to value such options 

where tradability is assumed implicitly.  

8 ATMF straddles are traded mainly in the FX market and are quoted on a 

volatility basis. 
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9 Strictly speaking this is true in a B-S world (See Brenner and Subrahmanyam 

(1988)) but here, with stochastic volatility, it may include other parameters 

(e.g. vol. of volatility). 

10 Theoretically there is no difference if the delivered option is a call, a put or a 

straddle since they are all ATMF.  Practically, however, there may be some 

difference in prices due, for example, to transactions costs.  A straddle would 

provide a less biased hedge vehicle. 

11 Forward start options are paid for now but start at some time 1T  in the future. 

The instrument proposed here is different from the instrument proposed by 

Gary Gastineau in one aspect; while in his proposal the number of options the 

buyer gets is adjusted to reflect the change in the underlying price, there is no 

such adjustment in our proposal. 

12 If the volatilities and the periods happen to be the same then the difference 

between Vega1 and Vega2 will be negligible. 

13  Equation (8) in Stein and Stein (1991) is  

2
0 0( ) exp( / 2 )I L M Nλ σ σ= + +  

where L, M and N are functions of λ , given by 
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