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Pricing Forward Start Options under the CEV Model  

With Applications in Financial Engineering  

 

 

Abstract 

 

Index-linked securities are offered by banks, financial institutions and building societies to 

investors looking for downside risk protection whilst still providing upside equity index 

participation. This article explores how reverse cliquet options can be integrated into the 

structure of a guaranteed principal bond.  

 Pricing problems are discussed under the constant-elasticity-of-variance model. Forward start 

options are the main element of this structure and new closed formulae are obtained for these 

options under the square-root process model. Risk management issues are also discussed. An 

example is described showing how this structure can be implemented and how the financial 

engineer may forecast the coupon payment that will be made to investors buying this product. 
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I. INTRODUCTION 

 

From an investor’s point of view traditional equity-linked instruments provide an opportunity 

to participate indirectly in the performance of a single share. For the last two decades 

increasingly complex, customised structures have been created in a way that enables, in many 

cases, regulatory constraints on the use of derivative securities, such as forwards, futures and 

options, to be by-passed. Convertible bonds provide a good example of an instrument that 

customarily has a pay out profile of a call option and that have been available to investors for 

many years. Liquid Yield Option Notes™ ® (LYONs™ ® ) evolved as a variation on the 

convertible bond theme. These securities were structured to provide investors with equity 

performance with a strong element of built-in price stability and are described and analysed in 

McConnell and Schwarz [1986,1992]. The evolution of single stock LYONs™ ® led to the 

development of many variations in single stock linked notes and in the late 1980s equity index-

linked instruments began to appear, for example, equity linked certificates of deposits 

explained in Gastineau and Purcell [1993].  

The growth of derivative markets globally, coupled with more informed investor 

understanding of the risk and return characteristics of structured investment opportunities, has 

led to an enormous growth in the number and variety of equity index-linked securities being 

offered by banks, mortgage banks, and building societies. The recent decline in the level of the 

major international equity indexes worldwide has further stimulated investor demand for 

financial products that limit downside risk whilst still offering upside equity index 

participation. Recent guaranteed bond and note issues, for example, can be found which draw 

on the performance of the EuroSTOXX50 index and offer investors a callable certificate issued 
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at a price above par, which guarantees a minimum return of par plus the full positive return on 

the underlying benchmark index. In the case of the bond not being called by the issuer the 

maturity redemption value of the bond can be expressed as: 
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where Bmat is the bond’s redemption value, P the guaranteed amount (par), IT the index level at 

the bond’s maturity date, I0 the initial index level or strike price.  

A second example issues a bond at par and offers a minimum redemption value above 

par over a specified time period but with a reduced participation level in the underlying equity 

index. At maturity the bond’s redemption value can be expressed as: 
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where: y represents guaranteed return above par expressed as a proportion, and x represents the 

benchmark index participation level as a proportion. 

The pricing and hedging of these types of structures is well-known (see e.g. Eales 

[2000];  Das [2001]). The financial institution offering the instrument will, ideally, invest in a 

zero coupon bond for a price less than the sum invested and use the residual to purchase the 

appropriate quantity of call options on the index. This approach to structuring a hedged 

investment instrument is most effective in a low volatility high interest rate economic climate. 

A variation on this can be found in equity index-linked cliquet participation notes. 

These instruments make use of cliquet which are well-established instruments. They were first 

introduced in France using the CAC 40 equity index as the underlying security. Cliquets are 

also called ratchet options in the literature because they are based on resetting the strike of a 

derivative structure to the last fixing of the reference underlying. Ratchets can be regular as 
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described by Howard [1995] or compound as discussed by Buetow [1999]. For the latter type 

there are no intermediary payments, all gains being used to increase the volume of the 

derivative that is used as a vehicle for the ratchet. A wide range of ratchet caps and floors in an 

interest rate context described in Martellini et al. [2003].   

In an equity context a similar example of the use of ratchets can be found in a note 

which offers a minimum redemption value set above par and whose redemption yield is related 

to the monthly percentage changes in a specified index over a defined period of time. To 

manage the risk of large index movements the monthly percentage returns are collared in a 

tight band around the periodically reset index strike price. 
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A similar approach can be adopted when seeking to price and hedge this structure as 

that described in the guaranteed instruments introduced earlier. Following the purchase of a 

zero coupon bond residual funds can be used to buy a set of cliquet call and put options with 

monthly expirations extending to the bond’s maturity date. The portfolio of options required to 

create this position will be long ATM calls combined with short OTM calls and Short ATM 

puts combined with long OTM puts. Clearly the availability of any residual funds derived from 

the portfolio of options will help determine the feasibility, the attractiveness and the 

competitiveness of the instrument. A mirror image instrument could be constructed which links 

coupon to the percentage changes in an index to falls rather than rises index.  

The pricing of a cliquet option typically proceeds by regarding it as a portfolio of at-

the-money (ATM) forward start options. A cliquet bestows on the holder the right to buy a 

regular at-the-money call with time to maturity T at some future specified date t1. Thus, 
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tt −=τ 11  is the length of time that elapses before the forward start option comes into 

existence and tT −=τ  is the length of time to maturity. An early approach used in the pricing 

of a forward start option is presented by Rubinstein [1991]. This method bases the risk-neutral 

value of an ATM forward start call option on the expected value of the underlying security at 

time  t1 and results in the option value reducing to that of a regular ATM call where the time to 

maturity is the effective time 1τ−τ , Zhang [1998]. This implies that the Black and Scholes 

pricing formula can be used to obtain the cliquet option’s price (call or put). If the tenors are 

defined by the partition Tttt n ≡<<< +121 ...  then 
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where S(t) represents the underlying asset at time t, r the risk free rate of interest, δ is the 

dividend yield, σ represents volatility, and 
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Pricing forward start options is the key to pricing cliquets. A forward start option is a 

particular case of multi-stage options, which are derivatives allowing decisions to be made via 

conditions evaluated at intermediate time points during the life of the contingent claim (see 

Etheridge [2002]). Multistage options can be priced similarly to options on stocks paying 

discrete dividends at intermediate points over the life of the option. Under general common 

assumptions, the pricing equation of multistage options in a risk-less world is the well-known 

Black-Scholes PDE 
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with some final condition such as V(T,S) = G(S). 

The Feynman-Kac solution of the above equation is  

)]())(([~)),(( )( tSTSGEettSV tTr −−=       (4) 

where the expectation operator is taken under the risk-neutral measure. 

The forward start option is an option that comes into existence at time T1 and has maturity T. 

The following backward procedure can be used to calculate the price of this option:  

(a) Calculate the final payoff of the option at time T. 

(b) Calculate the value of the payoff from (a) at time T1; this is given as the solution of the 

above  PDE (3) with t = T1. 

(c) Check the conditions and calculate the terminal value of the option at T1 and for t < T1 use 

again the pricing  PDE (3) to get the solution 

     ])()),(([~)),(( 11
)( 1 tSTTSVEettSV tTr −−=     (5) 

Out-of-the-money (OTM),in-the-money cliquets (ITM), and more exotic structures can also be 

handled in the same partial differential equation (PDE) pricing framework.  

In the same vein Monte Carlo simulation (MCS) and quasi-MCS can be used to price cliquets 

taking into account the element of path dependency ignored by the standard Black and Scholes 

formula. Buetow [1999] suggests that pricing this type of instrument accurately is best 

undertaken using different methods and comparing the results obtained.  

These pricing methods, however, all suffer from the assumption of constant volatility. 

Wilmott [2002] highlights the problems associated with this assumption and illustrates the 

dangers faced by writers of cliquets when ignoring volatility risk. It can be shown that the 
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gamma of a cliquet option is the sum of gamma values for regular options because the gamma 

of a forward start option is zero before the starting time. This may create the impression that 

risk management is easy in this case. However, for this type of option, hedging can be quite 

complex because the delta, vega and theta have discontinuities around reset times.  

This article explores how reverse cliquet options can be integrated into the structure 

of a guaranteed principal bond. Pricing is developed and discussed further under the constant-

elasticity-of-variance model. Forward start options are the main element of this structure and 

under the latter model the pricing of these important options is not easy.  En passant new 

closed formulae are derived for forward start options under the CEV model. Furthermore some 

theoretical results from mathematical finance show that it is very important to consider 

carefully the underlying when doing financial engineering.  

 

 

II. FINANCIAL ENGINEERING WITH REVERSE CLIQUETS 

 

Unlike the structures discussed so far, reverse cliquet options are best employed when 

volatility levels are substantially higher than historically observed volatilities and are expected 

to revert back to normal or when investors hold the view that the markets are likely to become 

more bullish (puts) or bearish (calls). Reverse cliquets rely on the creation of a pool of funds 

derived from, for example, investors augmenting their investment funds by writing forward 

start options. The fund starts with a value of greater than 100% and is drawn on over time if 

and when the written options expire in-the-money (ITM). A reverse cliquet can be integrated 

into the structure of a guaranteed principle bond. In this construction the bond may guarantee 
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full return of principal invested and offer a higher than market coupon which declines as the 

underlying asset to which the bond is linked declines in value (put) or rises in value (calls) as 

measured on pre-specified future dates. Coupons could be paid on defined intermediate dates 

or as a single payment at the instrument’s maturity.  

If it is assumed that investor’s views are bullish concerning equity market 

performance and that volatilities are high, a bond could be offered which pays out an amount 

determined by the total initial option net income fund less the sum of the declines in the 

benchmark index either at maturity or on intermediate coupon dates t1 t2 , …..tn+1. = T. 

From the issuing institution’s perspective one way in which the structure could be engineered 

would be to combine a zero coupon bond, purchased using the investor’s deposit, together with 

a portfolio of income generating forward start written put options. The put option premia 

represents an additional pool of funds that will need to be drawn on should the underlying asset 

decline in value in any period.  

There is clearly a real risk in the structure that needs to be addressed. Large falls or a 

series of falls in the asset’s value may result in the additional funds being exhausted and the 

investor’s investment principal being used to meet settlement obligations. In such situations, to 

ensure that the principal return guarantee is met the institution offering the product will need to 

meet the cost from their own funds. To avoid this potentially expensive problem each cliquet in 

the portfolio will need to have a floor in place to ensure that potential losses are capped. 

Exhibit 1 suggests the instrument’s construction.      

 

Insert Exhibit 1 Here 
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A possible course of action that would create a series of appropriate floors would be 

for the institution to purchase offsetting OTM forward start put options for each of the short 

forward start put options held in the portfolio. This introduces a conflict. The long OTM 

options will act as a drain on the funds which are being used to enable the offering of a higher 

than market coupon as an incentive to the investor. On the one hand the product requires a 

coupon high enough to attract investors on the other the risk of severe market index falls must 

be capped, achieving this by buying OTM cliquet options will exert a downward pull on the 

coupon.  

 

 

III. RISK CONTROL ISSUES 

 
The way in which the guaranteed principal instrument has been created by Financial 

Institution A. Falls in the equity index result in sums being drawn down from the fund that is 

prevented from becoming negative by the protective long puts forming the caps. Three market 

scenarios can be considered for each period: (i) the equity index rises by η%, (ii) the equity 

index remains at its current level, (iii) the equity index falls by η%. On reaching maturity in 

cases (i) and (ii) the investor’s achieved coupon will be the maximum offered in the bond’s 

indenture Cmax. Under the third scenario, the most realistic case, the achieved coupon will be 

determined by: 
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In the case of the institution providing the cliquet options the pay out will be the 

mirror image of those generated by the investor. Under scenarios (1) and (2) the institution will 
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meet the coupon pay out from the funds made up of the original investment plus the net income 

generated by the collar. Under scenario (iii) the coupon paid to the investor will be reduced by 

an amount reflecting the downside protected fall in the index.  

For simplicity we shall assume that the guaranteed amount to the investor is 100%. In other 

words the structured investment product guarantees the return in full of the sum invested at 

maturity T. Let H denote the price, at time 0, of a zero coupon risk free bond with maturity T. 

Obviously 0< H < 100 and 100-H is available for using in the reverse cliquet structure. Over 

each period of time ],[ 1 ii tt −  of constant length 1−−=∆ ii tti , with 1,...,2,1 += ni  the financial 

institution will sell ATM forward start put options and buy OTM forward start put options. Let 

)(iS be the price of the index at time it   and let 0<η<1 be a factor defining the OTM strike price 

as )( 1−η itS  for the period ],[ 1 ii tt − . 

The payoff of the short ATM forward start put at it  is [ ]0),()(max 1 ii tStS −− −  and the 

payoff of the long OTM forward start put at the same time is [ ]0),()(max 1 ii tStS −η − . This 

forward start spread has the combined value 

[ ]0),()(max 1 ii tStS −η − [ ]0),()(max 1 ii tStS −− − .  (7) 

At time 0 this can be priced as a portfolio of options using risk-neutral valuation in the 

framework developed by Harrison and Kreps [1979]. Using the formulae1 for forward start put 

options provided in Zhang [1998] the premium of the forward spread at time 0 is 
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Recall that for the OTM forward start option 

                                            
1 We have corrected some typos that appear in Zhang [1998] 
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so the seller of the reverse cliquet has 1-H+Q at their disposal. 

A  common practice is to provide investors with a variable coupon that pays at each 

reset time or in one payment at maturity the difference between a fixed coupon rate x (%) and 

the level of percentage decline in the index over the ending period. For period ],[ 1 ii tt −  the 

decline in the index is ]0),()1(max[ iSiS −−  so when all payments are settled at maturity T  the 

coupon paid is   
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As in the previous section, considering the worst case scenario that for each period the ATM 

put options will be exercised due to a decline of the index at or below the floor provided by the 

OTM options, the financial engineer must make sure that   
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otherwise payments may be missed or losses will be made. 

 

IV. APPLICATION 

 

In order to examine how this type of product can be engineered consider the following 

example: 
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A non-callable bond is issued offering a minimum return of full principal invested at 

the end of three years or full principal plus 100% - the sum of the monthly declines in 

a defined equity index.  

Recall that the financial engineer has to establish at what level x can be set and this will in turn 

be determined by the amount available from the sale of ATM puts less the cost of the OTM 

puts needed to create the cap.  To illustrate how the structure can be replicated we will price in 

a Black and Scholes framework both long and short forward start put options that comprise the 

cliquet option collar initially. This, of course, ignores volatility stochasticity and any volatility 

smile. Proceeding with this approach we assume that the discount rate is 2.35% this implies 

that the institution will today pay 93.27% for a zero coupon bond with a three year maturity.  
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Thus (1 – H) = (1 - 0.9327) = 0.0673%, implies that a 6.73% residual is immediately available 

to invest in the fund that will be used to make payments to the put holders if and when 

required. To price the forward start options we assume that the yield curve is flat and that risk 

free rate for all maturities is 2.52%; dividend yield is 1.58%; volatility is 25% p.a. and the life 

span of each option is 30-days, and that a 1% fee is charged by the issuing institution. Using 

the formulae presented in equation (5) above the price of each ATM forward start option in this 

regime is 2.815% and since 1 regular put and 35 forward start puts are needed to cover the 

maturity of the bond and the number of resets the total income from ATM options will be 

101.352%.  

In order to cover the period-by-period downside investor risk, the institution will need 

to buy 35 OTM forward start put options and 1 OTM regular put option for the first month of 

the structured product life. In order to achieve a total 101% fund including the institutional fee 
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and simultaneously hedge against large falls in the index value the appropriate OTM strike 

price will need to be established. Following a search to find a strike that satisfies the Fund’s 

total requirement the OTM strike is found 10.15% below the ATM strike and, using this strike, 

the required 36 options can be secured at a cost of 7.083%, ignoring transactions costs. The net 

contribution of the put option transactions to the fund will be 94.269%, combining this with the 

6.731% residual from the zero coupon bond purchase, generates a fund of 101%. This fund 

provides an indication of the maximum coupon that the investor can expect to receive when 

there are no payouts from the fund at any of the reset dates. Should the index fall to a level 

below the relevant floor in each period the long OTM put options will be exercised ensuring 

that the investor receives the minimum return on the instrument, namely the original 

investment principal.       

   
  To consider the risk control aspects of this product, possible paths for the index can 

be simulated in order to calculate the amounts that will be paid by the financial institution to 

the counterparty under each scenario. Continuing with the same data provided above in this 

section, the Monte Carlo simulation exercise suggests that the average present value of total 

payment made by the seller of the structured product is approximately 25%. There is, however, 

a 4% chance that over the three-year period market declines will exceed the Fund’s capacity to 

meet the obligation. More informative views are described in Exhibits 2. and 3. Exhibit 2 

presents a bar chart of the simulated pay outs to the bond holder. There is clearly a high 

probability that the bond holder will receive a high return and that the issuing financial 

institution will be able to meet the coupon obligation without drawing on its own funds. There 

is, however, also evidence that market states will arise which will place significant demands on 
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the financial institution. In this simple simulation exercise the highest potential loss faced by 

the bond issuer is over £7,000,000.         

 
  Insert Exhibit 2 here  

 

Exhibit 3. illustrates a histogram of the distribution of pay outs to the bond holder. Although 

the maturity payout distribution demonstrates the expected replication of a normal distribution 

it disguises the fact that it is the sequence of monthly pay outs that play a crucial role in 

determining the effectiveness of the hedge strategy.  

  Insert Exhibit 3 here  
 

A sequence of strong positive market moves followed by a series of falls will be enough to 

defeat the carefully constructed hedge structure as illustrated in Exhibit 4.  

  Insert Exhibit 4 here  
 

V. PRICING UNDER CEV MODEL  

The standard pricing mechanism for reverse cliquets falls under the Black-Scholes 

umbrella. The essential step is pricing forward start options  as described by Zhang [1998] or 

Etheridge [2002]. The key point is the factorization of the value of the option, at the time point 

where the option comes into existence, as the product of the underlying stock and a 

multiplicative factor that does not depend on the underlying. 

The cliquet is a very liquid over-the-counter derivative in equity markets. The assumption of  
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constant variance or volatility is contradicted by the empirical evidence showing that volatility 

changes with stock price2.  

In this section we take a step further and we model the underlying with a constant-

elasticity-of-variance (CEV) process and derive the price of the forward start options that are 

the building block for the reverse cliquets. Once this is realised everything else regarding 

financial engineering with reverse cliquets follows more or less the same methodology as 

above. 

The CEV model for an asset S is described by the following SDE 

)()()()( tdZtSdttStdS ασµ +=     (13) 

where µ is the drift parameter, α > 0 is a constant parameter and everything else is exactly as 

for a geometric Brownian motion. This alternative stochastic process has been proposed by 

Cox & Ross [1976] for pricing options and they provided closed-formulae for European vanilla 

options when α < 1. CEV models are now applied in almost all areas of quantitative finance, 

LIBOR models Andersen & Andreasen (1998), credit derivatives models Andreasen (2000), 

barrier and lookback options Boyle & Tian (1999) and Davydov & Linetsky (2001) .  

 

Empirical evidence shows that the CEV model in general outperforms the Black-Scholes 

model. MacBeth and Merville [1980] and Emanuel and MacBeth [1982] found empirical 

evidence supporting this conclusion on stock options markets while Hauser and Bagley [1986] 

showed similar results on the currency options markets. For the particular case of square-root 

process, that is for 5.0=α , Beckers [1980] revealed that Black-Scholes ITM call and OTM put 

                                            
2 Schmalensee & Trippi (1978) found evidence of negative relationship between stock price changes and changes 
in implied volatility while Black (1976) discovered on ten years of data of six stocks that a proportional increase, 
respectively decrease, in the stock price is associated with a larger proportional increase, respectively decrease in 
the standard deviation of the stock. 
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prices evaluated at implicit volatilities of at-the-money options are lower than those 

counterparts calculated with the CEV model. The larger the |α| the greater the price difference 

between CEV and Black-Scholes option prices. Jackwerth & Rubinstein (1998) estimate the 

CEV parameters implicit in the 6-month S&P500 options for 1986-1994, daily data. Before 

1987 crash sample values of α were close to 1 as needed for a lognormal model. After the crash 

the market shifted to a new regime with values for α in the range -2  to -3.  Reiner (1994) and 

Jackwerth & Rubinstein (1998) find that typical values of α implicit in the S&P500  option 

prices are strongly negative and as low as -3. Values of α >1 are empirically valid for some 

commodity futures options with upward sloping implied volatility. 

 

The CEV model implies a smile pattern that is frequently encountered in equity, index and 

currency options markets. However, the CEV model still leaves some Black-Scholes smile 

effects unexplained such as underpricing of ITM puts and OTM calls. Fortunately, for the 

structured product presented here the OTM puts are important. 

Emanuel and MacBeth [1982] determined the formula for the case when α > 1, which for 

technical mathematical reasons and different boundary behaviour is different than the formula 

for α < 1. The CEV vanilla call option formula involves an infinite series of Gamma-functions, 

difficult to evaluate in Mathematica or C/C++ directly . The values of vanilla options can be 

found directly in terms of integrals of Bessel functions; this can be coded in C++ using 

standard routines Press et al. (1992). Schroder [1989] showed how to express the CEV option 

pricing formulae in terms of the noncentral chi-square distribution. This is recovered here 

when pricing forward start options, although it is not mentioned in the text explicitly. 
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For the sake of clarity we focus in this section on pricing an ATM forward start call 

option that kicks in at time T1 and matures at T. Similar calculations can be made for OTM or 

ITM forward start options. Employing risk-neutral valuation we get the value of the option at 

time T1 as 

[ ]+−− −=− ))()((~));(( 1
)(

11
1 TSTSEeTTTSV t

TTr    (14) 

For simplicity, and without loss of generality, we restrict to the case 5.0=α  which is the case 

most investigated in the literature. Denoting by ))(|)(()( tSuTSPuFt ≤=  Cox and Ross 

[1976] employed the following useful result due to Feller [1951] 
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and )(1 ⋅I  is the modified Bessel function of the first kind of order one. 

For risk-neutral martingale pricing one sets either r=µ  or δµ −= r  if dividends are paid 

continuously at rate δ. For a general strike price X and maturity T the price of a European call 

at time t is 
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and using Feller’s result given above it follows that  
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However, the modified Bessel function can be approximated using the following series 
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Replacing this in equation (18) leads to  
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In the Appendix it is shown that after rearrangement we get to 
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where x
m

e
m

xmxg −
−

Γ
=

)(
);(

1

 is the probability density function for a gamma distribution with 

mean and variance equal to m.  

The second factor delimited by the large brackets is a function ))(,,,,( 11 TSTTr σψ  so 

that we can write  

))(,,,,()());(( 11111 TSTTrTSTTTSV σψ=−    (22) 

and unfortunately, under a CEV model, we cannot continue as described above when using a 

Black-Scholes model because the second factor is not independent of the underlying. This will 

complicate the calculation of the value of the forward start option at time t = 0. All is not lost, 

however, since we can still apply risk-neutral pricing. Thus, 

[ ]))(,,,,()(~));0(( 111
1 TSTTrTSEeTSV rT σψ−=   (23) 

In the Appendix it is shown that  

21));0(( Ω−Ω=TSV      (24) 

where 
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1

rT
T eb θ= . 

 
For α < 1 the risk-neutral probability of absorption at zero (bankruptcy) is (see Cox, 1975) 
 
 
            (26) 
 
Can then one use a CEV model with α < 1 for equity index-linked products? 
 

For α >1 the discounted underlying process is not a martingale, but only a local martingale. 

There is no equivalent martingale measure and this problem is avoided in practice by taking a 

very large fixed number N and considering the volatility specification 

            (27) 

This transformation is called limited CEV (LCEV) by Andersen & Andreasen (1998) and it 

helps because infinity is now a natural boundary and the discounted process becomes a 

martingale in any finite time interval. 

As pointed out above, on equity index markets the range for the key parameter α is in the 

negative region between -2 and -3. The seminal “no-arbitrage” formula for call pricing given 

by Cox (1975,1996) was derived with risk-neutral valuation although it had not been proved 

that there is a unique equivalent measure for the CEV model. However, the risk-neutral method 

requires only the local arbitrage free property and that is not equivalent to the arbitrage free 

property (Delbaen & Schachermayer 1994 and 1995). Moreover, Delbaen & Shirakawa (1996) 

prove that there is a unique equivalent martingale measure and derive the law of the stock price 
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process for the CEV model. This seems to cover for pricing derivatives under the CEV model. 

The problem for financial engineers is that the same authors show that, when the stock price is 

conditioned to be strictly positive, the CEV model allows for  arbitrage opportunities. 

One cannot eliminate the possibility that a CEV process with α < 1 will hit 0 and be absorbed 

into that state. As with the initial real-world CEV process there is strict positive probability that 

the risk-neutral stock price process is absorbed at 0.  Thus, one cannot use the CEV model to 

price derivatives (e.g. forward start options) contingent on price movements of an equity index 

but one can use it when the derivative is contingent on price movements of a single stock3.  

 

 
 
 

VI. CONCLUSION 

 

Structured products are establishing themselves as a class of instruments in modern 

finance. Here we have investigated a product underpinned by reverse cliquet options. We 

provided an approach to price and implement this type of structure under the standard Black-

Scholes model. The financial engineer is able to perform calculations to determine the size of 

the hedged fund that will determine the maximum possible coupon payment offered to the 

bond holder. Looking at possible scenarios we illustrated  that the structure still poses 

potentially serious financial risk to the issuing institution under certain market conditions. The 

main difficulty in pricing the components of this structure is a forward start option. Hedging 

this type of option remains a difficult and an open area. Here we circumvented this difficult 

task by flooring the downside movements of the underlying. In this way the improvement is 

                                            
3 The reason for this is that a corporate can go bankrupt and thus its equity value drop to zero.  
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sought in the direction of better pricing models that take account of well known empirical 

facts. Thus, we have used the CEV model as a starting point and derived a new option pricing 

formula for forward start options.  
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Appendix 

 
First we show how to calculate the following integral   
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We are going to separate the integral into two integrals. Thus 
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Making the change of variable yst =θ  we get 
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 is the probability density function for a gamma distribution with mean 

and variance equal to m and the incomplete gamma function is defined as in the text in formula 

(9) it follows then that  
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Hence, at time t =T1, the value of the ATM forward start option is  
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The second calculation detailed here is  
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Let’s denote the first term by 1Ω  and the second term by 2Ω . The key element in the 

subsequent calculations is the integral ∫
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List of Exhibits 
 
 

Exhibit 1. 
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Exhibit 1. Financial Engineering structure of a reverse 
cliquet index-linked guaranteed bond 
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Exhibit 2. Monte Carlo simulated maturity pay outs over 500 antithetic tracks 

Payouts

-£10,000,000

-£5,000,000

£0

£5,000,000

£10,000,000

£15,000,000

£20,000,000

1 16 31 46 61 76 91 10
6

12
1

13
6

15
1

16
6

18
1

19
6

21
1

22
6

24
1

25
6

27
1

28
6

30
1

31
6

33
1

34
6

36
1

37
6

39
1

40
6

42
1

43
6

45
1

46
6

48
1

49
6

Track No.

Pr
of

it/
Lo

ss
 (£

s)



 28

 
 

 
 
Exhibit 3. Frequency of pay outs at maturity 
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Index versus Pay Outs
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Exhibit 4 
 
 

Sample of total payments

0.000

2.000

4.000

6.000

8.000

10.000

12.000

14.000

16.000

18.000

MC scenario

To
ta

l p
ay

m
en

t

 
 

Monte Carlo simulations when the coupon rate is x=3% p.a. There are two cases 
where the total payment is higher than 13.956. 

 
 
 
 

 
 




