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Abstract

A Cliquet is a type of structured product which is equivalent to a collection
of forward starting at-the-money options where the strike is reset periodi-
cally to the current level of the underlying. There are a number of problems
associated with the pricing of Cliquets, mainly associated with estimating
the forward volatility curves of the underlying.

We examine two approaches to pricing Cliquets: An analytic solution is de-
rived in the first approach under the Black-Scholes framework. In the second
approach we deal with the pricing using stochastic volatility model. In par-
ticular, a risk-neutral representation is derived for the stochastic volatility
model. The effectiveness of this derived stochastic volatility model is demon-
strated in a Monte Carlo study.
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Chapter 1

Introduction

1.1 The Cliquet Option

Cliquets, Cliquet Options or Ratchets all refer to a type of retail structured
product with underlying usually some equity or equity index. A Cliquet can
be defined as a series of forward starting at-the-money options, where the
strike is periodically reset to the current level of the underlying. Payoffs can
be taken at the reset dates or accumulated to pay at the maturity of the
Cliquet. Cliquets enable investors to lock in gains at pre-specified dates in
the future when the option’s strike is effectively reset.

The Cliquet is suitable for investors with a medium term investment
horizon. It is less risky than ordinary medium term options, as there is
less specific risk i.e. the reset facility gives the buyer a ’second’ and ’third’
chance. This increases the chance of payout, but must be balanced with the
higher premium cost. As a series of 'pre-purchased’ options, the Cliquet is
attractive to passive investors as it requires no intermediate management.
They have traditionally been attractive to retail and private investors when
embedded in deposits and bonds [e.g. Accumulators and Predators] as they
provide a low risk (capital guaranteed) exposure to equity and Bond markets.
Investors may use Cliquets to take advantage of assumptions about future
volatility.

1.2 Objectives of the Research

Cliquets have been traded for over a decade although their pricing has al-
ways been debated. The problem arises in the path-dependent nature of the



Cliquet payoff - for example, in a Cliquet that resets annually, the strike
price after 3 years is defined to be the spot price of the underlying after 2
years. If the volatility associated with the underlying changes after 2 years,
this would give a different payoff to the Cliquet had there been no change in
the volatility.

This report aims to deal with some of the problems associated with pricing
Cliquets. Two approaches are considered:

1. Pricing Cliquets in the Black-Scholes framework:
We derive an analytic solution to the Cliquet option by applying the
Equivalent Martingale Pricing approach.

2. Pricing Cliquets using a 'Risk Neutral’ Stochastic Volatility model
We consider a stochastic volatility term in the SDE for the stock price
and derive a risk-neutral representation of the model by constructing
a riskless portfolio.

The next two chapters of this report discuss the 2 approaches above in greater
detail. Chapter 4 gives a demonstration of the effectiveness of the derived
Stochastic Volatility model in comparison to the Black-Scholes model used
in the first approach. The remainder of the report, deals with issues of cali-
bratrion and methods used to price the Cliquets in the Stochastic Volatility
model. The Matlab functions used for pricing are listed in the Appendix.



Chapter 2

An Analytic Solution to the
Cliquet Price

2.1 Forward Start Options

Let S; denote the value of the underlying instrument at time t. Forward
start options are options whose strike is unknown at ¢, (say) - the time of
pricing, and will be determined at some later date ¢; > ¢;. The strike is
determined according to some pre-agreed formula (e.g. at-the-money, 10%
in-the-money,etc.). Thus, an at-the-money forward start option with strike
determined at time ¢; and maturity ¢; > ¢; has the following payoff at time
tji

payof f = maz [Sy, — Sy,,0] (call) (2.1)
payof f = max [Sti — Sy, O] (put)
2.2 Derivation of the Pricing Formula

Let S; denote the value of the underlying instrument at time ¢. Consider a
Cliquet of calls - with n resets and maturity 7. Let the payoffs be at reset
times denoted by t,t5,...,t, such that 0 =ty <t; < - - <t,_1 <t,=1T.

Then the above Cliquet has the following n payoffs:



vy = max|[Sy — Sy, 0] at

vy = max Sy, — Sy, 0] at ty

U, = max [Stn — S, 0] at t, =T (2.3)

We may replicate this multiple payoff (2.3) by constructing a portfolio
consisting of a standard at-the-money call option and a series of forward-
starting at-the-money call options i.e. :

1. A standard at-the-money call option with maturity ¢,

2. A forward start at-the-money call option with maturity ¢; and strike
reset time ¢;,_; foreach : =2...n

By No-Arbitrage, the value of the Cliquet at time ¢y must equal the value
of the above replicating porfolio. Note that in an identical fashion, we may
derive a replicating porfolio for a Cliquet of puts. The pricing of the Cliquet
is thus reduced to pricing the forward start options.

Pricing the Forward Start Option

Consider the traditional Black-Scholes framework for pricing derivatives:
1. No transaction costs

2. No arbitrage opportunities

3. Complete Markets

4. Constant volatilty

5. No default risk

6. Constant risk-free rate of interest = r

Let S; denote the value of the underlying instrument at time ¢. We have
that
under P : dS; = pSidt + o SydW,

Choose the numeraire asset to be the money market account with value
A(t) = e™. Using the Equivalent Martingale Pricing approach we have that:

under Q:  dS; = rSdt + oS, dW,



where Q represents the Risk-Neutral Measure.

Consider the first forward start option used to replicate the Cliquet payoff
in (2.3) i.e. with maturity at ¢, and strike determination at time ¢;. Let ¢(t)
denote the value of this forward start call at time ¢. Then

c(ty) = max (S, — Sy, 0)

By the Equivalent Martingale Pricing approach we have that the relative

derivative price:
A(t) te[0,T
is a Q-martingale.

Using this property, we first examine the value of the relative derivate price
at time tq:

C(tl) . Q C(tZ)
Ah) E [A(t2)|.7-}1 (2.4)
St, — S, 0)
_ gQ [max( t t1s Sl,Al} Sy, A C T
Aty) 1Sy, Ay t1, At t
_ —r(t2—t1) | Q _
= c¢(t;)) = e E* [maz (Sy, — Si,,0) |St,, Ay, | (2.5)

The RHS of equation (2.5) is simply the Black-Scholes price at time t;
of an at-the-money call option with time to maturity ¢, — ¢;. We may thus
evaluate c(t1) as follows:

c(t1) = Sy, [N(dy) — e "N (dy)] (2.6)
+ Lo?)(ty — ¢ + Lo?)ty — 1
where dy = (r+30°)(t2 — 1) _ (r+ 350 )0V —t (2.7)
O'\/tQ - tl o
— o) (ty — t — o)ty — t

O'\/tg—tl N o

Equation (2.6) thus gives us the value for the forward start call at time
t;. To obtain its value at time ¢, we use the martingale property once more:

clh) _ ga [Z((?)) |.7:t0:| (2.9)

= e ™EQc(t))|Sy, Ai] Sis Ay, C Fiy



substituting (2.6) we obtain
c(ty) = e ™EQ[S, [N(di) — e ETIN(dy)] [y, As]
e " [N(di) — e "IN (dy)] EQ [Sy, Sk, Aty
= ¢ "™ [N(d) - e_’"(h_tl)N(dQ)] Spe  since Sy, is lognormally distributed

= c(ty) = Sy [N(d)—e "="IN(dy)]

We now have the price of the forward start call option at ¢ = 0. Generalising
the above result for maturity ¢; and strike determination time ¢; |, we get:

C(O) = SO [N(dl,z) - B_T(ti_ti_l)N(dQ,i)] (210)
+ Lo/t — ti
where dy; = (r+37) & (2.11)
o
— Lol =t
and dy, = =27 ! (2.12)
o

Note that:
c(0) = cps(So, K =S, 7 =1t —t; 1)

where cpg is Black-Scholes price of a standard call option with strike K and
maturity 7.

We may now obtain the price of the Cliquet by calculating the individual
prices of each of the forward start options. Hence, the value of the Cliquet
of calls defined at the start of Section(2.2) can be defined as:

n

price = Sy Z [N(di;) — €7T(ti7ti*1)N(d2,z‘)]

1=1

where d; and dy are as defined above.

Using put-call parity, we derive the value of a Cliquet of puts as:
n
pTiC€ — SO Z [e*T(ti*tFl)N(—dg,i) — N(—dlyi)]
i=1
The above pricng formulae may be applied to intervals (t; — t; 1) not nec-
essarily of the same length. In the market, it is most common for the reset
period to be fixed i.e.

(tz - ti—l) — At —

T
— Vi=1...n
n
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This further simplifies the solution, since the forward start option prices are
actually functions of (¢; —t; 1) = At rather than the times ¢; and ¢; | explic-
itly.

So, for a Cliquet of calls with maturity 7" and n resets, the price is given
by:
price =nSy [N(dy) — e "' N(dy)] (2.13)

and similarly for a Cliquet of puts:

price = nSy [e7" ' N(—dy) — N(—dy)] (2.14)

S04V AL
where dy = % (2.15)

(r -

2)\/A_t

1
and dy = — 27V (2.16)
g



Chapter 3

A ’Risk Neutral’ Stochastic
Volatility Model

It it clearly observed that market volatility is stochastic. The Black-Scholes
model does not allow for this, and results in mis-pricing derivatives, espe-
cially those such as Cliquets which have forward volatility exposure. Due to
the path dependent nature of the Cliquet, we must consider a model for the
term structure of volatility. Hence, a stochastic volatility model will enable
us to give a better estimation of the price of the Cliquet.

The major problem associated with this type of model is that volatilty itself
is not a traded asset. This forces us into the realm of incomplete markets.
It is possible, however, to overcome this, and an approximation is made to
lead us to Risk Neutral Evaluation.

3.1 Construction of the Model

Let the risk-free rate of interest r be constant. Let S; denote the value of
the underlying instrument at time ¢ with volatility oy, where o, follows a
stochastic process.

Consider the following SDE’s for S; and o; under P:

dSt = ;LStdt + O’tStthJ (31)
dO’t = ’}/Utdt + pBUtthJ + 1— p2/30—tth’2 (32)

where p represents the correlation between the underlying and its volatilty,
and S the volatility of volatility.

Let f = f(t,S,0) be the value of a derivative at time ¢ with underlying

9



Si.

To derive the processes for S; and o, under Q in the Risk-Neutral world,
we follow a similar argument to the orignal derivation of the Black-Scholes
PDE. We formulate a risk-neutral portfolio (II) consisting of:

1. A long position in the derivative with value f = f(t, S, o)
2. A short position in A units of the underlying

3. A short position in ® units of a short-term call option, maturity At,
on the underlying with value C' = C(¢, S, 0)

The value of the portfolio at time ¢ is given by:
II=f—-AS—-®C (3.3)
Consider the change in the portfolio over a infinitesimal time period dt:
dll = df — AdS — ®dC (3.4)

We apply Ito’s Lemma to obtain equations for df and dC'"

of of of 1 o2 20 f 2g O°f 2 2 f
df = —dt+ —=d ——do — dt
A A h i = Gl TR T 5
(3.5)
e oC oC 1, 2(920 5., 0°C 9 2 C
dC = Edt ﬁds—l-a—da < S 552 + pBo 5858 —B dt
(3.6)
To simplify notation, we define the differential operator ¢ as:
1 0? 0? 0?
(= 252529 2 2 2 '
5 5852+p505656 + 6 902 (3.7)

Re-writing (3.5) and (3.6), with derivatives written as subscripts we obtain:

df = fudt+ fedS + f,do + (fdt (3.8)
dC = Cydt+ CgsdS + C,do + (Cdt (3.9)

Substituting (3.5) and (3.6) into (3.4), we obtain:

dIl = fydt + fsdS + fydo + Lfdt — AdS — ® (Cydt + CsdS + C,do + (Cdt)
(3.10)

10



Where £ is the differential operator defined in (3.7). In order to obtain a
risk-neutral setting, we make an approximation:

We assume the value of the short-term call option to be the Black-Scholes
price. A riskless portfolio is now obtained by choosing appropriate values for
A and @ in (3.10) i.e. we set:

fs

* = 7 (3.11)

A = fs-0Cs=fs— Gfe (3.12)
(3.10) becomes:

A = (f,+£f — B(Cy + £C)) dt (3.13)

By No-Arbitrage, the return on a riskless portfolio must equal the risk-free
rate. Thus, we must have:

dil = rlldt (3.14)
= (fi+lf —®(C,+LC))dt = r(f—AS—®C)dt (3.15)

Substituting for A

= ft+£f = (I)(Ct—FEC)—FT(f—[fg—(I)CS]S—(I)C)
— ®[C,+(C —1C+rSCs] +1f — 1 fs (3.16)

Consider C; + (C':
1 1
Ci+0C = Ci+ 50252055 + pBo*SCg, + 56202000 (3.17)

Recall our approximation, C'is the Black-Scholes price, and must hence sat-
isfy the Black-Scholes PDE:

C,+rSCs + 30252055* —7rC =0 (3.18)
= O+ %J2SQCSS =rC+rSCy (3.19)
Substituting (3.19) into (3.17) we obtain:
Cy+C = rC+1rSCs+ pBa*SCs, + %BQUQC’W (3.20)
Now substituting (3.20) into (3.16) we obtain:

fi+lf = @ pBaQSC’SU—F%ﬁQaQC’M +rf—rfg (3.21)

11



Recall ® = é—‘;, substituting this in and re-arranging:

Cso 1 Coo
fut lf = pBo* S fo = SB0* G o+ rfs =1 =0

Now, by our approximation:

C = S[N(d)—Xe ™ N(dy)]

log (£ Lo2)At
where di = Og(X) t+(r+ 27 )
oV At
and dy = log(%) +(r - %UZ)At
oV At

The following Greeks may then be substituted into (3.22):

Cs = N(dy)
C, = SVAtN'(dy)

o log (%) +rAt] 1
Css = N'(dy) [— NN + iavAt
B " log (%) +rAt] 1
Coo = SVAIN"(dy) [— v LY
where  N'(z) = \/12_7re_%$2

In order to simplify the resulting equation, we choose:
X = Serat

This gives us:

1 1
di = §UvAt and d2:—§a At

Cso = N'(dy) [%@}

Cow = SVAIN"(dy) B@]

Now
N”(dl) - N,(dl)(—dl)

12
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(3.24)

(3.25)

(3.30)

(3.31)

(3.32)



= G = SYAIN()(~ LoV E@]

3
2

- —%SaN’(dl)(At) (3.33)

We substitute the above Greeks into (3.22) and neglect C,, ~ 0 since it
contains a higher order term of At. The resulting equation is:

1
fittf = 5pBo*Sfo+rfs—rf =0 (3.34)
Writing in full:

1 1 1
fi+fs = 5pB0°S o + 5075 fss + pBO S fso + 50  fa — 1 = 0

(3.35)
Then f(t,S, o) satisfies (3.35) with some boundary condition
f(T,S,0) = g(5)
By the Feynman-Kac Theorem, f(t,S,0) has the representation:
f(t,S,0) = ER[e " Dg(S)|S, 04 (3.36)

where Q denotes a measure under which S; and o; follow the following pro-
cesses:

dSt = TStdt + UtStth,l (337)
1 ~ -
dUt = —ipBUth + pﬁatth,l —+ v/ 1— pZBO’tthQ (338)

We have thus (under our assumptions) derived a representation of the stochas-
tic volatility model in the Risk-Neutral world. Not surprisingly, the drift term
for the underlying instrument /security is the risk-free rate r. It is also in-
teresting to observe that the model is independent of the drift term of the
stochastic volatiltiy o, under P - the real world measure.

13



Chapter 4

A Monte Carlo Study of the
Stochastic Volatility Model

Since the Risk-Neutral Stochastic Volatility [SV] Model derived in the last
chapter has no analytic solution, we employ the technique of Monte Carlo
simulation to generate sample paths of the underlying price. These paths will
be used to price path-dependent derivatives such as Cliquets in particular,
although, the model can be used to value any type of derivative on a single
underlying instrument paying no dividends.

We fist demonstrate some of the features of the model *.

4.1 Generating Stock Prices

A Monte Carlo approach is implemented to generate sample paths for S; and
o, over [0,T]. We first divide the interval into n evenly spaced time periods
each of length At = % We apply the Euler-Maruyama method to (3.38),
and generate values for o, by using the recursive equation:

1
Oip1 = 0; — EpBUfAt + pPoiVALe ; + /1 — p?BoiVALey; (4.1)
Vi=0...(n—1)

We generate stock price paths using the recursive equation:

Sit1 = Siexp ((r - %U?)At + o, VAL 61,1') (4.2)

!In the analyis following, the underlying will also be referred to as the stock price

14



where o; = value of g; after ¢ periods
where S; = value of S; after ¢ periods
and 617i, 62,1 ~ N(O, 1)

4.2 Implied Distributions

The probability distribution associated with possible stock prices in a model
can be referred as the implied distribution of the model. In the commonly
used Black-Scholes model, the implied distribution is the Lognormal distri-
bution. We note however that this distribution is not observed with actual
prices in the market. This is due to the so called ’fat tail’ effect of the mar-
ket i.e. the market expects tail events to occur with a far greater probability
than is implied by lognormally distributed prices. This type of distribution
in the market is termed leptokurtotic (excessively peaked and fat-tailed). As
a result of this, options which payoff in these circumstances need to be priced
higher than the price implied by the Black-Scholes model.

We consider the above problem associated with the lognormal distribution
and therefore compare its distribution with that obtained from the Stochastic
Volatility model developed. Various parameters are considered to reveal the
implied distributions that are possible using our Stochasic Volatility model.

The histograms in figure (4.2) are generated from terminal values of stock
price paths generated using a Monte Carlo simulation. The model parameters
used in the simulations were:

Parameter | Value
So | 100
r| 12%
(o)) 30%
T | 1 year

By examining the histograms produced in figure (4.2), it is apparent
that our SV model is capable of producing various types of leptokurtotic
distributions by varying the parameters p and 5. Note how the implied
distrtribution shifts to the left when p is increased.Increasing ( [volatility of
volatility] has the effect of increasing the peak of the distribution.

15
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Figure 4.1: Histograms produced using the SV model
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4.3 Implied Volatilty

The market prices of vanilla options [puts/calls| most often differ from the
corresponding option price obtained from the Black-Scholes equation. The
implied volatility of an option can be defined as that volatility o [constant]
which satisfies:

CBS(SO; r,o, 7T, K) = Crarket

where Cirarker 1S the observed market price of the option and Cpg is the
corresponding Black-Scholes price of the option.

4.3.1 The Implied Volatilty Smile

By calculating implied volatilities of options in the market with different
strikes, we obtain what is known as the implied volatility ”smile”. Cliquets
are a collection of foward-starting options. This means that Cliquets have
exposure to changes in forward implied volatilty. Our SV model has the
ability to generate a option prices according to some type of volatility smile
which evolves over time - this has obvious benefits in pricing Cliquets as well
as any derivatives which have exposure to future implied volatility changes.
To demonstrate this, a series of stock prices paths were first generated up to
time T by our SV model using Monte Carlo simulation. A series of vanilla
call options with different strikes were then priced using the terminal values
[Sy] for the stock. Finally, the resulting vanilla call prices were inverted
(using a numerical procedure) to obtain implied volatilities at each level of
the strike. The results for different values of p and § are shown in figure
(4.3.1).The following parameters were used:

Parameter | Value
So | 100
r| 12%
(o)) 30%
T | 0.5 yrs

Figure (4.2) shows the variation in the implied volatility curve for different
correlation p. We observe that, in general, negative correlations correspond
to negative skewness; and positive correlation for positive skewness.

Figure (4.3) illustrates the effect of changing /. Increasing § has the effect
of increasing the curvature of the smile and thus shifting its center.

17
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Figure 4.4: Implied Volatility Surface generated up to 1" = 1 year using SV
model with p= —0.5 and =1

4.3.2 The Implied Volatilty Surface

Each implied volatility smile corresponds to a set of options with a specific
maturity. This curve evolves as the maturity of the options changes. We
obtain an implied volatility surface by combining several volatility smiles for
options of increasing maturity. The existence of an implied volatility surface
in the market is evidence of the term structure of volatility. Our SV model

This phenomenon must be considered when choosing parameters for the
model.

We illustrate the term structure of volatility generated by our SV model

by constructing implied volatility surfaces with different parameter combi-
nations in figures (4.4),(4.5),(4.6) and (4.7).
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Chapter 5

Calibration & Pricing

5.1 Calibration

As demonstrated in the last chapter, the SV model derived is capable of
producing a variety of implied volatility smiles/skews. In our aim to price
Cliquets more accurately, we require a model for the evolution of the forward
implied volatility that reflects the current market situation. We must there-
fore seek to calibrate our model to match(approximately) the current implied
volatility surface of the market. In this way, our model will become consistent
with the current market prices of vanilla puts and calls. This formulation has
useful implications for hedging when the model is used to calculate Greeks,
as many exotic derivatives such as Cliquets are hedged using vanilla puts and
calls.

5.2 Pricing

The Cliquet pricing is performed using the Monte Carlo approach discussed
in Section (4.1). The Matlab function SVmodel.m generates an m X n ma-
trix containing m rows of stock-price paths each consisting of n stock prices
over the period [0,7]. The exprected payoffs of the Cliquet are then calcu-
lated from this matrix and discounted at the risk-free rate r. The function
cliquetSV.m [listed in the appendix] generates Cliquet prices using the above
approach.
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Chapter 6

Conclusion

The Black-Scholes framework is widely used in finance - it is easy to use and
understand. There is, however, sufficient evidence in the existence of an im-
plied volatility surface in the market, to demonstrate the deviation of market
prices from their Black-Scholes equivalents. Adding to this, the uncertainty
associated with changing volatility in the market, and we find that in reality,
stock prices are not lognormally distributed.

We have developed a model that takes the above into consideration, and
as result, is capable of generating a term structure of volatility. By choosing
the model parameters carefully, we may produce an implied volatility surface
that resembles that of the market. This is crucial in the interest of pricing
Cliquets accurately since they are directly exposed to the stochastic nature
of the implied volatility surface.

The Stochastic Volatility model derived in this report thus gives us a far

better representation of market observed prices for the underlying and will
thereby give a better estimation of the Cliquet premium.
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Appendix A
Matlab Code

The following Matlab functions as listed:

1. cliquetBS.m:
Computes the Price of a Cliquet in the Black-Scholes framework

2. SVModel.m :
Returns an m x n matrix of stock price paths using the SV Model

3. cliquetSV.m :
Computes the Price of a Cliquet using the SV Model

function [call_price,put_pricel = cliquetBS(sO,r,sig,T,n)

% Generates the price of Cliquet with maturity T and n resets over [o,T]
% where sO = initial value of underlying

% r = risk-free rate (NACC)

% sig = volatility of the underlying

% n =# of resets in [0,T]

reset_period=T/n;

call_price=n*fwdstartcall(sO,r,sig,T,T-reset_period);
put_price=n*fwdstartput(s0,r,sig,T,T-reset_period);

function ret = fwdstartcall(sO,r,sig,T,t1)

di=(r+sig~2/2)*sqrt (T-t1)/sig;
d2=d1-sig*sqrt(T-t1);

ret = sOx(cumnorm(dl)-exp(-r*(T-t1))*cumnorm(d2));
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function ret = fwdstartput(sO,r,sig,T,tl)

d1=(r+sig~2/2)*sqrt(T-t1)/sig;
d2=d1-sig*sqrt (T-t1);

ret = sO*x(exp(-r*(T-t1))*cumnorm(-d2)-cumnorm(-dl));
o/o Pt

% P

b

function ret = cumnorm(x)
ret = 0.5+erf(x/sqrt(2))/2;
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function [S] = SVModel(sO,r,v0,T,m,n,rho,beta)

% Generates an m x n matrix S of stock price paths

% where sO = initial value of underlying

% where vO = initial value of volatility

% r = risk-free rate (NACC)

%» m = number of sample paths to generate

%» n = number of steps taken [0,T]

% T = maturity

% rho = the correlation between underlying and volatility
% beta = the volatility of volatility

dt=T/n;

rho2=sqrt (1-rho~2);
S(1:m,1)=s0;
V(l:m,1)=v0;
sqdt=sqrt (dt);
Zl=randn(m,n) ;
Z2=randn(m,n) ;

mu=-0.5*%rho*betax*xdt;

for k=1:n
S(:,k+1)=S(:,k) .xexp( (r-0.5%(V(:,k)."2))*dt + sqdt*V(:,k).*Z1(:,k));

V(L k+1)=V(:,k) + mux(V(:,k)."2) + betaxsqdt*V(:,k).x(rho*Z1(:,k) + ...

. tho2xZ2(:,k));
end
S(isnan(S))=0;
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function [call_price,put_pricel=cliquetSV(s0,r,v0,T,beta,rho,m,step,freq)

% Computes the prices the price of Cliquet using the SV Model

% where sO = initial value of underlying

% where vO = initial value of volatility

% r = risk-free rate (NACC)

% m = number of sample paths to generate

%» n = number of steps taken [0,T]

% T = maturity

% rho = the correlation between underlying and volatility
% beta = the volatility of volatility

# of resets in [0,T]
# of time steps per RESET period

% freq
% step

n=freq*step; 7% the number of steps for entire duration of cliquet
% generate mxn matrix of stock price paths
S=SVModel(s0,r,v0,T,m,n,rho,beta) ;

for i=1:freq
hcalculate payoff for cliquet of calls
payl=S(:,step*i +1)-S(:,step*x(i-1) +1);
pay2=-payl; %calculate payoff for cliquet of puts

payl(pay1<0)=0;

pay2(pay2<0)=0;

disc=ixT/freq;

calls(i)=exp(-r*disc)*mean(payl);

puts (i)=exp(-r*disc)*mean(pay2) ;
end

call_price=sum(calls);
put_price=sum(puts) ;
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