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Abstract

In this paper, a Monte Carlo simulation is performed to investigate the finite
sample properties of various estimators, based on discretely sampled obser-
vations, of the continuous-time Itô diffusion process. The simulation study
aims to compare the performance of the nonparametric estimators proposed
in Jiang and Knight (1996) with common parametric estimators based on
those diffusion processes which have explicit transition density functions.
The simulation results show that, with a large sample over a short sam-
pling period, although all the parametric diffusion estimators perform very
well, the parametric drift estimators perform very poorly. However, both the
nonparametric diffusion and drift estimators perform reasonably well.
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1. Introduction

The purpose of this paper is to design and perform a small Monte Carlo simulation

experiment to investigate the finite sample properties of various estimation methods,

based on discretely sampled observations, of a continuous-time Itô diffusion process

represented by the following stochastic differential equation (SDE):

d Xt = µ(Xt)dt + σ(Xt)d Wt (1)

with initial condition

Xt0 = X

where {Wt , t ≥ t0} is a standard Brownian motion process or a Wiener process. The

functions µ(·) and σ 2(·) are respectively the drift function (or instantaneous mean)

and the diffusion function (or instantaneous variance) of the process.

In particular, the simulation study aims to investigate the performance of those com-

mon parametric diffusion function and drift function estimators, namely the MLE,

NLS (or OLS), and GMM estimators, as well as the nonparametric diffusion function

and drift function estimators proposed in Jiang and Knight (1996). It is noted that all

these estimators are developed when only discretely sampled data of the continuous-

time diffusion process are available. The continuous record of observation of the

process between the sampling points is unobservable. Therefore the data generating

process (DGP) in our simulation study requires that the explicit transition density

functions of the diffusion processes are known, in order that the realizations of the

process can be observed at discrete time along the exact continuous sampling path.
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For this reason, our simulation study is based on those diffusion processes which

have explicit transition densities, i.e., the Brownian motion with drift process, the

Ornstein-Uhlenbeck process, and the Cox-Ingersoll-Ross squared-root process. The

simulation study provides us with some surprising yet interesting results, namely

that, with a large sample over a short sampling period, even though all the parametric

diffusion function estimators perform very well, the parametric drift function esti-

mators can perform very poorly. However, both the nonparametric diffusion function

estimator and drift function estimator proposed in Jiang and Knight (1996) perform

well.

The paper is organized as follows. Section 2 reviews the common parametric estima-

tors and the nonparametric diffusion function and drift function estimators proposed

for the Itô diffusion process defined in (??) when only observations of the process

at discrete time are available. Section 3 details the transition density functions and

the applicable common parametric diffusion function and drift function estimators as

well as the nonparametric diffusion function and drift function estimators for each of

the diffusion processes on which our simulation study is based, namely the Brownian

motion with drift process, the Ornstein-Uhlenbeck process, and the Cox-Ingersoll-

Ross squared-root process. Section 4 outlines the experimental design of the Monte

Carlo simulation and analyses the results. A brief conclusion is contained in Section 5.

2. Estimation of the Diffusion Process from Discretely Sampled Data

Estimation of the Itô diffusion process or stochastic differential equation (SDE)
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defined in (??) has been considered in the literature for many years, with most of

the papers being concerned with estimating the drift and diffusion functions from

continuously sampled data. Unfortunately, in practice, more often than not we can

only obtain data in discrete time since the dynamics of the process can be much faster

than the sampling rate. With discretely sampled observations from the continuous

sampling path, identification and estimation of the continuous-time Itô diffusion pro-

cess proves to be much more complicated and difficult. The first parametric estimator

of the coefficients of a stationary diffusion process from discretely sampled observa-

tions is the ML estimator proposed by Dacunha-Castelle and Florens-Zmirou (1986).

Other parametric estimators include the ML estimators derived by Lo (1988) for more

general jump-diffusion processes, the method of moments based on simulated sam-

pling paths from given parameter values proposed by Duffie and Singleton (1993),

the purely theoretic approximate maximum likelihood (AML) estimator proposed

by Pedersen (1995), as well as the nonlinear least square (NLS) or ordinary least

square (OLS), or most commonly Hansen’s (1982) generalized method of moments

(GMM) based on the “discretized" model. Recently, Hansen and Scheinkman (1995)

also derived moment conditions based on the infinitesimal generator. The first non-

parametric diffusion function estimator is proposed by Florens-Zmirou (1993) which

imposes no restriction on either the drift term or diffusion term, but her procedure

leaves the drift term unidentified and the diffusion function estimator can not be used

for the construction of the drift function estimator. Stanton (1996) develops approxi-

mations to the true drift and diffusion functions and estimates these approximations

nonparametrically. Aı̈ t-Sahalia (1996) proposes a nonparametric diffusion function
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estimator based on the linear mean-reverting drift function for the strictly stationary

diffusion processes. We will notice later in this paper that the parameter estimators

of the linear mean reverting drift function are not robust in that they are extremely

sensitive to the sampling path (and/or the discrete observations along the sampling

path) and consequently perform very poorly even with a large sample over a short

sampling period.

Diffusion processes as defined in (??) are widely used in the finance literature to

model the dynamics of certain financial variables, e.g., the stock prices, the exchange

rates, and the term structure of interest rates 1. Due to the estimation problem,

however, all the diffusion models in the finance literature have to rely on parametric

or semi-parametric specifications for the drift and diffusion functions in order to

implement available estimation methods based on discretely observed data. The

diffusion function is usually specified as a power function of the stochastic process,

i.e., σ(Xt) = σ Xγ
t (γ = 0 for Merton (1973) and Vasicek (1977); γ = 1/2 for

CIR (1985); γ = 1 for Dothan (1978) and Brennan and Schwartz (1977, 1979,

1980); γ = 3/2 for CIR (1980)). The drift function is typically specified as either

a constant µ(Xt) = µ (as in Merton (1973), Dothan (1978), and CIR (1980)) or a

linear mean reverting functionµ(Xt) = β(α− Xt), β > 0 (as in Vasicek (1977), CIR

(1985), Brennan and Schwartz (1977, 1979, 1980), and Aı̈ t-Sahalia (1996)). Such

specifications allow estimation of the parameters via the use of common parametric

estimators, such as MLE, NLS (or OLS), or GMM. The discussion and empirical

1 See Chan, et al (1992) for a review of various parametric spot interest rate models.
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results in Jiang and Knight (1996), however, show that both parametric and semi-

parametric specifications impose very strong and unrealistic assumptions on the

underlying process of the model.

In Jiang and Knight (1996), a nonparametric identification and estimation procedure,

based on discretely sampled observations, for a wide range of Itô diffusion processes

is proposed. Under mild regularity conditions, a nonparametric kernel estimator for

the diffusion function σ 2(Xt) of the general diffusion process defined in (??) is

proposed as:

σ̂ 2(x) =
∑n−1

i=1 K ( Xi1n−x
hn

)[X(i+1)1n − Xi1n ]2∑n
i=1 1n K ( Xi1n−x

hn
)

(2)

based on observing Xt at {t = t1, t2, ..., tn} in the time interval [0, T], with T ≥
T0 > 0 where T0 is a positive constant, {Xt = X1n , X21n , ..., Xn1n} are n equispaced

observations at {t1 = 1n, t2 = 21n, ..., tn = n1n} with 1n = T/n, and K (·) is a

kernel density function satisfying regularity conditions. The nonparametric diffusion

function estimator is developed without imposing any functional form restrictions

on either the drift term or diffusion term with the drift term µ(·) being a nuisance

parameter and restriction-free. Thus the nonparametric diffusion function estimator

captures the true volatility of the process. The variance of σ̂ 2(x) can be consistently

estimated by V̂ [σ̂ 2(x)] = σ̂ 4(x)/
∑n

i=1 K ( Xi1n−x
hn

). Under a further condition that

there exists a limiting probability density function for the process or that the process

is stationary in the strict sense, based on the equation derived from the Kolmogorov

forward equation, a consistent nonparametric drift function estimator is proposed as:

µ̂(x) = 1

2
[
dσ̂ 2(x)

dx
+ σ̂ 2(x)

p̂′(x)

p̂(x)
] (3)
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where σ̂ 2(x) is the nonparametric diffusion function estimator in (2), p̂(x) is a

consistent kernel estimator of the marginal density function of the process. This is the

first nonparametric estimator proposed in the literature for the drift function based

on discretely sampled observations. The variance of µ̂(x) can be obtained using the

δ-method conditional on either p̂(x) or σ̂ 2(x), or otherwise unconditionally if the

covariance of p̂(x) and σ̂ 2(x) is known. In practice, a bootstrapping technique could

be applied to derive the standard error of µ̂(x).

Thus the general Itô diffusion process defined in (??) can be identified nonparamet-

rically for both the drift and diffusion functions based on discretely observed data.

The fact that the identification and estimation of the drift function requires stronger

conditions than the diffusion function is similar to the so-called “aliasing problem"

for a system of linear stochastic differential equations (SDE), as discussed in Phillips

(1973) and Hansen and Sargent (1983). Phillips (1973) points out that, unless there

are sufficient a priori restrictions on the parameters of a system of linear stochastic

differential equations, we cannot distinguish between structures generating cycles

whose frequencies differ by integer multiples of the reciprocal of the observation

period. Similarly, it is impossible to identify a nonlinear diffusion process as defined

in (??) without imposing any structural restrictions on the model. Especially, the drift

term of the diffusion process (univariate or multivariate) cannot be directly identified

on a fixed time interval, no matter how frequently the observations are sampled, as

the Cameron-Martin-Girsanov transformation (see e.g. Øksendall, 1992) can always

be applied to give an otherwise unnoticeable change in the drift. The above proposed
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estimator is based on the estimated diffusion function and marginal density function

and exploits the stationarity property of the process.

As some authors (see e.g. Merton, 1980) have already observed, even though the

diffusion term of a stochastic process can be estimated very precisely when the

sampling interval is small, the estimates of the drift term tend to have low precision.

Our findings in this paper not only confirm this observation but also further reveal that

the parametric estimates of the common drift function specifications can perform very

poorly even with large samples of data, no matter how frequently the observations

are sampled over a short sampling period. The following simple example can help

to illustrate the problem. Suppose that the log return of a stock price follows a

Brownian motion with drift process, i.e., dln Xt = µdt + σd Wt , where µ and σ are

constants. The ML estimator of µ from equispaced discretely sampled observations

{Xt1=0, Xt2, ·, ·, ·, Xtn=T }, with 1 = Xti − Xti−1 , is the average of log-returns, i.e.,

µ̂ = (1/T )
∑n

i=1 ln(Xti/Xti−1), or µ̂ = (ln XT − ln X0)/T . It is easy to verify that µ̂

is a consistent estimator of µ as µ̂|X0 ∼ N(µ, σ 2/T ). However, it is also very easy

to see that, for any finite sample of observations, µ̂ is very sensitive to the first and

last observations of the sample and is actually determined only by these two values.

Thus, if we have a sample of, say, 5,000 observations, it is only the first and last

observations that matter for the estimate of µ. Moreover, µ̂ has no efficiency gains

even if we increase the sample size by reducing the sampling interval over fixed T .

Thus, it is not hard to see that the estimate ofµwill not be robust in that it will be very

sensitive to the sampling path and/or the discrete observations along the sampling
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path. On the other hand, when the sampling interval is small, the ML diffusion function

estimator, σ̂ 2 =∑n
i=1(ln(Xti /Xti−1)− µ̂1)2/T , performs very well, regardless of the

poor performance of the drift function estimator as E[σ̂ 2|µ̂] = σ 2 + (µ− µ̂)21 and

Var[σ̂ 2|µ̂] = 2σ 21

T [(µ− µ̂)21+ σ 2].

Our simulation analysis will focus on both the diffusion function estimator and the

drift function estimator. Of course, the nonparametric diffusion function estimator

requires only mild regularity conditions (i.e., A1-A6 in Jiang and Knight, 1996), while

the nonparametric drift function estimator requires stronger conditions (i.e., A1-A8

in Jiang and Knight, 1996), i.e., the stochastic process must be at least asymptotically

stationary in the strict sense. This excludes the application of the proposed nonpara-

metric drift function estimator to such processes as Brownian motion with drift and

geometric Brownian motion. It is noted that, in the finance literature, drift function

estimation has received much less attention than the diffusion function estimation.

One reason is that the diffusion function, as the second moment and the measurement

of instantaneous volatility of the stochastic process, is of more interest in modeling

the movements of interest rates, asset prices, or exchange rates. For instance, the

volatility of the riskless interest rate is one of the key determinants of the value of

contingent claims and one of the key factors determining optimal portfolio hedging

strategies for risk-averse investors. Therefore, to predict the movements of derivative

security prices, to hedge an investment portfolio, or to create a certain leverage within

a portfolio, the volatility of the prices of underlying assets is the major factor to be

considered. Another and maybe more direct reason is that, in the famous Black-

8



Scholes option pricing formula, the prices of derivative securities are affected by the

price of underlying assets only through its instantaneous volatility, i.e. the diffusion

function. The drift function does not appear in the option pricing formula at all due to

an assumption that, in the economy, there exists a risk-free asset with nonstochastic

rate of return. However, as Lo and Wang (1995) point out, predictability of an asset’s

return is typically induced by the drift and will affect the prices of options on that

asset, even though the drift term does not enter the option pricing formula. Moreover,

in models with stochastic spot interest rates, both the diffusion function and drift

function will enter the derivative security pricing formulation. Therefore the prices of

derivative securities in these cases are explicitly affected by the price of underlying

assets through not only the diffusion function but also drift function. From this point of

view, the drift function estimation is as important as the diffusion function estimation.

3. Diffusion Processes: Explicit Transition Density Functions and Common Esti-

mators

As we have mentioned, our aim is to investigate the finite sample properties and

the performance of common parametric estimators and the nonparametric diffusion

function and drift function estimators proposed for the continuous-time Itô diffusion

process when only discretely sampled observations of the continuous sampling path

over a short time period are available. Therefore the data generating process (DGP)

for the sampling path in our simulationhas to be continuous in time, while realizations

along the continuous sampling path are observed only at discrete time. For this reason,
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we have to focus our simulation study on models which have explicit transition density

functions, namely the Brownian motion with drift process, the Ornstein-Uhlenbeck

process, and the Cox-Ingersoll-Ross squared-root process. For stationary diffusion

processes, the functional forms of the transition density functions corresponding to

specifications which are essentially different from the Ornstein-Uhlenbeck process

and the Cox-Ingersoll-Ross squared-root process are not known explicitly. As Wong

(1964) shows, one can only construct a stationary continuous-time Markov process

with known explicit transition density function from a linear functional specification

for the drift function µ(·) and a quadratic function specification for the diffusion

function σ 2(·). In this section, we will detail the transition density function and

the applicable common parametric and nonparametric diffusion function and drift

function estimators for each of the above processes.

(a) The Brownian Motion with Drift Process: The Brownian motion with drift process,

d Xt = µdt+σd Wt where bothµ and σ are constants, has a normal transition density

function given by f (Xt = x , t; Xt0 = x0, t0) = 1√
2πσ 2(t−t0)

exp{− (x−x0−µ(t−t0))2

2σ 2(t−t0)
}, with

its marginal density function varying over time. Since the geometric Brownian motion

process, d Xt = µXt dt+σ Xt d Wt , implies that Yt = ln Xt follows a Brownian motion

with drift process, i.e., , dYt = (µ−σ 2/2)dt + σd Wt , we do not consider separately

the geometric Brownian motion. Both the Brownian motion with drift process and

the geometric Brownian motion process are nonstationary.

Since the Brownian motion with drift process is neither strictly stationary nor has a

limiting probability density function, the aforementioned nonparametric drift func-
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tion estimator cannot be applied. Thus the comparison of the performance between

parametric and nonparametric estimators will have to be constrained only to the dif-

fusion function estimators. The maximum likelihood estimator (MLE) can of course

be used to estimate both the drift and diffusion for the Brownian motion with drift

process as the transition density function and hence the joint probability density func-

tion has an explicit form. It can be shown that the OLS estimators of µ and σ 2 based

on the conditional mean and variance conditions (or the first and second moment

conditions) are identical to their MLE counterparts. However, GMM estimation is

not applicable to the Brownian motion with drift process due to its nonstationarity.

(b) The Ornstein-Uhlenbeck Process: The Ornstein-Uhlenbeck process, d Xt = β(α−
Xt)dt + σd Wt where α, β, and σ are constants, also has a normal transition density

function given by f (Xt = x , t; Xt0 = x0, t0) = 1√
2πs2(t)

exp{− (x−α−(x0−α)e−β(t−t0))2

2s2(t) },
where s2(t) = σ 2

2β [1 − e−2β(t−t0)]. If the process does display the property of mean

reversion (β > 0), then as t0 → −∞ or t − t0 → +∞, the marginal density of

the stochastic process is invariant to time, i.e., the Ornstein-Uhlenbeck process is

stationary in the strict sense in the steady state.

The Ornstein-Uhlenbeck process has a limiting probability density function, thus

both the nonparametric diffusion function estimator and drift function estimator can

be applied. Since the transition density function and hence the joint probability

density function of the Ornstein-Uhlenbeck process also has an explicit functional

form, the maximum likelihood estimation (MLE) can also be used. Further, as an

asymptotic stationary process, the parameters of Ornstein-Uhlenbeck process can
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also be estimated using GMM, based on the exact conditional moment conditions.

That is, the GMM estimates of α, β and σ 2 for the Ornstein-Uhlenbeck process can be

obtained based on the following four exact conditional and unconditional moments:

Gn(α, β, σ
2) = 1

n − 1

n−1∑
i=1

Fi(α, β, σ
2) (4)

with

Fi(α, β, σ
2) =


εi+1

εi+1 Xi1n

ε2
i+1 − E[ε2

i+1 |Xi1n ]
(ε2

i+1 − E[ε2
i+1 |Xi1n ])Xi1n


where εi+1 = (X(i+1)1n − Xi1n )− E[(X(i+1)1n − Xi1n )|Xi1n ] and

E[(X(i+1)1n − Xi1n )|Xi1n ] = (1− e−β1n )(α − Xi1n ) (5)

E[ε2
i+1 |Xi1n ] = σ 2

2β
(1− e−2β1n) (6)

where1n is the sampling interval, and the exact conditional variance of the changes

of Xt over time interval of length 1n is given by E[ε2
i+1 |Xi1n ] = V [X(i+1)1n |Xi1n ] 2.

These moment conditions correspond to transitions of length1n and are not subject

to discretization bias 3. Since these GMM systems are overidentified, we weighted the

2 To obtain the conditional mean and variance of the diffusion process, one can solve for
the transition density functions from the Kolmogorov backward equation ∂ f (Xt , t; Xt0 , t0)/∂t =
µ(Xt , θ)∂ f (Xt , t; Xt0 , t0)/∂Xt+ 1

2σ
2(Xt , σ

2)∂2 f (Xt , t; Xt0, t0)/∂X2
t , and then calculate the exact con-

ditional mean and variance.

3 It is noted that in most financial economics literature, using GMM to estimate the parameters
of the diffusion processes consists in first discretizing the continuous-time model, then based on the
discrete-time model deriving the moment conditions. The GMM approach in this case no longer requires
that the distribution of the changes of Xt be normal. Actually the discrete-time model specifies that the
instantaneous variance of the residual is proportional to the length of sampling interval, i.e., E[ε2

i+1 ] =
σ 2(Xt1n )1n. Therefore the asymptotic justification for the GMM procedure requires only that the
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criterion optimally (see Hansen (1982)). The positive-definite symmetric weighting

matrix is chosen such that the GMM estimator of (α, β, σ 2) has the smallest asymp-

totic covariance matrix. With the above conditional mean and variance conditions and

the property of independent increments of the process, the nonlinear least squares

(NLS) estimators of (α, β, σ 2) can also be obtained.

(c) The Cox-Ingersoll-Ross Squared-Root Process: The Cox-Ingersoll-Ross (CIR)

squared-root (SR) process, d Xt = β(α − Xt)dt + σ X1/2
t d Wt where α, β, and σ

are constants, has the transition density function given by f (Xt = x , t; Xt0 =
x0, t0) = ce−u−v( vu )

q/2 Iq(2(uv)1/2) with Xt taking nonnegative values, where c =
2β

σ 2(1−e−β(t−t0))
, u = cx0e−β(t−t0), v = cx , q = 2βα

σ 2 − 1, and Iq(·) is the modified Bessel

function of the first kind of order q. The transition distribution function is a noncentral

chi-square,χ 2[2cx; 2q+2, 2u], with 2q+2 degrees of freedom and parameter of non-

centrality 2u proportional to the current level of the stochastic process. The conditional

expected value and variance of Xt is given by E[Xt |X0 = x0] = x0e−β(t−t0) + α(1−

distribution of interest rate changes be stationary and ergodic and that the relevant expectations exist.
The moment conditions used in the literature are as follows:

Fi(α, β, σ
2) =


εi+1

εi+1 Xi1n

ε2
i+1 − σ 21n

(ε2
i+1 − σ 21n)Xi1n


for the Vasicek model, and

Fi(α, β, σ
2) =


εi+1

εi+1 Xi1n

ε2
i+1 − σ 2 Xi1n1n

(ε2
i+1 − σ 2 Xi1n1n)Xi1n


for the Cox-Ingersoll-Ross squared-root model, with εi+1 = X(i+1)1n − Xi1n − β(α − Xi1n )1n where
1n = ti+1 − ti = T/N due to equal sampling interval. It is clear that these moment conditions are
different from those derived from the continuous-time model. The misspecification and inconsistency
caused by “discretization" is discussed in Jiang and Knight (1996).
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e−β(t−t0)), Var[Xt|X0 = x0] = x0(
σ 2

β
)(e−β(t−t0) − e−2β(t−t0))+α( σ

2

2β )(1 − e−β(t−t0))2. If

the process displays the property of mean reversion (β > 0), then as t0 → −∞ or

t − t0 →+∞, its marginal density function will approach a gamma probability den-

sity function, i.e. f (Xt = x , t) = ων

0(ν)
x ν−1e−ωx where ω = 2β/σ 2 and ν = 2αβ/σ 2,

with mean α and variance σ 2α/2β. That is, the Cox-Ingersoll-Ross squared-root

process is also stationary in the steady state.

As the Cox-Ingersoll-Ross squared-root process has a limiting probability density

function, both the nonparametric diffusion function and drift function estimators

can be applied. However, the ML estimator is not performed for the Cox-Ingersoll-

Ross squared-root process due to the complexity of the Bessel function 4. Similar to

the Ornstein-Uhlenbeck process, the Cox-Ingersoll-Ross squared-root process as an

asymptotic stationary process can also be estimated using GMM. The GMM estimates

of α, β and σ 2 can be obtained from the exact conditional and unconditional moment

conditions based on its conditional mean and variance, i.e.,

E[(X(i+1)1n − Xi1n )|Xi1n ] = (1− e−β1n )(α − Xi1n ) (7)

E[ε2
i+1 |Xi1n ] = σ 2

β
(e−β1n − e−2β1n )Xi1n + α(

σ 2

2β
)(1− e−β1n )2 (8)

The estimation procedure is exactly the same as for the Ornstein-Uhlenbeck process.

For the same reason, the NLS estimators of (α, β, σ 2) can also be obtained based on

4 The numerical optimization procedure, such as subroutine E04UCF of the NAG library could be
used to perform the ML estimation of the CIR process. However, it involves the evaluation of the
modified Bessel function of the first kind of order q , Iq (x), over different intervals. When both x and
q are small numbers, Iq (x) has to be evaluated using, e.g. the backward recursion in Section 19.4.2 of
Luke (1977). For large values of x and/or q , the asymptotic expansion, e.g. in Olver (1965) has to be
used. Therefore the computation would be too intensive for a Monte Carlo study.
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the conditional mean and variance conditions.

Insert Table 1 around here

Table 1 summaries the stationarity, in the asymptotic sense, of each process and

identifies the common parametric and nonparametric estimators of the diffusion and

drift functions for each process. The Monte Carlo comparison will be based on the

simulation results of these estimators.

4. Monte Carlo Study: Parametric versus Nonparametric Estimators

The aim of the Monte Carlo study is twofold. Firstly, to examine the finite sample

properties of the nonparametric diffusion function and drift function estimators devel-

oped in Jiang and Knight (1996). Secondly, to undertake a detailed comparison of the

nonparametric estimator with common parametric estimators. As the nonparametric

diffusion function and drift function estimators are both functions of Xt , the Monte

Carlo analysis is based on a sample of estimates for each parametric and nonparamet-

ric estimator at given values of Xt . In each replication, one set of discrete observations

along the continuous sampling path of a known diffusion process is generated and

based on this sample different estimators are applied. With the sample of estimates for

each estimator, we investigate its finite sample properties and compare their perfor-

mance based on their respective sampling distributions. The number of replications

for each estimator is set to be 1,000 and/or 5,000 and the sample size of observations

in each replication is 5,000 and/or 10,000. The comparison of the performance of

different estimators is first undertaken at one single point of Xt (i.e, Xt = 0.07), and
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then extended to different points in an interval of Xt (i.e., Xt ∈ [0.05, 0.10] or 5% to

10% of interest rate levels).

The data generating process (DGP) of each diffusion process is given by its transition

probability density function and based on its Markovian property, the dynamics of the

continuous sampling path is explicitly known. The discrete sampling observations

along the continuous sampling path are observed over equispaced intervals with

sampling interval1N . In all the simulations, the discrete observations of sample size

N from the sampling path are recorded over a time period from t = −5001N to

T = N1N with sampling interval1N = T/N . We discard the first 500 observations

to eliminate any start-up effects.

The values for the parameters of different processes are set to be approximately equal

to those of the corresponding interest rate models estimated in Chan, et al (1992)

using the American monthly Treasury bill yield data from June 1964 to December

1989, i.e.,

(a) µ = 0.0055, σ 2 = 0.0004 for the Brownian motion with drift process;

(b) α = 0.086, β = 0.18, σ 2 = 0.0004 for the Ornstein-Uhlenbeck process; and

(c) α = 0.076, β = 0.23, σ 2 = 0.007 for the Cox-Ingersoll-Ross squared-root

process.

The models are, consequently, close to the true term structure of interest rate models.

The starting value of the DGP is set to be equal to the average interest rate level of

the data set in Chan, et al (1992), i.e. 0.067.

16



As the relative performance of the parametric estimators and the nonparametric

estimators are similar for different sample sizes and different number of replications,

the simulation results are reported for only one sample size (i.e. 5,000), one replication

number (i.e. 1,000), and also one window-width for the nonparametric estimators.

The study is obviously not comprehensive. As we will mention later, our choice of

window-width is based on the numerical criteria that the integrated mean squared

error (IMSE) is minimized, the study of the optimal choice of window-width is not

pursued in this paper 5.

Figures 1 and 2 plot the sample means of different diffusion function and drift function

estimates at different Xt for each process, which gives a clear visual impression of

how each estimator performs. It is clear that while the parametric diffusion function

estimators perform very well for all processes, the parametric drift function estimators

all perform poorly. However, both the nonparametric diffusion function estimator and

5 In the nonparametric estimation procedure, both the kernel diffusion function estimator and the
kernel marginal density function estimator and its first derivative, which are used in estimating the drift
function, involve the choice of kernel functions and optimal window-width. The regularity conditions of
the kernel function of order r for both diffusion function and marginal density estimation are as follows:
(i) The kernel K(·) is symmetric about zero, continuously differentiable to order r on R, belongs to
L2(R), and

∫ +∞
−∞ K(x)dx = 1;

(ii) K(·) is of order r :
∫ +∞
−∞ xi K(x)dx = 0, i = 1, ..., r − 1, and

∫ +∞
−∞ xr K(x)dx 6= 0,

∫ +∞
−∞ |x|r |K(x)|

dx <∞.
The regularity conditions for the admissible window-width are as follows: as the sample size n →∞,
and the sampling interval 1n → 0,
(i) hn → 0, nhn →∞, and nhr+1

n → 0 for the diffusion function estimation;
(ii) hn → 0,nhn →∞, and nh2r+1

n → 0 for the marginal density function estimation; and
(iii) hn → 0,nh3

n → ∞, and nh2r+1
n → 0 for the first derivative of the marginal density function

estimation.
The above conditions ensure that for all cases, the bias in the estimator is asymptotically negligible
and at the same time the variance of the estimator goes to zero as sample size increases to infinite. The
conditions are stronger than usual nonparametric estimation due to the correlation among the data and
the requirement for estimating the derivative of marginal density function.
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drift function estimator perform reasonably well.

Tables 2, 3 and 4 report the summary statistics of the sampling distributions for each

estimator of the diffusion function, including both nonparametric and parametric

estimators, for each process. For all three processes, the nonparametric as well as

the parametric diffusion function estimators perform extremely well, as measured

by the sample median, mean, variance, and mean squared error (MSE). The plots of

the empirical cumulative density function (ECDF) based on the sample of diffusion

function estimates for each estimator in Figures 3, 4 and 5 further show the charac-

teristics of the sampling distributions for the estimators of σ 2, at a given value of Xt

(Xt = 0.07), for all three processes. The sampling distributions are all highly con-

centrated around the true value of σ 2. The nonparametric estimates of σ 2 is obtained

from σ̂ 2 = σ̂ 2(Xt) for the Brownian motion with drift process and the Ornstein-

Uhlenbeck process and σ̂ 2 = σ̂ 2(Xt)/Xt for the Cox-Ingersoll-Ross squared-root

process. The empirical cumulative density function is simply based on the sample

of estimates of σ 2 from the 1,000 replications, i.e., EC D F(x) =
∑M

i=1 1(σ̂ 2
i ≤x)

M , where

x ∈ (−∞,+∞),M = 1, 000 and σ̂ 2
i is the estimate of σ 2 in the ith replication,

i = 1, 2, ...,M . Visually there is not much of a difference between the sampling

distributions of the nonparametric diffusion function estimator and other parametric

estimators for all three processes.

Tables 5, 6 and 7 report the summary statistics of the sampling distribution for the

parametric estimator of µ for the Brownian motion with drift process, the parametric

estimators of (α, β) for the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross
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squared-root process, as well as the parametric and nonparametric estimator ofµ(Xt),

at given value of Xt (Xt = 0.07), for the Ornstein-Uhlenbeck process and the

Cox-Ingersoll-Ross process. It is clear that, for all three processes, the parametric

estimators of the drift function parameters all perform poorly, especially estimators

of β, with its estimates spreading over a wide range of intervals as indicated by

the maximum and minimum values of the samples of the estimates. However, the

nonparametric drift function estimator for both the Ornstein-Uhlenbeck process and

the Cox-Ingersoll-Ross squared-root process performs reasonably well, measured by

the sample median, mean, variance, and mean squared error (MSE). Similarly, the

plots of the empirical cumulative distribution function (ECDF) based on the sample

of drift function estimates in Figures 6 and 7 show the sampling distributions of

the drift function parameter estimators for each process as well as the parametric

and nonparametric drift function estimator, at a given value of Xt (Xt = 0.07), for

the Ornstein-Uhlenbeck process and Cox-Ingersoll-Ross squared-root process. The

sampling distributionsof the parameter estimators ofµ, α, and β overlap a wide range

of support. In contrast, the sampling distribution of the nonparametric estimator of

µ(Xt), at Xt = 0.07, is highly concentrated around its true value. There is clearly a

big difference between the sampling distributions of the nonparametric drift function

estimator and the parametric drift function estimators.

Insert Tables 2-7 and Figures 1-10 around here

In the aforementioned comparison we noted that the performance of the nonparamet-

ric diffusion function and drift function estimators were based on fixing values of Xt ,
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i.e., Xt = 0.07. All the simulation results and inferences thus could be interpreted

as conditional on Xt = 0.07. We extended the Monte Carlo simulation study of the

nonparametric estimators from one single point (Xt = 0.07) to an interval of Xt

(Xt ∈ [0.05, 0.10]). These simulation results of the nonparametric diffusion function

and drift function estimators are reported in Tables 2-7 as well. Tables 2-7 report

the summary statistics of the sampling distributions of the nonparametric diffusion

function and drift function estimators at different values of Xt . The results show that

the nonparametric diffusion function and drift function estimators perform reason-

ably well at different values of the whole interval of Xt(Xt ∈ [0.05, 0.1], or 5% to

10% of interest rate level). Figures 8, 9 and 10 plot the empirical cumulative distri-

bution functions (ECDF) of the nonparametric and parametric diffusion function and

drift function estimators at different values of Xt , the sampling distributions further

show that the performance of the nonparametric estimators over the interval is quite

reasonable.

Some further analysis of the simulation results of the diffusion function and drift

function estimators are also reported in Tables 2-7. For instance, for the Cox-Ingersoll-

Ross squared-root process, when compared to the normal density, the sampling

distribution of the nonlinear least square (NLS) estimator appears slightly skewed

to the left, while that of the generalized method of moments (GMM) estimator and

the nonparametric estimator, at different values of Xt , appear slightly skewed to

the right. The sampling distribution of the generalized method of moments (GMM)

estimator appears to be slightly more concentrated, and that of the nonlinear least
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square (NLS) estimator and the nonparametric appears to be less concentrated, while

that of the nonparametric estimator shows no consistent sign over different values of

Xt . The Wilcoxon matched-pairs signed-ranks test is employed here to analyze pair-

wise the differences of the absolute bias between different estimators based on the

sample of estimates. The Wilcoxon matched-pairs signed-rank test is employed for its

robustness against the violation of the normality assumption. This is basically a test

of H0: the median of the population of the differences between two random variables

is zero, against either H1: the median of the population of the differences between

two random variables is positive (or non-negative) or negative (or non-positive). The

indicator in the brackets beside the statistics denotes whether the null hypothesis is

not rejected (+) or rejected (–) at the 5 % significance level.

An extension of the multi-sample median test is also conducted for the samples of

the nonparametric estimates at different points. The null hypothesis of the test is

H0: all n populations have the same median, against its alternative H1: at least one

population has a median different from the others. The results of this test are reported

in Tables 2-4 as well, which indicate that the null hypothesis is not rejected for all

three processes at 5 % significance level.

The following are a few remarks on the above Monte Carlo simulation study:

Remark 1. The fact that the nonparametric diffusion function estimator performs

as well as the parametric diffusion function estimators and the nonparametric drift

function estimator outperforms all the parametric drift function estimators, including

the maximum likelihood estimator (MLE), might seem surprising. First of all, it
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should be noted that the Monte Carlo simulation study is designed to investigate only

the finite sample properties of the estimators and by no means explores the asymptotic

properties of the estimators. Therefore all the simulation results and analysis are only

valid for the finite samples. Secondly, the issue which we are dealing with here is more

or less an identification problem rather than an estimation problem. Poor performance

of the parametric drift function estimators simply imply that the drift term of a

diffusion process cannot be directly identified from the discretely sampled data over a

short sampling period, no matter how large the sample. Hence any attempt to estimate

the drift function parameters based on such a sample, without using extra information,

is doomed to fail. Comparing carefully the ML, NLS, and GMM estimators with the

nonparametric estimators, we can see that the ML, NLS, and GMM estimators employ

only the information contained in the transition density functions of the diffusion

process, while the nonparametric estimator employs the information contained in

both the transition density function and the marginal density function. It is through

the marginal density function that we establish the relationship between µ(Xt) and

σ(Xt) given in equation (3), and based on this there is a unique drift function

corresponding to a given diffusion function and marginal density function. Further,

from an estimation point of view, since the kernel density function estimator performs

very well for a large sample of observations, the performance of the nonparametric

drift function estimator is thus mainly determined by the nonparametric diffusion

function estimator. In other words, if the nonparametric diffusion function estimator

performs well, then the nonparametric drift function estimator will also perform well.

However, in the case of parametric drift function and diffusion function estimators,
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since all the moment conditions are explicitly expressed in terms of time t and the

level of the diffusion process Xt , there is no way to incorporate the information

contained in the limiting steady state of the process into the estimation. As a result,

as our experiments indicate, the drift function parameter estimates are not robust

in that they are extremely sensitive to the sampling path of the diffusion process

and/or the discrete observations along the sampling path. Therefore, even though all

the parametric diffusion function estimators perform very well, the parametric drift

function estimators can perform very poorly.

Remark 2. Since the parametric estimators of the linear mean-reverting drift func-

tion perform very poorly with finite samples, the semiparametric identification and

estimation approach proposed by Aı̈t-Sahalia (1996) is not specifically included in

our Monte Carlo simulation analysis as, in his approach, the diffusion function is

estimated using the estimates of the linear mean-reverting drift function parameters.

Remark 3. The derivation of the moment conditions of the diffusion process based

on the infinitesimal generator, as proposed by Hansen and Scheinkman (1995), is

not necessary since the exact moment conditions of all the diffusion processes in our

simulation study can be solved from the Kolmogorov backward equations.

Remark 4. It is worthwhile pointing out that the choice of the values of (α, β, σ 2)

does not affect the simulation results and hence the performance of the nonparametric

diffusion function and drift function estimators.

Remark 5. Choice of the Kernel: In the nonparametric estimation of both the diffusion

function and the marginal density function, which is used in the estimation of the drift
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function, we have to choose the kernel functions. The kernel we chose for both the

nonparametric diffusion function estimator and the marginal density function estima-

tor is the standard Gaussian density, K (x) = 1√
2π

exp{− x2

2
}, which is continuously

differentiable of any order.

Remark 6. Choice of the Smoothing Parameter for the Kernel Marginal Density

Function Estimator: the actual window-width or smoothing parameter for the kernel

marginal density function estimator and its first derivative is set as hn = cnn−1/5

where cn = c/ln(n) and c is chosen to minimize the integrated mean squared error

(IMSE) of the estimator 6.

Remark 7. Choice of the Smoothing Parameter for the Kernel Diffusion Function

Estimator: in order to achieve convergence in distribution and consistency of the

nonparametric diffusion function estimator σ̂ 2(x), the window-width or smoothing

parameter hn is required to converge to zero faster than in the case of nonparametric

density estimation, that is, not only hn → 0,nhn → ∞,nh5
n → 0 as 1n → 0,

but also nh3
n → 0 as 1n → 0. Therefore the actual window-width is chosen as

hn = cnn−1/3, where cn = c/ln(n). As in the case of nonparametric kernel density

estimation, implementation of the nonparametric kernel diffusion function estimator

also requires that we deal with the problem of selecting the window-width or smooth-

ing parameter hn. Our experiments show that the nonparametric kernel diffusion

function estimator σ̂ 2(·) is sensitive to the choice of the value of hn in that different

values of hn generate different standard deviations for the sampling distribution of

6 This window-width choice was also used in Aı̈ t-Sahalia (1996) for marginal density function
estimation.
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the estimator. Whether the above admissible window-width represents the achievable

optimal rate of convergence is unknown to us. It is thus clear that further research

is required concerning the optimal choice of the window-width hn. This research is

beyond the scope of this paper and hence not pursued in this study. However, it is

noted that both the nonparametric kernel density estimator and the nonparametric

kernel diffusion function estimator can be regarded as a weighted averaging scheme

in which the role of the window-width is to determine the span of the sampling

of points and therefore the relative weights over different points, given the kernel

function. In the case of the nonparametric kernel diffusion function estimator, it is

not hard to see that a wider window-width means the estimate is an average with

significant weights over a larger number of points and, hence, tends to have a smaller

variance. On the other hand, with wider window-width, the fluctuating movements of

the diffusion function over an interval might be averaged out and the estimate tends

to have increased bias. The trade-off for the choice of the value of hn is as follows.

For a larger value of hn , the estimated diffusion function σ̂ 2(x) tends to be smoother

in x , therefore the estimates tend to have higher bias but smaller variance, and vice

versa. Moreover, given the criteria for the bias and variance of the estimates, a lower

hn tends to be a stronger requirement than a higher hn for the sampling density of

discrete observations. Therefore the choice of window-width involves the delicate

task of balancing the two components: the variance on the one hand, and the bias

on the other. This trade-off leads to the choice of minimizing the integrated mean

squared error (IMSE) as a natural criteria for the optimal window-width selection.

Therefore, in our simulation the coefficient c of the window-width sequence is also
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chosen to minimize the numerical IMSE 7.

5. Conclusion

From the Monte Carlo simulation results reported in the previous section we note

that, based on a large sample of discrete observations over a short sampling period,

both the nonparametric diffusion function and drift function estimators proposed in

Jiang and Knight (1996) perform reasonably well. However, even though the para-

metric estimators of the diffusion function parameters all perform very well, none

of the parametric estimators of the drift function parameters performs satisfactorily.

This fact further suggests that, with the same data set, the identifications for the

drift function and the diffusion function are not necessarily mutually dependent and

the identification of the diffusion function is less troublesome than that of the drift

function. In other words, a correct identification of the diffusion function does not

necessarily rely on a correct identification of the drift function. This finding justifies

7 Unfortunately, we normally do not have knowledge of the true underlying process that generates
the data and the minimum IMSE criteria are not available if one wants to estimate the diffusion function.
The various ways to get around this problem for the nonparametric functional estimation, such as the
cross-validation approach, the plug-in approach, the smoothed bootstrap approach, etc. (see surveys by
Delgado and Robinson (1992) and Jones, Marron, and Sheather (1996)), can used here as well. Similar
research can be pursued for the automatic selection of the optimal window-width of the nonparametric
diffusion function estimator. Since the nonparametric diffusion function estimator has a relatively strong
requirement for the smoothness of the diffusion function σ 2(Xt ), a very small hn is not desirable. In
practice, a reference value for hn can be determined as following from the minimizing the variance
with fixed amount of bias. Since the consistent estimator of the variance of σ̂ 2(x) is given by nhn σ̂

4(x)
L1 (x)

,
let α be the allowable relative error of the estimate at, say, 95% confidence level in terms of the
percentage of the true diffusion σ 2(x), we can set the width of the 95 % confidence band such that
1.96( nhnσ̂

4(x)
L̂1(x)

)1/2 + σ 2(x) ≤ (1+ α)σ 2(x) or−1.96( nhn σ̂
4(x)

L̂1(x)
)1/2 + σ 2(x) ≥ (1− α)σ 2(x), where L̂1(x)

is estimated by setting hn to be the optimal window-width which minimizes the integrated mean square

error of L̂1(x). As σ̂ 2(x) → σ 2(x) in probability, therefore we have hn ≤ L̂1 (x)
n ( α

1.96 )
2. Thus the value

of hn can be calculated from h∗n = sup{hn|hn ≤ L̂1(x)
n
( α

1.96
)2,∀x ∈ I}, where I represents the inference

area.
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the nonparametric identification and estimation procedure, proposed for the Itô diffu-

sion process in Jiang and Knight (1996), in which the diffusion function is identified

and estimated without imposing any a priori restrictions on either the drift term or

the diffusion term. The Monte Carlo simulation results also suggest that, for both sta-

tionary and non-stationary processes, the nonparametric diffusion function estimator

captures the true volatility.
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Table 1
Diffusion Processes: Stationarity and Common Estimators

Diffusions Stationarity Estimators of σ2(·) Estimators of µ(·)
BMwD(a) No NONP(d), MLE (or OLS) MLE

O-U(b) Yes (e) NONP, MLE, NLS, GMM NONP, MLE, NLS, GMM
CIR SR(c) Yes(e) NONP, NLS, GMM NONP, NLS, GMM

Note: (a)– the Brownian motion with drift process;

(b)– the Ornstein-Uhlenbeck process;

(c)– the Cox-Ingersoll-Ross squared-root process;

(d)– the Nonparametric estimator;

(e)– the process is strictly stationary in the steady state as the initial time t0 → −∞ or

t − t0 → +∞.
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Table 2

Brownian Motion with Drift: Simulation Results of the Diffusion Estimators

(1,000 replications with sample size in each replication=5,000)

(σ2(Xt ) = σ2 = 0.0004):

a. Summary Statistics of the Sampling Distributions of the Nonparametric Estimator of σ2 at Different Values of Xt :
Xt Median Mean Variance M.S.E. Skewness Kurtosis Wilcoxon

(10−4 ) (10−4 ) (10−11 ) (10−11 ) (10−2) (10−2 ) Test(a)(10−2 )

0.05 3.998 3.997 5.886 5.895 -5.872 1.320 8.779 (+)
0.06 3.998 3.997 5.886 5.895 -5.872 1.320 8.779 (+)
0.07 3.998 3.997 5.886 5.895 -5.872 1.320 8.779 (+)
0.08 3.998 3.997 5.886 5.895 -5.872 1.320 8.768 (+)
0.09 3.998 3.997 5.886 5.895 -5.872 1.320 8.790 (+)
0.10 3.998 3.997 5.886 5.895 -5.872 1.320 8.790 (+)

b. Summary Statistics of the Sampling Distribution of the Parametric Estimators of σ2:
Method Median Mean Variance M.S.E. Skewness Kurtosis

(10−4 ) (10−4) (10−11 ) (10−11 ) (10−2 ) (10−2 )
MLE 4.000 3.998 5.877 5.887 -5.708 1.108

c. Median Test for Multi-Sample of Nonparametric Estimates at Different Values of Xt :

Hypothesis H0: Test Statistic(b) Critical Value (5%)
Samples of Nonparametric Estimates at

Different Values of Xt Have the Same Median 0.600 16.92

Note: (a) The null hypothesis of the pair-wised Wilcoxon test is H0: the median of the samples of

the absolute bias of the nonparametric estimates at certain value of Xt is not greater than that of the

maximum likelihood (ML) estimates. In the large sample case (say n > 25), an approximate statistic of

the Wilcoxon matched-pairs signed-ranks test is z = T−[n(n−1)]/4√
n(n+1)(2n+1)/24

which follows a standard normal

distribution, where n is the sample size, T is the sum of the positive ranks of the difference between

two samples based on the null hypothesis. The test statistic reported in the table is corresponding to the

above null hypothesis H0 at 5 % significance level. “+" in the brackets denotes the hypothesis is not

rejected, “–" denotes the hypothesis is rejected.

(b) The extension of the multi-sample median test statistic is given by χ 2 =∑2
i=1

∑n
j=1[

(Oij−Eij )
2

Eij
] which follows the χ 2 distribution with degrees of freedom (n − 1), where n

is the number of independent samples to be tested, Eij is the combined sample median of all the sam-

ples, O1 j is the number of observations in the j th sample which are less than the combined sample

median, and O2 j is the number of observations in the j th sample which are greater than the combined

sample median.
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Table 3
Ornstein-Uhlenbeck Process: Simulation Results of the Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)
(σ2(Xt ) = σ2 = 0.0004)

a. Summary Statistics of the Sampling Distributions of the Nonparametric Estimator of σ2 at Different Values of Xt :
Xt Median Mean Variance M.S.E. Skewness Kurtosis Wilcoxon

(10−4 ) (10−4 ) (10−11 ) (10−11 ) (10−2) (10−2 ) Test(a)

0.05 3.999 3.997 5.873 5.883 -5.863 1.568 1.437 (+)
0.06 3.999 3.997 5.872 5.882 -5.845 1.659 1.441 (+)
0.07 3.999 3.997 5.871 5.881 -5.824 1.752 1.439 (+)
0.08 3.999 3.997 5.871 5.881 -5.800 1.847 1.437 (+)
0.09 3.999 3.997 5.871 5.881 -5.774 1.943 1.433 (+)
0.10 3.999 3.997 5.871 5.881 -5.745 2.040 1.430 (+)

b. Summary Statistics of the Sampling Distributions of the Parametric Estimators of σ2:
Method Median Mean Variance M.S.E. Skewness Kurtosis Wilcoxon

(10−4 ) (10−4) (10−11 ) (10−11 ) Test(a)

MLE 3.944 3.999 7.141 7.144 1.536 1.852
NLS 3.935 3.992 9.692 9.760 -0.509 1.382 -3.548 (+)

GMM 3.942 3.995 7.725 7.792 -0.773 2.602 -17.34 (+)

c. Median Test for Multi-Sample of Nonparametric Estimates at Different Values of Xt

Hypothesis H0: Test Statisticb Critical Value (5%)
Samples of Nonparametric Estimates at

Different Values of Xt have the Same Median 1.800 16.92

Note: (a) See Table 2 note (a); (b) See Table 2 note (b).

Table 4
Cox-Ingersoll-Ross SR Process: Simulation Results of the Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)
(σ2(Xt ) = σ2 Xt = 0.007Xt )

a. Summary Statistics of the Sampling Distributions of the Nonparametric Estimator of σ2 at Different Values of Xt

Xt (σ2 (Xt )10−4) Median Mean Variance M.S.E. Skewness Kurtosis Wilcoxon
(10−4 ) (10−4 ) (10−10 ) (10−10 ) 10−1 10−1 test(a)

0.05 (3.500) 3.864 3.879 7.740 22.111 0.395 -4.377 -5.742 (–)
0.06 (4.200) 4.320 4.342 5.519 7.525 5.356 6.333 -6.070 (–)
0.07 (4.900) 4.934 4.958 3.819 4.154 9.373 24.38 -1.372 (+)
0.08 (5.600) 5.651 5.668 5.566 6.030 8.012 24.95 -1.471 (+)
0.09 (6.300) 6.307 6.323 14.496 14.548 6.885 14.46 -1.842 (+)
0.10 (7.000) 7.016 7.083 21.643 22.337 3.469 -45.28 -2.393 (–)

b. Summary Statistics of the Sampling Distributions of the Parametric Estimators of σ2:
Method Median Mean Variance M.S.E. Skewness Kurtosis Wilcoxon

(10−3 ) (10−3) (10−8 ) (10−8) (10−1 ) (10−1) Test(a)

NLS 6.795 6.945 5.774 6.074 -7.787 48.414 1.71 (+)
GMM 6.856 6.982 3.421 3.454 1.777 -0.187

c. Median Test for Multi-Sample of Nonparametric Estimates at Different Values of Xt

Hypothesis H0: Test Statistic(b) Critical Value (5%)
Sample of Nonparametric Estimates at

Different Values of Xt have the Same Median 11.61 16.92

Note: (a) See Table 2 note (a) for the explanation of the test statistic. For CIR process, the Wilcoxon

test is based on the sampling distribution of σ̂ 2, which is calculated from σ̂ 2 = σ̂ 2(Xt)/Xt for the

nonparametric diffusion function estimator, and the null hypothesis of the pair-wised Wilcoxon test is

against the sample of GMM estimates. (b) See Table 2 note (b).
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Table 5
Brownian Motion with Drift: Simulation Results of the Drift Estimators
(1,000 replications with sample size in each replication =5,000)
(µ(Xt ) = µ = 0.0055)

Summary Statistics of the Sampling Distribution of the Parametric Estimators of µ:
Method Para- Min Max Median Mean Variance MSE Skewness Kurtosis

meters (10−2 ) (10−2 ) (10−3 ) (10−3 ) (10−4 ) (10−4) (10−2 ) (10−2 )
MLE µ̂ -6.689 8.149 4.254 4.144 4.132 4.147 -8.398 5.371

Table 6
Ornstein-Uhlenbeck Process: Simulation Results of the Drift Estimators
(1,000 replications with sample size in each replication =5,000)
(µ(Xt ) = β(α− Xt ), β = 0.18, α = 0.086)

a. Summary Statistics of the Sampling Distributions of the Parametric Estimators of α and β:
Method Para- Min Max Median Mean Variance MSE Skew- Kurto-

meters ness sis
MLE α̂ -2.801 5.606 0.057 0.079 8.056 10−2 8.059 10−2 8.907 195.86

β̂ -2.119 29.176 2.653 5.487 17.059 45.227 1.293 2.654
NLS α̂ -2.695 7.509 0.059 0.112 0.219 0.220 10.523 144.34

β̂ -3.079 24.667 3.707 7.205 22.825 72.171 0.779 0.345
GMM α̂ -3.266 7.765 0.058 0.111 0.339 0.340 12.896 195.83

β̂ -0.926 24.941 2.514 5.656 19.298 49.289 1.248 1.544

b. Summary Statistics of the Sampling Distributions of the Estimators of µ(Xt ) at Different Xt :
Method Xt (µ(Xt ) (10−3 )) Median Mean Variance M.S.E. Skewness Kurtosis

(10−3 ) (10−3) (10−6 ) (10−6 ) (10−1 ) (10−1 )

NONP 0.05 (6.480) 4.720 4.570 1.120 4.773 -7.419 5.893
0.06 (4.680) 2.567 2.479 1.057 5.996 -4.902 4.745
0.07 (2.880) 1.426 1.135 1.025 4.084 -2.013 4.976
0.08 (1.080) -0.073 -0.075 1.026 2.360 1.068 6.882
0.09 (-0.72) -2.886 -2.895 1.070 5.801 4.129 8.316
0.10 (-2.52) -5.052 -4.975 1.134 7.161 6.915 9.631

MLE 0.05 (6.480) 80.478 101.466 1225.2 2127.4 14.265 34.901
0.06 (4.680) 39.283 46.423 794.81 969.06 8.786 27.046
0.07 (2.880) -3.761 -8.619 707.62 720.85 -3.746 25.367
0.08 (1.080) -46.08 -63.66 963.64 1382.8 -12.198 32.474
0.09 (-0.72) -91.66 -118.70 1562.8 2954.90 -13.130 32.299
0.10 (-2.52) -139.03 -173.74 2505.3 5437.18 -13.814 29.775

NLS 0.05 (6.480) 113.20 136.29 1651.0 3336.1 9.401 11.282
0.06 (4.680) 55.865 64.246 1068.5 1423.3 5.152 11.484
0.07 (2.880) -0.179 -7.801 942.44 953.84 -4.474 13.208
0.08 (1.080) -60.532 -79.847 1272.9 1927.8 -10.093 14.574
0.09 (-0.72) -123.16 -151.89 2059.9 4345.2 -10.288 11.799
0.10 (-2.52) -191.02 -223.94 3303.4 8206.0 -9.524 8.863

GMM 0.05 (6.480) 85.490 107.309 1271.1 2287.8 13.017 24.482
0.06 (4.680) 40.933 50.072 795.92 1001.9 8.115 22.363
0.07 (2.880) -0.265 -7.166 709.21 719.30 -3.649 19.676
0.08 (1.080) -45.063 -64.403 1010.98 1439.79 -11.633 22.081
0.09 (-0.72) -89.312 -121.64 1701.25 3163.44 -13.444 22.050
0.10 (-2.52) -138.47 -178.88 2780.02 5890.25 -13.561 20.844
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Table 7
Cox-Ingersoll-Ross SR Process: Simulation Results of the Drift Estimators
(1,000 replications with sample size in each replication =5,000)
(µ(Xt ) = β(α− Xt ), β = 0.23, α = 0.076)

a. Summary Statistics of the Sampling Distributions of the Parametric Estimators of α and β:
Method Para- Min Max Median Mean Variance M.S.E. Skew- Kurtosis

meters ness
NLS α̂ -1.058 6.090 0.056 0.238 1.533 1.559 7.911 124.38

β̂ -7.363 39.906 1.884 5.688 30.971 60.760 1.533 4.206
GMM α̂ -2.065 5.164 0.054 0.081 9.430 10−2 9.433 10−2 6.904 109.77

β̂ -5.492 26.294 1.752 4.355 14.606 31.614 1.568 3.657

b. Summary Statistics of the Sampling Distributions of the Estimators of µ(Xt ) at Different Xt

Method Xt (µ(Xt )(10−3 )) Median Mean Variance M.S.E. Skewness Kurtosis
(10−3 ) (10−3 ) (10−6 ) (10−6) (10−1 ) (10−1)

NONP 0.05 (5.980) 6.149 6.734 8.968 9.537 9.397 8.241
0.06 (3.680) 4.854 5.218 4.378 6.744 12.466 25.632
0.07 (1.380) 2.887 2.933 2.282 4.694 4.206 4.164
0.08 (-0.92) 0.940 -0.913 4.473 7.833 -3.163 9.548
0.09 (-3.22) -1.472 -1.550 8.199 10.988 -9.488 20.078
0.10 (-5.52) -3.394 -3.954 9.871 12.323 -6.403 10.949

NLS 0.05 (5.980) 72.505 101.25 1735.9 2643.5 20.103 95.22
0.06 (3.680) 28.161 43.470 1035.7 1193.9 18.568 93.07
0.07 (1.380) -11.550 -14.31 948.29 927.91 1.297 45.40
0.08 (-0.92) -49.03 -72.09 1473.8 1980.4 -13.805 39.06
0.09 (-3.22) -94.00 -129.87 2612.3 4216.3 -17.454 50.64
0.10 (-5.52) -140.00 -187.65 4363.7 7680.8 -17.700 53.66

GMM 0.05 (5.980) 56.920 74.948 856.05 1331.7 13.116 25.96
0.06 (3.680) 22.228 30.879 567.52 641.50 8.924 25.46
0.07 (1.380) -12.375 -13.191 570.54 591.77 -3.276 23.16
0.08 (-0.92) -42.935 -57.260 865.09 1182.6 -13.026 35.56
0.09 (-3.22) -77.483 -101.33 1451.2 2413.7 -16.349 44.34
0.10 (-5.52) -112.61 -145.39 2328.8 4285.4 -17.136 46.78
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Fig. 1. Sample Means of Diffusion Estimates at Different Xt

(1,000 replications with sample size in each replication=5,000)
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Fig. 2. Sample Means of Drift Estimates at Different Xt

(1,000 replications with sample size in each replication=5,000)
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Fig. 3. Brownian Motion with Drift: Empirical CDF of Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)
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Fig. 4. O-U Process: Empirical CDF of Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)
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Fig. 5. CIR Process: Empirical CDF of Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)

41



Fig. 6. O-U Process: ECDF of Drift Estimators at Xt = 0.07
(1,000 replications with sample size in each replication=5,000)
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Fig. 7. CIR Process: ECDF of Drift Estimators at Xt = 0.07
(1,000 replications with sample size in each replication=5,000)
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Fig. 8. ECDF of Nonp Diffusion Estimators at Different Values of Xt

(1,000 replications with sample size in each replication=5,000)
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Fig. 9. O-U Process: ECDE of Drift Estimators at Different Values of Xt

(1,000 replications with sample size in each replication=5,000)
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Fig. 10. CIR Process: ECDE of Drift Estimators at Different Values of Xt

(1,000 replications with sample size in each replication=5,000)
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