#### A Perfect Calibration ! Now What ? Model Risk for Exotic and Moment Derivatives

Wim Schoutens, Erwin Simons<sup>†</sup> <sup>‡</sup>tastaert<sup>‡</sup>

Cambridge, 3rd of December 2004

www.schoutens.be

#### Abstract

We show that several advanced equity option models incorporating stochastic volatility can be calibrated very nicely to a realistic option surface. More specifically, we focus on the Heston Stochastic Volatility model (with and without jumps in the stock price process), the Barndorff- Nielsen-Shephard model and Lévy models with stochastic time. All these models are capable of accurately describing the marginal distribution of stock prices or indices and hence lead to almost identical European vanilla option prices. As such, we can hardly discriminate between the different processes on the basis of their smile-conform pricing characteristics. We therefore are tempted applying them to a range of exotics. However, due to the different structure in path-behaviour and the underlying dependency over time between these models, the resulting exotics prices can be significantly different. It motivates a further study on how to model the fine stochastic behaviour of assets over time.

<sup>\*</sup>K.U.Leuven, U.C.S., W. De Croylaan 54, B-3001 Leuven, Belgium. E-mail: wim@schoutens.be †ING, Marnixlaan 24, B-1000 Brussels, Belgium. E-mail: Jurgen.Tistaert@ing.be ‡ING, Marnixlaan 24, B-1000 Brussels, Belgium. E-mail: Jurgen.Tistaert@ing.be

Samuelson/Black-Scholes Model (1965-1973)

# GEOWELKIC BKOMNINN WOLION WODEL:

$$0 < x = {}^{0}S \qquad ``^{t}Mp + \tau p \eta = \frac{{}^{t}S}{{}^{t}Sp}$$

This SDE has a unique solution:

$$\cdot \left( {}^{t} M \mathcal{O} + \mathfrak{I} \left( \frac{\zeta}{\zeta^{\mathcal{O}}} - \eta \right) \right) \mathrm{dx}_{\partial} \, {}^{0} S = {}^{t} S$$



Figure 1: Sample path of a geometric Brownian motion  $(S_0 = 100, \mu = 0.05, \sigma = 0.4)$ 

Note that the log-returns are normally distributed:  $\log S_t - \log S_{t-1} \sim \text{Normal}\left(\mu - \frac{\sigma^2}{2}, \sigma^2\right).$ 

The Normal density is not a good approximation of the empirical density.

## Empirical Density vs Normal Density



SP500 (1970–2001) Normal and Gaussian Kernel Density Estima tors

Figure 2: Normal density and Caussian Kernel estimator of the density of the daily log-returns of the SP500 index

0

10.0-

20.0-

£0.0-

<del>7</del>0.0-

-5

0

**4**0.0

0.03

20.0

10.0

#### Imperfections of the Black-Scholes Model

## The volatility estimated over time typically shown a non-deterministic behaviour.

Historic Volatility



Figure 3: Historic Volatilities on SP-500

#### Imperfections of the Black-Scholes Model

# Black Scholes Option prices

Calibrating the Black-Scholes model prices to the market prices (in the least squared sense)



Figure 4: Black Scholes ( $\sigma = 0.2295$ ) calibration on Eurostoxx options (o's are market prices, +'s are model prices)

$$\sum_{\infty} (xb) \nu(xx) \nu(xx) = \infty.$$

where  $\gamma \in \mathbb{R}$ ,  $\sigma^2 \ge 0$  and  $\nu$  is a measure on  $\mathbb{R} \setminus \{0\}$  with

$$\log E[\exp(\mathrm{i} x \mathrm{I}_1)] = \mathrm{i}\gamma u - \frac{2^2}{2}u^2 + \int_{-\infty}^{+\infty} (\exp(\mathrm{i} u x) - 1 - \mathrm{i} u x \mathrm{I}_{\{|x|>1\}})\nu(\mathrm{d} x),$$

- $\bullet$  Lévy-Khintchine formula:
- .<br/>noitudirt<br/>sib əldisivib y<br/>lətin<br/>fini na avollo<br/>ł ${}^{\scriptscriptstyle 4}\!X$ 
  - ztnəmərəni tnəbnəqəbni
    - stationary increments

$$) = {}^{0}X -$$

where  $\{X_t, t \ge 0\}$  is a Lévy process, i.e.

$$0 \le i$$
 '( ${}^{i}X$ )dxə ${}^{0}S = {}^{i}S$ 

pλ

Lévy Models (1990) • Instead of taking normally-distributed log-returns, we now model the stock price/index

# (0661) гіром үчэл

Examples of models

- $\bullet$  1990: Madan and Seneta: Variance Gamma Process
- 1995: Eberlein and Keller: Hyperbolic model
- 1995: Barndorff-Nielsen : Normal Inverse Caussian model
- 2000: Carr, Madan, Geman and Yor : The CGMY model
- $\bullet$  2000: Grigelionis, Teugels, Schoutens : The Meixner model

#### Example: The Meixner Process

The characteristic function of the Meixner  $(\alpha, \beta, \delta)$  distribution is given by

$$\phi_{M \in ixn \in r}(n; \alpha, \beta, \delta) = \left( \frac{\cosh \frac{2}{\alpha n - 1\beta}}{\cos(\beta/2)} \right)^{2\delta}$$

The above Lévy process are pure jump process : Jumps of size in some set  $A \subset \mathbb{R}$  occur according to a Poisson Process with parameter given by the Lévy measure of A. For the Meixner case:

$$xp\frac{(n/x\mu)uis x}{(n/xq)dxa}p^{V} = (xp)n^{V}$$

#### Empirical Density vs Meixner Density

## The Meixner density can be fitted very accurately to the empirical density.



Figure 5: Meixner density and Gaussian Kernel estimator of the density of the daily log-returns of the SP500 index

#### Pricing of Vanilla Options

Let  $\alpha$  be a positive constant such that the  $\alpha$ th moment of the stock price exists. Carr and Madan (1998) then showed that

$$\mathcal{O}(K,T) = \frac{\exp(-\alpha \log(K))}{\pi} \int_{0}^{+\infty} \exp(-i\nu \log(K)) \varrho(\nu) \mathrm{d}\nu,$$

мубте

$$\varrho(v) = \frac{\exp(-rT)E[\exp(i(v-(\alpha+1)i)\log(S_T))]}{\alpha^2 + \alpha - v^2 + i(2\alpha+1)v}$$
  
$$= \frac{\exp(-rT)\phi(v-(\alpha+1)i)}{\alpha^2 + \alpha - v^2 + i(2\alpha+1)v} \cdot$$

The Fast Fourier Transform can be used to invert the generalized Fourier transform of the call price. Put options can be priced using the put-call parity.

#### Meixner Option Prices

Calibrating the Meixner model prices to the market prices (in the least squared sense) leads to a better but not satisfactory fit of the option surface:



Figure 6: Meixner ( $\alpha = 0.3801$ ,  $\beta = 0.3264$ ) calibration on Eurostoxx options (o's are market prices, +'s are model prices).

## V<br/>S bus smut<br/>s<br/>R lamov-no<br/>N $\operatorname{S}$

There is a need for models who capture both non-normal returns and stochastic volatility:

- $\bullet$  Heston Models (HEST)
- Heston with jumps Model (HESJ)
- $\bullet$ Barndorff-Nielsen Shephard Models (BNS)
- Stochastic Volatility Lévy Models

## Iebol vilitsio vilasio vilasio vilasi

• In the Heston-Stochastic Volatility model the stock price process follows the following SDE:

$$0 \leq {}^{0}S \quad {}^{\prime}{}^{*}Mb_{*}\sigma + tbr = \frac{{}^{*}S}{{}^{*}Sb}$$

the (squared) volatility process is also assumed to be stochastic and is following the

$$\mathrm{d}\sigma_{t}^{2} = \kappa(\eta - \sigma_{t}^{2})\mathrm{d}t + \lambda\sigma_{t}\mathrm{d}\tilde{W}_{t}, \quad \sigma_{0} \ge 0,$$

where  $W = \{W_t, t \ge 0\}$  and  $\widetilde{W} = \{\widetilde{W}_t, t \ge 0\}$  are two correlated standard Brownian motions such that  $\operatorname{Cov}[\mathrm{d}W_t \mathrm{d}\widetilde{W}_t] = \rho \mathrm{d}t$ .

• The characteristic function  $E[\exp(iu\log(S_t))] = \phi(u,t)$  is in this case given by:

$$\phi(u,t) = \mathcal{E}[\exp(iu\log(S_t))|S_{0},\sigma_0^2]$$

$$\approx \exp(\eta\kappa\lambda^{-2}(\kappa-\rho\lambda iu+d)t-2\log((1-ge^{dt})/(1-ge^{dt}))))$$

$$\times \exp(\sigma_0^2\lambda^{-2}(\kappa-\rho\lambda iu+d)(1-e^{dt})/(1-ge^{dt})),$$

мүбге

$$g = (\kappa - \rho \lambda ui - \lambda)/(\kappa - \rho \lambda ui - \lambda) = b$$

HEC1

An extension of HEST introduces jumps in the asset price:

$$\mathrm{d}\sigma_{t}^{2} = \kappa(\eta - \sigma_{t}^{2})\mathrm{d}t + \sigma_{t}\mathrm{d}W_{t} + J_{t}\mathrm{d}N_{t}, \quad \sigma_{0} \ge 0,$$
$$\frac{\mathrm{d}S_{t}}{\mathrm{d}S_{t}} = (r - q - \lambda\mu_{J})\mathrm{d}t + \sigma_{t}\mathrm{d}W_{t}, \quad \sigma_{0} \ge 0,$$

мубте

•  $N = \{N_t, t \ge 0\}$  is an independent Poisson process with intensity parameter  $\lambda > 0$ 

swonor 
$$t_{\mathbf{C}}$$
 əzis quiul əgəniəərəd ən

$$\log(1 + J_t) \sim N$$
ormal  $\left(\log(1 + \mu_J) - \frac{2^2}{2}, \sigma_J^2\right),$ 

- $W = \{W_t, t \ge 0\}$  and  $\tilde{W} = \{\tilde{W}_t, t \ge 0\}$  are two correlated standard Brownian motions such that  $\operatorname{Cov}[dW_td\tilde{W}_t] = \rho dt$ ,

HEC1

The characteristic function  $\phi(u,t)$  is in this case given by:

$$\begin{split} \phi(u,t) &= \mathcal{E}[\exp(\mathrm{i}u\log(S_t))|S_0,\sigma_0^2] \\ &= \exp(\mathrm{i}u\log(S_0+(\kappa-\rho\theta_{1}-1)) + 2\log((1-ge^{-dt})/(1-ge^{-dt})))) \\ &\times \exp(\sigma_0^2\theta^{-2}(\kappa-\rho\theta_{1}-d)(1-e^{-dt})/(1-ge^{-dt})), \\ &\times \exp(\sigma_0^2\theta^{-2}(\kappa-\rho\theta_{1}-d)(1-e^{-dt})/(1-ge^{-dt})), \\ &\times \exp(-\lambda\mu_{1}\mathrm{i}t + \lambda t((1+\mu_{1}))\mathrm{i}^{u}\exp(\sigma_{1}^2(\mathrm{i}u/2)(\mathrm{i}u-1))), \\ \end{split}$$

where d and g are as in given above.

# The BN-S Model (general case)

 $\bullet$  In the BN-S model the squared volatility now follows a SDE of the form:

$$\mathbf{q}\mathbf{o}_{\mathbf{z}}^{\mathfrak{t}} = -\gamma \mathbf{o}_{\mathbf{z}}^{\mathfrak{t}} \mathbf{q}\mathbf{t} + \mathbf{q}\underline{z}^{\gamma \mathfrak{t}},$$

where  $\lambda > 0$  and  $z = \{ \bar{z}_t, t \ge 0 \}$  is a Lévy process with only positive increments (a subordinator).

• The risk-neutral dynamics of the log-price  $Z_t = \log S_t$  are given by

$$dZ_t = (r - q - \lambda k(-\rho) - \sigma_t^2/2)dt + \sigma_t dW_t + \rho dz_{\lambda t}$$

- where  $W = \{W_t, t \ge 0\}$  is a Brownian motion independent of  $z = \{z_t, t \ge 0\}$ -  $\mathcal{K}(u) = \log \mathbb{E}[\exp(-uz_1)]$  is cumulant function of  $z_1$ .
- $\bullet$  Note that the parameter  $\rho$  is introducing a correlation effect between the volatility and the asset

(9262-UO-smmsD) [9boM Z-NA 9dT

The Gamma-OU process:

• For this process  $z = \{z_t, t \ge 0\}$  is a compound-Poisson process:

$$ux \stackrel{u}{\underset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}{\overset{1}}}}}} = x} = z$$

– where  $N = \{N_t, t \ge 0\}$  is a Poisson process with intensity parameter a, i.e.  $E[N_t] = at;$ at;

- nsəm <br/>ntiw wal laitnə<br/>noqx H $_n$  follows a Exponential law with mean<br/>  $- \{\lambda_n, 2, \ldots\}$  is a  $\mathbb{E}_n, 2, \ldots\}$  . <br/>  $- [\lambda_n, 1]$
- $\sigma^2 = \{\sigma_t^2, t \ge 0\}$  is a stationary process with marginal law that follows a Gamma distribution with mean a and variance a/b: starting the process with an initial value sampled from this Gamma distribution, at each future time point t,  $\sigma_t^2$  is also following that Gamma distribution.

$$\mathbf{F}(u+d)u\mathbf{n} = [(\mathbf{I}zu-)\mathbf{q}\mathbf{x}]\mathbf{H} = -au(b+1)\mathbf{h} \mathbf{h}$$

# (9262-UO-smmsD) [9boM 2-NA 9dT

The characteristic function of the log-price process is given by

$$\begin{aligned} \phi(u,t) &= \mathcal{E}[\exp(\mathrm{i} u \log S_t) | S_0, \sigma_0] \\ &= \exp\left(\mathrm{i} u(\log(S_0) + (r - q - a\lambda\rho(-\lambda t))\sigma_0^2/2)\right) \\ &\times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \exp(-\lambda t))\sigma_0^2/2\right) \\ &\times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \exp(-\lambda t))\sigma_0^2/2\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ &\times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ &\times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ &\times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u)(1 - \mathrm{i} u)\right) \\ & \times \exp\left(-\lambda^{-1}(u^2 + \mathrm{i} u$$

мубте

$$f_{1} = f_{1}(u) = iu\rho - \lambda^{-1}(u^{2} + iu)(1 - \exp(-\lambda t))/2,$$

Stochastic Volatility Lévy Models (CGMY 2001)

To build in stochastic volatility, we can also make time stochastic.

- We increase or decrease the level of uncertainty by speeding up or slowing down the rate at which time passes.
- To build clustering and to keep time going forward we employ a mean-reverting positive process  $y_t$  as a measure of the local rate of time change.
- ullet The economic time elapsed in t units of calender time is then given by Y(t) where

 $s \mathbf{p}^s \boldsymbol{h} \stackrel{0}{\to} = (\mathbf{i}) X$ 

There are different candidates for the time change:

$$dMp_{7/I} + \gamma p(\ell - h) = \kappa (\mu - \mu) \gamma$$

 $\bullet$  OU-processes , i.e. the stationary process satisfying the SDE:

$$d^{4} = -\gamma h^{4} q + q z^{\gamma 4}$$

where  $z_t$  is a subordinator.

# Stochastic Volatility Lévy Models

- The characteristic function  $\phi$  of Y(t) is explicitly known for:
- -the CIR-process,
- -the Gamma-OU process:  $y_t \sim Gamma$ ,
- -the IG-OU Process:  $y_t \sim IG$ .
- $\bullet$  We now model our (risk-neutral) price process  $S_t$  as follows:

$$({}^{(i)}_{A}X) \mathrm{dx}_{\partial} \frac{[({}^{(i)}_{A}X) \mathrm{dx}_{\partial}]_{\mathcal{I}}}{(i(b-i)) \mathrm{dx}_{\partial}} S = {}^{i}_{S} S$$

where  $X_t$  is a Lévy process with

$$E[\exp(in X\psi t) \operatorname{qxs} = [(iXui) \operatorname{qxs}]$$

• The characteristic function for the log of our stock price is given by:

$$\frac{(t,(i)_X\psi i-)\phi}{(i,(i)_X\psi i-)\phi}({}_0S\operatorname{gol} + t(p-\tau))ui)qx9 = [((i,N)_X\psi i-)\phi](2i)qx9$$

## Calibration: Eurostoxx 50 Option Prices (HEST)



Figure 7: Calibration of Heston-Stochastic Volatility Model

# Calibration: Eurostoxx 50 Option Prices (HESJ)



Figure 8: Calibration of Heston with Jumps Stochastic Volatility Model

# (sumsDUO-ZNB) 0č xxotsoruE :noitsrdilsD



Figure 9: Calibration of Barndorff-Nielsen-Shephard Model

# (ammsDUO-DIN) 06 xxotsoruE :noitsrdils)



Figure 10: Calibration of NIC-Gamma Model

# (AID-DIN) 0č xxotsoruE :noitsrdils)



Figure 11: Calibration of NIG-CIR Model

# comparing the Models

In the next table, we compare the average relative pricing error:

$$arpe = \frac{1}{\text{number of options}} \sum_{\substack{\text{options}\\\text{snot}}} \frac{1}{\sum_{\substack{\text{Market price}\\\text{market price}}} \frac{1}{\text{Market price}}$$

| NIG-OUT | % <u>57.</u> 1        |
|---------|-----------------------|
| NIG-CIB | % 66.0                |
| AC-OUT  | % 06°I                |
| AC-CIB  | % 90°I                |
| S-NA    | 5.21 %                |
| HESJ    | 1.26 %                |
| HEST    | % <del>7</del> 2.1    |
| WEIXNEB | 8.36 %                |
| BS      | 13.48 %               |
| :ləboM  | $\operatorname{stpe}$ |

table 1: Global fit error measures

#### Simulation of the CIR Process

We discretize the SDE

$$\mathrm{d}y_t = \kappa(\eta - y_t)\mathrm{d}t + \lambda y_t^{1/2}\mathrm{d}W_t, \quad y_0 \ge 0.$$

The sample path of the CIR process  $y = \{y_t, t \ge 0\}$  in the time points  $t = n\Delta t$ ,  $n = 0, 1, 2, \ldots$ , is then given by

$$u^{n} \overline{\partial \Delta \nabla} \sqrt{2\Delta (1-n)} \psi (\lambda + D \Delta (1-n) \psi - \eta) + \lambda \Delta (1-n) \psi = \lambda \Delta \eta$$

where  $\{v_n, n = 1, 2, \ldots\}$  is a series of independent standard Normal random numbers.



Figure 12: Simulation of CIR-process

Simulation of a Gamma(a, b)-OU process  $y = \{y_t, t \ge 0\}$  in the time points  $t = n\Delta t$ ,  $1, 2, \ldots$ :

- simulate in the same time points a Poisson process  $N = \{N_t, t \ge 0\}$  with intensity parameter  $a\lambda$ ;
- , eries a series of independent Uniform random numbers;  $\bullet$
- let  $x_n$  be exponential random numbers :  $x_n = -\log(u_n)/b$ , where  $u_n$  are a series of independent Uniform random numbers;
- then (with the convention that a empty sum equals zero)

$$\cdot (_{n}\tilde{u}t\Delta \Lambda -) \operatorname{qxs}_{n} x \operatorname{dx}_{1+_{t\Delta(1-n)}N=n} + _{t\Delta(1-n)} \psi(t\Delta \Lambda - 1) = _{t\Delta n}\psi$$

#### Simulation of the Gamma-OU Process



Figure 13: Simulation of Gamma-OU process

# Simulation of the NIG-Lévy Process

Simulation of a NIG( $\alpha, \beta, \delta$ ) process  $X = \{X_t, t \ge 0\}$  in the time points  $t = n\Delta t$ ,  $\Sigma, \ldots$ :

- First simulate  $IG(\delta, \sqrt{\alpha^2 \beta^2})$  random numbers  $i_k$  by for example using the Inverse Gaussian generator of Michael, Schucany and Haas.
- Then sample a sequence of standard Normal random variable  $u_k$ .
- NIC random numbers  $n_k$  are then obtain by:

$$\exists u_{\underline{A}} i \underline{V} + A i \underline{U} = A u$$





Figure 14: Simulation of NIG process

#### Simulation of all Ingredients: The NIG-CIR combination



## Exotic Options

Next, we will price a whole range of exotic options and compare the prices obtained under the different models.

- $\bullet$  The down-and-out barrier call option (DOB)
- The up-and-in barrier call option (UIB)
- Lookback Call Option
- enoitqO r<br/>sirus<br/>B latigi<br/>O  $\bullet$
- st<br/>supil<br/>D $\bullet$

 $\min\left(cap_{glob}, \max\left(floor_{glob}, \sum_{i=1}^{N}\min\left(cap_{loc}, \max\left(floor_{loc}, \max\left(floor_{loc}, \sum_{i=1}^{l_{i-1}}\right)\right)\right)\right)$ 

The cliquet option payoff depends on N future stock prices values.

# Exotic Monte-Carlo Option Pricing and Back-Testing

- $\bullet$  We price all options using 1.000.000.1 gains another last  $\bullet$
- For all the time to maturity is T = 3 and  $K = S_0$ .
- In order to check the accuracy of our simulation algorithm we simulated option prices for all European calls available in the calibration set: the price difference were always less than 0.5 percent.

Lookback Prices

| 722.34  | 48.057  | 64.617 | 724.80 | 82.177 | 842.19 | 84.858 |
|---------|---------|--------|--------|--------|--------|--------|
| NIG-OUT | NIG-CIB | AG-OUT | AC-CIB | BN-S   | HERJ   | HEST   |

Table 2: Lookback Option Prices





Figure 16: Digital Barrier prices

# Barrier Option Prices (DOB)



## Barrier Option Prices (UIB)



Figure 18: UIB prices

#### Cliquet Option Prices



Figure 19: Cliquet Prices:  $flo_{loc} = -0.03$ ,  $cap_{loc} = 0.05$ ,  $cap_{glo} = +\infty$ , T = 3, N = 6,  $t_i = i/2$ 

#### Moment Derivatives

- We have a clear issue of model risk.
- We push this study a little bit further by looking at moment derivatives<sup>1</sup>.
- Their payoff is a function of powers of the (daily) log-returns and allow to cover different kinds of market shocks.
- $\bullet$  Variance swaps were already created to cover changes in the volatility regime.
- However skewness and kurtosis, also play an important role. To protect against a wrongly estimated skewness or kurtosis, moment derivatives of higher order can be useful.
- Recent theoretical work (Corcuera-Nualart-S, 2004) shows that moment assets are the instruments which can naturally complete a Lévy driven market.

#### Moment Swaps

- Consider a finite set of discrete times  $\{t_0 = 0, t_1, \ldots, t_n = T\}$  at which the path of the underlying is monitored.
- Denote the price of the underlying at these points, i.e.  $S_{t_i}$ , by  $S_i$  for simplicity.
- The kth-moment swap is a contract where the parties agree to exchange at maturity:

where N is the nominal amount.

• Variance Swap:

- $\bullet$  MOMS^{(3)} is related to realized skewness and provides protection against changes in the symmetry of the underlying distribution.
- $\bullet$   $MOMS^{(4)}$  derivatives are linked to realized kurtosis and provide protection against the unexpected occurences of very large jumps

$$(1-i)SWOW \xrightarrow{i=i}{U} (\nabla E^{i} / E^{i-1}) = O(\sum_{u}^{i=i} (\nabla E^{i} / E^{i-1}) + O(\sum_{u}^{i=i} (\nabla E^{i} / E^{i-1}) + O(E^{i}) = O(E^{i}) = O(E^{i})$$

$$(1-i)SWOW \xrightarrow{i=i}{U} = O(E^{i}) = O(E^{i}) = O(E^{i})$$

$$(1-i)SWOW = O(E^{i}) = O(E^{i}) = O(E^{i})$$

$$(1-i)SWOW = O(E^{i})$$

$$(1-i)SWW =$$

. Hoved  ${}^{(k)}SMOM$  of the motification of the  $MOMS^{(k)}$  payoff:

• Substituting x by 
$$F_i / F_{i-1}$$
 leads to:  

$$(\log(F_i / F_{i-1}))^k = k! \left(\frac{\Delta F_i}{F_{i-1}} - \log(F_i / F_{i-1}) - \sum_{j=2}^{k-1} (\log(F_i / F_{i-1}))^j + \mathcal{O}((\Delta F_i / F_{i-1}))^j, + \mathcal{O}((\Delta F_i / F_{i-1}))^j),$$
where  $\Delta F_i = F_i - F_{i-1}$ .

$$(^{1+\lambda}(1-x))O + \frac{^{1-\lambda}((x)gol)}{!(1-\lambda)} - \dots - \frac{^{1-\lambda}((x)gol)}{!(1-\lambda)} - \frac{^{1-\lambda$$

Hedging Moment Swaps-1 • We use the following (Taylor-like) expansion of the kth power of the logarithmic function and work with swaps with future prices  $F_i = \exp((r-q)(T-t_i))S_i$  as underlying:

## C-sqswS tnemoM guigbeH

- Thus up to (k + 1)th-order terms the sum of the kth powered log-returns decomposes
- $a \text{ log-contract } (-\mathcal{K}! (\log(F_T) \log(F_0))); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta F_i}{F_{i-1}}); \\ a \text{ dynamic strategy } (\mathcal{K}! \sum_{i=1}^{n} \frac{\Delta$
- a series of moment contracts of order strictly smaller than k.
- The log-contract itself can be hedged by a static position in the underlying, in a bond and in a (discrete approximation of a continuous) set of European vanilla call and put options maturing at time T (Carr-Lewis).
- $\bullet$  Note that

$$LOG = \exp(-rT) \mathcal{E}_Q[\log(S_T) - \log(S_0)] \mathcal{F}_Q[\log(S_T) - \log(S_0)] \mathcal{F}_Q]$$

Hence:

$$LOG_{hest} = \exp(-rT)\left(rT + \frac{2b\lambda}{2}\left((a - b\sigma_0^2)(1 - e^{-\lambda T}) - a\lambda T(1 + 2\lambda\rho^2(b - \rho)^{-1})\right)\right)$$
$$LOG_{hest} = \exp(-rT)\left(rT + \frac{1}{2}\left[Y_T\right]E[X_1] - \log(E[\exp(X_{Y_T})])\right)$$

Moment Options

• Related to the above discussed swaps, we define the associated options on the realized kth moment. More precisely, a *moment option* of order k, pays out at maturity T:

$$\cdot \left( X - {}^{A}(({}^{I-i}S/{}^{i}S)\operatorname{gol}) \underset{I=i}{\overset{a}{\searrow}} \right)$$

 $\bullet$  The price of these options under risk-neutral valuation is given by:

$$MOMO^{(k)}(K,T) = \exp(-rT)E_Q \left[ \left( \prod_{i=1}^n (\log(S_i/S_i) \otimes D_i \otimes D_i) \right)_{I=i}^n \right] = \exp(-rT) + \exp(-rT$$

• Note that since odd moments can be negative, the strike price for these options can range over the whole real line.

# sqswS stnemoM to gnibird

| _ |         |               |        |                                             |         |         |                                                                                                               |
|---|---------|---------------|--------|---------------------------------------------|---------|---------|---------------------------------------------------------------------------------------------------------------|
|   | 66.74   | 4dd.8         | 33.89  | 8698.7                                      | 322.40  | 9989.0  | $\overline{\mathbf{e}}_{-\iota L} E^{\mathfrak{S}} \left[ \mathcal{M} O \mathcal{M} S_{(\mathbf{f})} \right]$ |
|   | 28.88-  | -21.69        | 16.47- | -21.03                                      | -312.58 | 2080.0- | $\mathbf{e}_{-\iota L} \mathbf{E}^{\mathbf{O}} \left[ \mathbf{WOW} \mathbf{S}_{(3)} \right]$                  |
|   | 17.148  | <u>97.788</u> | 628.85 | $\mathbf{c}\mathbf{c}.\mathbf{c}\mathbf{c}$ | 09.408  | 63.89   | $\frac{1}{\Theta} \left[ WOW S_{(5)} \right]$                                                                 |
|   | NIG-OUT | NIG-CIB       | AG-OAL | AG-CIB                                      | BN-S-NA | HEST    | order                                                                                                         |

Table 3: Moment swaps (N = 10000)

Pricing of 2nd-Moment Option



Figure 20: Moment option of 2nd order

Pricing of 3rd-Moment Option



Figure 21: Moment option of 3rd order

Pricing of 4th-Moment Option



Figure 22: Moment option of 4th order

#### Conclusion

- The Black-Scholes model does not correspond with reality.
- Moreover, Black-Scholes- exotic option prices depend heavily one the choice of the volatility parameter and it is not clear which value to take.
- More advanced Lévy process-based models give a very accurate fit to real market option
- $\bullet$  Monte-Carlo simulation for these models is possible.
- Prices of exotics however can differ significantly over different attractive models.
- We have a clear issue of model risk.
- We have push thius study further by pricing moment derivatives.
- $\bullet$  Moment derivatives are related to realized higher moments.
- Hedging aspects of moment swaps were discussed.
- By pricing moment swaps and moment options, we have shown that the disparity between the models is amplified.
- More detailed studies are needed in order to differentiate between the models.

# LHE END