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Abstract

In this paper, a Monte Carlo simulationis performed to investigate the finite
sample properties of various estimators, based on discretely sampled obser-
vations, of the continuous-time Itd diffusion process. The simulation study
aims to compare the performance of the nonparametric estimators proposed
in Jiang and Knight (1996) with common parametric estimators based on
those diffusion processes which have explicit transition density functions.
The simulation results show that, with a large sample over a short sam-
pling period, athough al the parametric diffusion estimators perform very
well, the parametric drift estimators perform very poorly. However, both the
nonparametric diffusion and drift estimators perform reasonably well.
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1. Introduction

The purpose of this paper is to design and perform a small Monte Carlo simulation
experiment to investigate the finite sampl e properties of various estimation methods,
based on discretely sampled observations, of a continuous-time [td diffusion process

represented by the following stochastic differential equation (SDE):
dX; = u(Xpdt + o (X)dW 1)
with initia condition

Xt:X

0

where {W,, t > t,} isastandard Brownian motion process or a Wiener process. The
functions () and o?(-) are respectively the drift function (or instantaneous mean)

and the diffusion function (or instantaneous variance) of the process.

In particular, the simulation study aimsto investigate the performance of those com-
mon parametric diffusion function and drift function estimators, namely the MLE,
NLS(or OLS), and GMM estimators, aswell asthe nonparametric diffusion function
and drift function estimators proposed in Jiang and Knight (1996). It is noted that all
these estimators are devel oped when only discretely sampled data of the continuous-
time diffusion process are available. The continuous record of observation of the
process between the sampling pointsis unobservable. Therefore the data generating
process (DGP) in our simulation study requires that the explicit transition density
functions of the diffusion processes are known, in order that the realizations of the

process can be observed at discrete time along the exact continuous sampling path.



For this reason, our simulation study is based on those diffusion processes which
have explicit transition densities, i.e., the Brownian motion with drift process, the
Ornstein-Uhlenbeck process, and the Cox-Ingersoll-Ross squared-root process. The
simulation study provides us with some surprising yet interesting results, namely
that, with alarge sample over a short sampling period, even though all the parametric
diffusion function estimators perform very well, the parametric drift function esti-
mators can perform very poorly. However, both the nonparametric diffusion function
estimator and drift function estimator proposed in Jiang and Knight (1996) perform

well.

The paper isorganized as follows. Section 2 reviews the common parametric estima-
tors and the nonparametric diffusion function and drift function estimators proposed
for the 1t6 diffusion process defined in (??) when only observations of the process
a discrete time are available. Section 3 details the transition density functions and
the applicable common parametric diffusion function and drift function estimators as
well as the nonparametric diffusion function and drift function estimatorsfor each of
the diffusion processes on which our simulation study is based, namely the Brownian
motion with drift process, the Ornstein-Uhlenbeck process, and the Cox-Ingersoll-
Ross squared-root process. Section 4 outlines the experimental design of the Monte

Carlo simulationand analysestheresults. A brief conclusioniscontainedin Section 5.

2. Estimation of the Diffusion Process from Discretely Sampled Data

Estimation of the 1td diffusion process or stochastic differential equation (SDE)



defined in (??) has been considered in the literature for many years, with most of
the papers being concerned with estimating the drift and diffusion functions from
continuously sampled data. Unfortunately, in practice, more often than not we can
only obtain datain discrete time since the dynamics of the process can be much faster
than the sampling rate. With discretely sampled observations from the continuous
sampling path, identification and estimation of the continuous-timeltd diffusion pro-
cess proves to be much more complicated and difficult. Thefirst parametric estimator
of the coefficients of a stationary diffusion process from discretely sampled observa-
tionsisthe ML estimator proposed by Dacunha-Castelle and Florens-Zmirou (1986).
Other parametric estimatorsincludethe ML estimatorsderived by Lo (1988) for more
genera jump-diffusion processes, the method of moments based on simulated sam-
pling paths from given parameter values proposed by Duffie and Singleton (1993),
the purely theoretic approximate maximum likelihood (AML) estimator proposed
by Pedersen (1995), as well as the nonlinear least square (NLS) or ordinary least
square (OLS), or most commonly Hansen’s (1982) generalized method of moments
(GMM) based on the “ discretized" model. Recently, Hansen and Scheinkman (1995)
also derived moment conditions based on the infinitesimal generator. The first non-
parametric diffusion function estimator is proposed by Florens-Zmirou (1993) which
imposes no restriction on either the drift term or diffusion term, but her procedure
leaves the drift term unidentified and the diffusion function estimator can not be used
for the construction of the drift function estimator. Stanton (1996) devel ops approxi-
mations to the true drift and diffusion functions and estimates these approximations

nonparametrically. Ait-Sahalia (1996) proposes a nonparametric diffusion function



estimator based on the linear mean-reverting drift function for the strictly stationary
diffusion processes. We will notice later in this paper that the parameter estimators
of the linear mean reverting drift function are not robust in that they are extremely
sensitive to the sampling path (and/or the discrete observations along the sampling
path) and consequently perform very poorly even with a large sample over a short

sampling period.

Diffusion processes as defined in (??) are widely used in the finance literature to
model the dynamicsof certain financia variables, e.g., the stock prices, the exchange
rates, and the term structure of interest rates . Due to the estimation problem,
however, all the diffusion modelsin the finance literature have to rely on parametric
or semi-parametric specifications for the drift and diffusion functions in order to
implement available estimation methods based on discretely observed data. The
diffusion function is usualy specified as a power function of the stochastic process,
i.e, o(Xy) = oX{ (y = 0 for Merton (1973) and Vasicek (1977); y = 1/2 for
CIR (1985); y = 1 for Dothan (1978) and Brennan and Schwartz (1977, 1979,
1980); y = 3/2 for CIR (1980)). The drift function is typically specified as either
aconstant u(X;) = u (asin Merton (1973), Dothan (1978), and CIR (1980)) or a
linear mean reverting function 1 (X;) = B(a — X;), B > 0(asin Vasicek (1977), CIR
(1985), Brennan and Schwartz (1977, 1979, 1980), and Ait-Sahdia (1996)). Such
specifications allow estimation of the parameters via the use of common parametric

estimators, such as MLE, NLS (or OLS), or GMM. The discussion and empirica

1 SeeChan, et al (1992) for areview of various parametric spot interest rate models.



results in Jiang and Knight (1996), however, show that both parametric and semi-
parametric specifications impose very strong and unrealistic assumptions on the

underlying process of the model.

In Jiang and Knight (1996), a nonparametric identification and estimation procedure,
based on discretely sampled observations, for awide range of 1t diffusion processes
is proposed. Under mild regularity conditions, a nonparametric kernel estimator for
the diffusion function o2(X,) of the general diffusion process defined in (??) is

proposed as:

Z.nz_ll K(Xmﬁn_x)[x(iﬂmn — Xia,)?
>y AnK (F)
based on observing X; at {t = t;, 5, ..., t,} in the time intervd [O, T], with T >

62(x) =

2

To > 0 where Ty isapositive constant, { X; = Xa,, Xoa,» ---» Xna,} @€ n equispaced
observationsat {t; = Ap, t, = 2A,, ...,t, = nA} with A, = T/n, and K(-) isa
kernel density function satisfying regularity conditions. The nonparametric diffusion
function estimator is developed without imposing any functional form restrictions
on either the drift term or diffusion term with the drift term w(-) being a nuisance
parameter and restriction-free. Thus the nonparametric diffusion function estimator
captures the true volatility of the process. The variance of 52(x) can be consistently
estimated by V[62(x)] = 6%(x)/ Y_i, K(%5=*). Under a further condition that
there exists alimiting probability density function for the process or that the process
is stationary in the strict sense, based on the equation derived from the Kolmogorov

forward equation, a consi stent nonparametric drift function estimator is proposed as:

Lo 1dEPX) | L, P
A0 = Sl + 8205
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where 62(x) is the nonparametric diffusion function estimator in (2), p(x) is a
consistent kernel estimator of the marginal density function of the process. Thisisthe
first nonparametric estimator proposed in the literature for the drift function based
on discretely sampled observations. The variance of /i(x) can be obtained using the
8-method conditional on either Pp(x) or 62(x), or otherwise unconditionally if the
covariance of p(x) and 62(x) is known. In practice, abootstrapping technique could

be applied to derive the standard error of [ (X).

Thus the generd 1t6 diffusion process defined in (??) can beidentified nonparamet-
rically for both the drift and diffusion functions based on discretely observed data.
The fact that the identification and estimation of the drift function requires stronger
conditions than the diffusion function is similar to the so-caled “aiasing problem"
for asystem of linear stochastic differential equations (SDE), as discussed in Phillips
(1973) and Hansen and Sargent (1983). Phillips (1973) points out that, unless there
are sufficient a priori restrictions on the parameters of a system of linear stochastic
differential equations, we cannot distinguish between structures generating cycles
whose frequencies differ by integer multiples of the reciproca of the observation
period. Similarly, it isimpossibleto identify anonlinear diffusion process as defined
in (??) without imposing any structural restrictions on the model. Especially, thedrift
term of the diffusion process (univariate or multivariate) cannot be directly identified
on a fixed time interval, no matter how frequently the observations are sampled, as
the Cameron-Martin-Girsanov transformation (see e.g. @ksendall, 1992) can aways

be applied to give an otherwise unnoticeable change in the drift. The above proposed



estimator is based on the estimated diffusion function and marginal density function

and exploits the stationarity property of the process.

As some authors (see e.g. Merton, 1980) have aready observed, even though the
diffusion term of a stochastic process can be estimated very precisely when the
sampling interval is small, the estimates of the drift term tend to have low precision.
Our findingsin this paper not only confirm thisobservation but al so further reveal that
the parametri c estimates of the common drift function specifications can perform very
poorly even with large samples of data, no matter how frequently the observations
are sampled over a short sampling period. The following simple example can help
to illustrate the problem. Suppose that the log return of a stock price follows a
Brownian motion with drift process, i.e,, dinX; = udt + ocdW, where 1 and o are
constants. The ML estimator of w from equispaced discretely sampled observations
{Xt,=0, Xtps *» *» s Xi =7}, With A = X; — X;_,, is the average of log-returns, i.e,
= 1/T)Y" In(X,/ X)), 0r i = (InX1 —InXp)/T. Itiseasy to verify that 1
isaconsistent estimator of u as ji|Xo ~ N(u, 02/ T). However, it is also very easy
to see that, for any finite sample of observations, j1 is very sensitive to the first and
last observations of the sample and is actually determined only by these two values.
Thus, if we have a sample of, say, 5,000 observations, it is only the first and last
observations that matter for the estimate of . Moreover, i has no efficiency gains
even if we increase the sample size by reducing the sampling interval over fixed T.
Thus, it isnot hard to seethat the estimate of 1 will not berobustin that it will bevery

sensitive to the sampling path and/or the discrete observations along the sampling



path. Ontheother hand, whenthesamplinginterva issmall, theML diffusionfunction
estimator, 62 = Y1, (IN(X; / Xy, _,) — AA)?/ T, performs very well, regardless of the
poor performance of the drift function estimator as E[62|/i] = 02 + (1 — [1)?A and

Var[6?)i] = 22 [(n — D)?A + 07,

Our simulation analysis will focus on both the diffusion function estimator and the
drift function estimator. Of course, the nonparametric diffusion function estimator
requiresonly mildregularity conditions(i.e., A1-A6in Jiang and Knight, 1996), while
the nonparametric drift function estimator requires stronger conditions (i.e., A1-A8
in Jiang and Knight, 1996), i.e., the stochastic process must be at | east asymptotically
stationary in the strict sense. This excludes the application of the proposed nonpara-
metric drift function estimator to such processes as Brownian motion with drift and
geometric Brownian mation. It is noted that, in the finance literature, drift function
estimation has received much less attention than the diffusion function estimation.
Onereason isthat the diffusion function, as the second moment and the measurement
of instantaneous volatility of the stochastic process, is of more interest in modeling
the movements of interest rates, asset prices, or exchange rates. For instance, the
volatility of the riskless interest rate is one of the key determinants of the value of
contingent claims and one of the key factors determining optimal portfolio hedging
strategiesfor risk-averse investors. Therefore, to predict the movements of derivative
security prices, to hedge an investment portfolio, or to create acertain leverage within
aportfolio, the volatility of the prices of underlying assets is the major factor to be

considered. Another and maybe more direct reason is that, in the famous Black-



Scholes option pricing formula, the prices of derivative securities are affected by the
price of underlying assets only through its instantaneous volatility, i.e. the diffusion
function. Thedrift function does not appear in the option pricing formulaat al dueto
an assumption that, in the economy, there exists arisk-free asset with nonstochastic
rate of return. However, as Lo and Wang (1995) point out, predictability of an asset’s
return is typically induced by the drift and will affect the prices of options on that
asset, even though the drift term does not enter the option pricing formula. Moreover,
in models with stochastic spot interest rates, both the diffusion function and drift
functionwill enter the derivative security pricing formulation. Therefore the prices of
derivative securities in these cases are explicitly affected by the price of underlying
assetsthrough not only the diffusion function but also drift function. From thispoint of

view, the drift function estimationisasimportant asthe diffusion function estimation.

3. Diffusion Processes: Explicit Transition Density Functionsand Common Esti-

mators

As we have mentioned, our aim is to investigate the finite sample properties and
the performance of common parametric estimators and the nonparametric diffusion
function and drift function estimators proposed for the continuous-time Itd diffusion
process when only discretely sampled observations of the continuous sampling path
over a short time period are available. Therefore the data generating process (DGP)
for thesampling path in our simul ation hasto be continuousintime, whileredizations

along the continuous sampling path are observed only at discretetime. For thisreason,



wehavetofocusour simulation study on model swhich haveexplicit transition density
functions, namely the Brownian motion with drift process, the Ornstein-Uhlenbeck
process, and the Cox-Ingersoll-Ross squared-root process. For stationary diffusion
processes, the functional forms of the transition density functions corresponding to
specifications which are essentially different from the Ornstein-Uhlenbeck process
and the Cox-Ingersoll-Ross squared-root process are not known explicitly. As Wong
(1964) shows, one can only construct a stationary continuous-time Markov process
with known explicit transition density function from alinear functional specification
for the drift function w(-) and a quadratic function specification for the diffusion
function o2(-). In this section, we will detail the transition density function and
the applicable common parametric and nonparametric diffusion function and drift

function estimators for each of the above processes.

(8 TheBrownian Motion with Drift Process: The Brownian motion with drift process,

dX; = udt+odW, whereboth « and o are constants, hasanormal transition density

1 (x=X—p(t—t0))? i
————— exp{—E=2 200 with
/Zﬂdz(t—to) p{ Zdz(t—to) }

itsmarginal density function varying over time. Sincethe geometric Brownian motion

functiongivenby f(X; = X, t; Xy, = Xo, to) =

process, dX; = u X dt+o X, dW, impliesthat Y; = In X, followsaBrownian motion
with drift process, i.e.,, ,dY; = (u —0?/2)dt + cdW,, we do not consider separately
the geometric Brownian motion. Both the Brownian motion with drift process and

the geometric Brownian motion process are nonstationary.

Since the Brownian motion with drift process is neither strictly stationary nor has a

limiting probability density function, the aforementioned nonparametric drift func-

10



tion estimator cannot be applied. Thus the comparison of the performance between
parametric and honparametric estimators will have to be constrained only to the dif-
fusion function estimators. The maximum likelihood estimator (MLE) can of course
be used to estimate both the drift and diffusion for the Brownian motion with drift
process as the transition density function and hence the joint probability density func-
tion has an explicit form. It can be shown that the OL S estimators of 1 and o2 based
on the conditional mean and variance conditions (or the first and second moment
conditions) are identical to their MLE counterparts. However, GMM estimation is

not applicable to the Brownian motion with drift process due to its nonstationarity.

(b) The Ornstein-Uhlenbeck Process: The Ornstein-Uhlenbeck process, d X; = (o —

Xypdt + odW where o, 8, and o are constants, also has anormal transition density

1 (x=a—(o-—me #!10)?
expi— ,
J2r() Pl 220 }

where s(t) = ;—;[1 — e 28t-W] |f the process does display the property of mean

function given by f(X; = X, t; X, = Xo, to) =

reversion (8 > 0), thenasty - —ocoort —t; — 400, the margina density of
the stochastic process is invariant to time, i.e., the Ornstein-Uhlenbeck process is

stationary in the strict sensein the steady state.

The Ornstein-Uhlenbeck process has a limiting probability density function, thus
both the nonparametric diffusion function estimator and drift function estimator can
be applied. Since the transition density function and hence the joint probability
density function of the Ornstein-Uhlenbeck process also has an explicit functional
form, the maximum likelihood estimation (MLE) can aso be used. Further, as an

asymptotic stationary process, the parameters of Ornstein-Uhlenbeck process can

11



also be estimated using GMM, based on the exact conditional moment conditions.
That is, the GMM estimatesof «, 8 and o2 for the Ornstein-Uhlenbeck processcan be

obtained based on the following four exact conditional and unconditional moments:

1 n—1
Gn(e. B.0%) = ——= Y Fi(a. p.0?) (4)
n—1 i=1
with
€it1
(@ B.0?) = G

6i2+1 - E[6i2+1|XiAn]
(6i2+1 - E[6i2+1| XiAn])XiAn

where i1 = (Xirpa, — Xia,) — E[(Xispa, — Xia,) Xia,] and

E[(Xirna, — Xia) | Xia,] = 1 — €772 (a — Xia,) (5)
o2
E[6i2+1|XiAn] = %(1 — g Py (6)

where A, isthe sampling interval, and the exact conditiona variance of the changes
of X; over timeinterval of length A, isgiven by E[€Z ;| Xia,] = V[ Xit1a,| Xia,] %
These moment conditions correspond to transitions of length A, and are not subject

to discretization bias®. Sincethese GMM systemsare overidentified, we weighted the

2 To obtain the conditional mean and variance of the diffusion process, one can solve for
the transition density functions from the Kolmogorov backward equation of (X, t; Xy, to) /9t =
(X, )T (X, t5 Xyg, t0) /9 X+ 02(Xe, 02)02 f (X, t; Xy, to)/9 X2, and then calculatethe exact con-
ditional mean and variance.

3 It is noted that in most financial economics literature, using GMM to estimate the parameters
of the diffusion processes consists in first discretizing the continuous-time model, then based on the
discrete-time model deriving the moment conditions. The GMM approachin this caseno longer requires
that the distribution of the changesof X; be normal. Actually the discrete-time model specifiesthat the
instantaneous variance of the residual is proportional to the length of sampling interval, i.e., E[e?,] =
2(X¢a,) An. Therefore the asymptotic justification for the GMM procedure requires only that the

12



criterion optimally (see Hansen (1982)). The positive-definite symmetric weighting
matrix is chosen such that the GMM estimator of («, 8, o?) has the smallest asymp-
toti c covariance matrix. With the above conditional mean and variance conditionsand
the property of independent increments of the process, the nonlinear least squares

(NLS) estimators of («, 8, o%) can also be obtained.

(c) The Cox-Ingersoll-Ross Squared-Root Process: The Cox-Ingersoll-Ross (CIR)
squared-root (SR) process, dX; = B(a — X )dt + o X{?dW, where , 8, and o
are constants, has the transition density function given by f(X; = x,t; X, =
Xo, o) = ce"""(£)9214(2(uv)*?) with X; taking nonnegative values, where ¢ =

2p U=Cxe 0 v=cx,q=22 -1 and l4() isthe modified Bessel

Z1e P o2

function of thefirst kind of order . Thetransition distributionfunctionisanoncentral
chi-square, x’[2cx; 292, 2u], with 2042 degrees of freedom and parameter of non-
centrality 2u proportional tothe current level of thestochastic process. Theconditional

expected value and variance of X; isgiven by E[X;|Xo = Xo] = Xo€ #¢% + (1 —

distribution of interest rate changes be stationary and ergodic and that the relevant expectations exist.
The moment conditions used in the literature are as follows:

0 €it1
€11 Xia
Fie, ,0°) = oy
I €i2+1 — oA,
L (€i2+1 — 0%An) Xia,

for the Vasicek model, and

0 €it1
€11 Xia
F(a B,0% = "+ "
(@ £, %) €i2+1_(72XiAnAn
L (€i2+1 - UZXiA,-, An)XiA,.|

for the Cox-Ingersoll-Ross squared-root model, with €1 = X(i11a, — Xia, — B( — Xia,)An Where
An =ty —t = T/N due to equal sampling interval. It is clear that these moment conditions are
different from those derived from the continuous-time model. The misspecification and inconsistency
caused by “discretization” is discussed in Jiang and Knight (1996).

13



e =), Var[Xi|Xo = Xg] = Xo(%)(€F70 — e 2 -0) 4o (L) (1 — P02 |f
the process displays the property of mean reversion (8 > 0), thenasty, — —oco or
t —ty > o0, itsmarginal density function will approach a gamma probability den-
sity function, i.e. f(X; =x,t) = %)x”‘le“”X where w = 28/0? and v = 2a8/0?,

with mean « and variance %« /2. That is, the Cox-Ingersoll-Ross squared-root

processis aso stationary in the steady state.

As the Cox-Ingersoll-Ross squared-root process has a limiting probability density
function, both the nonparametric diffusion function and drift function estimators
can be applied. However, the ML estimator is not performed for the Cox-Ingersoll-
Ross squared-root process due to the complexity of the Bessel function 4. Similar to
the Ornstein-Uhlenbeck process, the Cox-Ingersoll-Ross squared-root process as an
asymptotic stationary process can a so beestimated using GMM. The GMM estimates
of «, B and o2 can be obtained from the exact conditional and unconditional moment

conditionsbased on its conditional mean and variance, i.e.,

E[(Xirna, — Xia) | Xia,] = 1 — €772 (a — Xia,) (7
2 o? _BA _28A o? _BAny2
Ele 11 Xia,] = F(e "—e ) Xia, +Ol(%)(1—e ") (8)

The estimation procedure is exactly the same asfor the Ornstein-Uhlenbeck process.

For the same reason, the NL S estimators of («, 8, o2) can also be obtained based on

4 The numerical optimization procedure, such as subroutine EQ4UCF of the NAG library could be
used to perform the ML estimation of the CIR process. However, it involves the evaluation of the
modified Bessel function of the first kind of order g, I4(x), over different intervals. When both x and
q are small numbers, 14(x) hasto be evaluated using, e.g. the backward recursion in Section 19.4.2 of
Luke (1977). For large values of x and/or g, the asymptotic expansion, e.g. in Olver (1965) has to be
used. Therefore the computation would be too intensive for aMonte Carlo study.
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the conditional mean and variance conditions.

Insert Table 1 around here

Table 1 summaries the stationarity, in the asymptotic sense, of each process and
identifies the common parametric and nonparametric estimators of the diffusion and
drift functions for each process. The Monte Carlo comparison will be based on the

simulation results of these estimators.

4. Monte Carlo Study: Parametric ver sus Nonparametric Estimators

The am of the Monte Carlo study is twofold. Firstly, to examine the finite sample
propertiesof the nonparametric diffusion function and drift function estimatorsdevel -
oped in Jiang and Knight (1996). Secondly, to undertake a detailed comparison of the
nonparametric estimator with common parametric estimators. As the nonparametric
diffusion function and drift function estimators are both functions of X;, the Monte
Carlo analysisishased on asample of estimatesfor each parametric and nonparamet-
ric estimator at given valuesof X;. In each replication, oneset of discrete observations
along the continuous sampling path of a known diffusion process is generated and
based on thissampledifferent estimatorsare applied. With the sample of estimatesfor
each estimator, we investigate its finite sample properties and compare their perfor-
mance based on their respective sampling distributions. The number of replications
for each estimator is set to be 1,000 and/or 5,000 and the sample size of observations
in each replication is 5,000 and/or 10,000. The comparison of the performance of

different estimatorsisfirst undertaken at one single point of X; (i.e, X; = 0.07), and

15



then extended to different pointsin an interval of X; (i.e.,, X; € [0.05, 0.10] or 5%to

10% of interest rate levels).

Thedata generating process (DGP) of each diffusion processisgiven by itstransition
probability density function and based on its Markovian property, the dynamicsof the
continuous sampling path is explicitly known. The discrete sampling observations
along the continuous sampling path are observed over equispaced intervals with
samplinginterval Ay. In al the simulations, the discrete observations of sample size
N from the sampling path are recorded over a time period fromt = —500Ay to
T = NA\ withsamplinginterval Ay = T/N. Wediscard thefirst 500 observations

to eiminate any start-up effects.

Thevauesfor the parameters of different processes are set to be approximately equal
to those of the corresponding interest rate models estimated in Chan, et a (1992)
using the American monthly Treasury bill yield data from June 1964 to December

1989, i.e,
(@) u = 0.0055, 6 = 0.0004 for the Brownian motion with drift process;
(b) « = 0.086, B = 0.18, o> = 0.0004 for the Ornstein-Uhlenbeck process; and

(€) @« = 0.076, 8 = 0.23,02 = 0.007 for the Cox-Ingersoll-Ross squared-root
process.

The modelsare, consequently, closeto thetrue term structure of interest rate models.
The starting value of the DGP is set to be equal to the average interest rate level of

thedataset in Chan, et a (1992), i.e. 0.067.
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As the relative performance of the parametric estimators and the nonparametric
estimatorsare similar for different sample sizes and different number of replications,
thesimulation resultsarereported for only onesamplesize(i.e. 5,000), onereplication
number (i.e. 1,000), and also one window-width for the nonparametric estimators.
The study is obviously not comprehensive. As we will mention later, our choice of
window-width is based on the numericad criteria that the integrated mean squared
error (IMSE) is minimized, the study of the optimal choice of window-width is not

pursued in this paper °.

Figures1 and 2 plot the samplemeans of different diffusionfunctionand drift function
estimates at different X, for each process, which gives a clear visual impression of
how each estimator performs. It is clear that while the parametric diffusion function
estimatorsperform very well for all processes, the parametric drift function estimators

all perform poorly. However, both the nonparametric diffusion function estimator and

5 In the nonparametric estimation procedure, both the kernel diffusion function estimator and the
kernel marginal density function estimator and its first derivative, which are used in estimating the drift
function, involve the choice of kernel functions and optimal window-width. The regularity conditions of
the kernel function of order r for both diffusion function and marginal density estimation are asfollows:
(i) The kernel K(-) is symmetric about zero, continuously differentiable to order r on R, belongs to
L2(R), and [ K(x)dx = 1;

(i) K(-) isof orderr: (" x K(x)dx =0,i =1,..,r — 1, and [ " x"K(x)dx # 0, [ x| |K(x)|
dx < oo.

The regularity conditions for the admissible window-width are as follows: as the samplesizen — oo,
and the sampling interval A,, — 0,

(i) hy — 0, nh, — oo, and nh'** — 0 for the diffusion function estimation;

(i) hy — 0, nh, — oo, and nh?+1 — O for the marginal density function estimation; and

(iii) hy — 0,nh3 — oo, and nhZ+1 — 0 for the first derivative of the marginal density function
estimation.

The above conditions ensure that for al cases, the bias in the estimator is asymptotically negligible
and at the same time the variance of the estimator goesto zero as sample size increasesto infinite. The
conditions are stronger than usual nonparametric estimation due to the correlation among the data and
the requirement for estimating the derivative of marginal density function.
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drift function estimator perform reasonably well.

Tables 2, 3 and 4 report the summary statistics of the sampling distributionsfor each
estimator of the diffusion function, including both nonparametric and parametric
estimators, for each process. For al three processes, the nonparametric as well as
the parametric diffusion function estimators perform extremely well, as measured
by the sample median, mean, variance, and mean squared error (M SE). The plots of
the empirical cumulative density function (ECDF) based on the sample of diffusion
function estimates for each estimator in Figures 3, 4 and 5 further show the charac-
teristics of the sampling distributionsfor the estimators of o2, at a given value of X;
(X; = 0.07), for al three processes. The sampling distributions are al highly con-
centrated around the true value of o-2. The nonparametric estimates of o2 is obtained
from 62 = 62(X,) for the Brownian motion with drift process and the Ornstein-
Uhlenbeck process and 62 = 62(X,)/ X, for the Cox-Ingersoll-Ross sgquared-root
process. The empirica cumulative density function is simply based on the sample
of estimates of o2 from the 1,000 replications, i.e., ECDF(x) = W where
X € (—o00, +00), M = 1,000 and 62 is the estimate of o2 in the ith replication,
i =1,2,..., M. Visudly there is not much of a difference between the sampling
distributions of the nonparametric diffusion function estimator and other parametric

estimatorsfor al three processes.

Tables 5, 6 and 7 report the summary statistics of the sampling distribution for the
parametric estimator of w for the Brownian motion with drift process, the parametric

estimators of («, 8) for the Ornstein-Uhlenbeck process and the Cox-Ingersoll-Ross
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squared-root process, aswell asthe parametric and nonparametric estimator of w(Xy),
at given value of X; (X; = 0.07), for the Ornstein-Uhlenbeck process and the
Cox-Ingersoll-Ross process. It is clear that, for all three processes, the parametric
estimators of the drift function parameters dl perform poorly, especialy estimators
of B, with its estimates spreading over a wide range of intervals as indicated by
the maximum and minimum values of the samples of the estimates. However, the
nonparametric drift function estimator for both the Ornstein-Uhlenbeck process and
the Cox-Ingersoll-Ross squared-root process performs reasonably well, measured by
the sample median, mean, variance, and mean sgquared error (MSE). Similarly, the
plots of the empirica cumulative distribution function (ECDF) based on the sample
of drift function estimates in Figures 6 and 7 show the sampling distributions of
the drift function parameter estimators for each process as well as the parametric
and nonparametric drift function estimator, at a given value of X; (X; = 0.07), for
the Ornstein-Uhlenbeck process and Cox-Ingersoll-Ross squared-root process. The
samplingdistributionsof the parameter estimatorsof i, «, and 8 overlap awiderange
of support. In contrast, the sampling distribution of the nonparametric estimator of
u(Xy), a X, = 0.07, is highly concentrated around its true value. Thereis clearly a
big difference between the sampling distributions of the nonparametric drift function

estimator and the parametric drift function estimators.

Insert Tables 2-7 and Figures 1-10 around here

In the af orementioned comparison we noted that the performance of the nonparamet-

ric diffusion function and drift function estimators were based on fixing values of X,
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i.e, X; = 0.07. All the simulation results and inferences thus could be interpreted
as conditional on X; = 0.07. We extended the Monte Carlo simulation study of the
nonparametric estimators from one single point (X; = 0.07) to an interval of X;
(Xt € [0.05, 0.10]). These simulation results of the nonparametric diffusion function
and drift function estimators are reported in Tables 2-7 as well. Tables 2-7 report
the summary statistics of the sampling distributions of the nonparametric diffusion
function and drift function estimators at different values of X;. The results show that
the nonparametric diffusion function and drift function estimators perform reason-
ably well at different values of the whole interval of X;(X; € [0.05, 0.1], or 5% to
10% of interest rate level). Figures 8, 9 and 10 plot the empirical cumulative distri-
bution functions (ECDF) of the nonparametric and parametric diffusion function and
drift function estimators at different values of X, the sampling distributions further
show that the performance of the nonparametric estimators over theinterval is quite

reasonable.

Some further analysis of the simulation results of the diffusion function and drift
function estimatorsareal so reportedin Tables 2-7. For instance, for the Cox-Ingersol -
Ross squared-root process, when compared to the normal density, the sampling
distribution of the nonlinear least square (NLS) estimator appears slightly skewed
to the left, while that of the generalized method of moments (GMM) estimator and
the nonparametric estimator, at different values of X, appear dightly skewed to
the right. The sampling distribution of the generalized method of moments (GMM)

estimator appears to be slightly more concentrated, and that of the nonlinear least
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square (NL S) estimator and the nonparametric appears to be less concentrated, while
that of the nonparametric estimator shows no consistent sign over different values of
X¢. The Wilcoxon matched-pairs signed-ranks test is employed here to analyze pair-
wise the differences of the absolute bias between different estimators based on the
sampleof estimates. The Wilcoxon matched-pairs signed-rank test isemployedfor its
robustness against the violation of the normality assumption. Thisis basically atest
of Ho: the median of the population of the differences between two random variables
is zero, against either H;: the median of the population of the differences between
two random variablesis positive (or non-negative) or negative (or non-positive). The
indicator in the brackets beside the statistics denotes whether the null hypothesisis

not rejected (+) or rejected (—) at the 5 % significance level.

An extension of the multi-sample median test is also conducted for the samples of
the nonparametric estimates at different points. The null hypothesis of the test is
Ho: al n populations have the same median, against its aternative H;: at least one
popul ation has a median different from the others. The results of thistest are reported
in Tables 2-4 as well, which indicate that the null hypothesisis not rejected for al

three processes at 5 % significance level.
Thefollowing are afew remarks on the above Monte Carlo simulation study:

Remark 1. The fact that the nonparametric diffusion function estimator performs
as well as the parametric diffusion function estimators and the nonparametric drift
function estimator outperformsal the parametric drift function estimators, including

the maximum likelihood estimator (MLE), might seem surprising. First of all, it
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should be noted that the Monte Carlo simulation study is designed to investigate only
thefinite sampleproperties of the estimatorsand by no means exploresthe asymptotic
properties of the estimators. Therefore all the simulation resultsand analysisare only
validfor thefinitesamples. Secondly, theissuewhich weare dealingwith hereismore
or lessan identification problem rather than an estimation problem. Poor performance
of the parametric drift function estimators smply imply that the drift term of a
diffusion process cannot be directly identified from the discretely sampled dataover a
short sampling period, no matter how large the sample. Hence any attempt to estimate
thedrift function parameters based on such asampl e, without using extrainformation,
isdoomed to fail. Comparing carefully the ML, NLS, and GMM estimators with the
nonparametric estimators, we can seethat theML, NL S, and GMM estimatorsemploy
only the information contained in the transition density functions of the diffusion
process, while the nonparametric estimator employs the information contained in
both the transition density function and the marginal density function. It is through
the marginal density function that we establish the relationship between 1 (X;) and
o (X;) given in equation (3), and based on this there is a unique drift function
corresponding to a given diffusion function and marginal density function. Further,
from an estimation point of view, sincethekernel density function estimator performs
very well for alarge sample of observations, the performance of the nonparametric
drift function estimator is thus mainly determined by the nonparametric diffusion
function estimator. In other words, if the nonparametric diffusion function estimator
performswell, then the nonparametric drift function estimator will also perform well.

However, in the case of parametric drift function and diffusion function estimators,
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since al the moment conditions are explicitly expressed in terms of timet and the
level of the diffusion process X;, there is no way to incorporate the information
contained in the limiting steady state of the process into the estimation. As a resullt,
as our experiments indicate, the drift function parameter estimates are not robust
in that they are extremely sensitive to the sampling path of the diffusion process
and/or the discrete observations al ong the sampling path. Therefore, even though al
the parametric diffusion function estimators perform very well, the parametric drift

function estimators can perform very poorly.

Remark 2. Since the parametric estimators of the linear mean-reverting drift func-
tion perform very poorly with finite samples, the semiparametric identification and
estimation approach proposed by Ait-Sahalia (1996) is not specifically included in
our Monte Carlo simulation analysis as, in his approach, the diffusion function is

estimated using the estimates of the linear mean-reverting drift function parameters.

Remark 3. The derivation of the moment conditions of the diffusion process based
on the infinitesimal generator, as proposed by Hansen and Scheinkman (1995), is
not necessary since the exact moment conditions of all the diffusion processesin our

simulation study can be solved from the Kolmogorov backward equations.

Remark 4. It is worthwhile pointing out that the choice of the values of («, 8, 02)
doesnot affect the simulation results and hence the performance of the nonparametric

diffusion function and drift function estimators.

Remark 5. Choice of the Kernel: In the nonparametric estimation of both thediffusion

function and the margina density function, whichisused in the estimation of thedrift
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function, we have to choose the kernel functions. The kernel we chose for both the
nonparametric diffusion function estimator and the marginal density function estima-
tor is the standard Gaussian density, K(x) = J%_ﬂexp{—x—zz}, which is continuously

differentiable of any order.

Remark 6. Choice of the Smoothing Parameter for the Kernel Marginal Density
Function Estimator: the actual window-width or smoothing parameter for the kernel
marginal density function estimator and its first derivative is set as h, = ¢,n*
where ¢, = ¢/In(n) and c is chosen to minimize the integrated mean squared error

(IMSE) of the estimator .

Remark 7. Choice of the Smoothing Parameter for the Kernel Diffusion Function
Estimator: in order to achieve convergence in distribution and consistency of the
nonparametric diffusion function estimator 62(x), the window-width or smoothing
parameter h, isrequired to converge to zero faster than in the case of nonparametric
density estimation, that is, not only h, — 0,nh, — oco,nh> — 0 as A, — O,
but dso nh?} — 0 as A, — 0. Therefore the actua window-width is chosen as
h, = c,n~Y3, where ¢, = ¢/In(n). Asin the case of nonparametric kernel density
estimation, implementation of the nonparametric kernel diffusion function estimator
also requiresthat we deal with the problem of sel ecting the window-width or smooth-
ing parameter h,. Our experiments show that the nonparametric kernd diffusion
function estimator 62(-) is sensitive to the choice of the value of h, in that different

values of h, generate different standard deviations for the sampling distribution of

6 This window-width choice was also used in Ait-Sahalia (1996) for marginal density function
estimation.
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the estimator. Whether the above admissible window-width represents the achievable
optimal rate of convergence is unknown to us. It is thus clear that further research
is required concerning the optimal choice of the window-width h,,. Thisresearch is
beyond the scope of this paper and hence not pursued in this study. However, it is
noted that both the nonparametric kernel density estimator and the nonparametric
kernel diffusion function estimator can be regarded as a weighted averaging scheme
in which the role of the window-width is to determine the span of the sampling
of points and therefore the relative weights over different points, given the kernedl
function. In the case of the nonparametric kernel diffusion function estimator, it is
not hard to see that a wider window-width means the estimate is an average with
significant weights over alarger number of pointsand, hence, tendsto have asmaller
variance. On the other hand, with wider window-width, the fluctuating movements of
the diffusion function over an interval might be averaged out and the estimate tends
to have increased bias. The trade-off for the choice of the value of h,, is as follows.
For alarger value of h,,, the estimated diffusion function 52(x) tends to be smoother
in x, therefore the estimates tend to have higher bias but smaller variance, and vice
versa. Moreover, given the criteriafor the bias and variance of the estimates, alower
h,, tends to be a stronger requirement than a higher h, for the sampling density of
discrete observations. Therefore the choice of window-width involves the delicate
task of balancing the two components. the variance on the one hand, and the bias
on the other. This trade-off leads to the choice of minimizing the integrated mean
squared error (IMSE) as a natural criteria for the optimal window-width selection.

Therefore, in our simulation the coefficient ¢ of the window-width sequence is aso
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chosen to minimize the numerical IMSE 7.

5. Conclusion

From the Monte Carlo simulation results reported in the previous section we note
that, based on alarge sample of discrete observations over a short sampling period,
both the nonparametric diffusion function and drift function estimators proposed in
Jiang and Knight (1996) perform reasonably well. However, even though the para-
metric estimators of the diffusion function parameters all perform very well, none
of the parametric estimators of the drift function parameters performs satisfactorily.
This fact further suggests that, with the same data set, the identifications for the
drift function and the diffusion function are not necessarily mutually dependent and
the identification of the diffusion function is less troublesome than that of the drift
function. In other words, a correct identification of the diffusion function does not

necessarily rely on a correct identification of the drift function. Thisfinding justifies

7  Unfortunately, we normally do not have knowledge of the true underlying process that generates
the dataand the minimum IM SE criteria are not availableif one wantsto estimate the diffusion function.
The various ways to get around this problem for the nonparametric functional estimation, such as the
cross-validation approach, the plug-in approach, the smoothed bootstrap approach, etc. (see surveys by
Delgado and Robinson (1992) and Jones, Marron, and Sheather (1996)), can used here aswell. Similar
research can be pursued for the automatic selection of the optimal window-width of the nonparametric
diffusion function estimator. Sincethe nonparametric diffusion function estimator hasarelatively strong
requirement for the smoothness of the diffusion function o2(X;), a very small h, is not desirable. In
practice, a reference value for h,, can be determined as following from the minimizing the variance
with fixed amount of bias. Since the consistent estimator of the variance of 62(x) is given by %
let « be the alowable relative error of the estimate at, say, 95% confidence level in terms of the
percentage of the true diffusion o2(x), we can set the width of the 95 % confidence band such that
1.96(%(‘;*’)1/2 +02(x) < (L+a)o?(X) or —1.96(%)1/2 +02(X) > (1— a)o2(x), where Ly (X)
is estimated by setting h, to be the optimal window-width which minimizesthe integrated mean square
error of L1(x). As%(x) — o(x) in probability, therefore we have h, < 5% (:4)2, Thusthe value
of h, can be calculated from h* = sup{h,|h, < %(ﬁ)z,w € |}, where | representsthe inference
area.
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the nonparametric identification and estimation procedure, proposed for the 110 diffu-
sion processin Jiang and Knight (1996), in which the diffusion function isidentified
and estimated without imposing any a priori restrictions on either the drift term or
the diffusion term. The Monte Carlo simulation results al so suggest that, for both sta-
tionary and non-stationary processes, the nonparametric diffusion function estimator

captures the true volatility.
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Tablel

Diffusion Processes: Stationarity and Common Estimators

Diffusions Stationarity Estimators of o2(-) Estimators of y(-)
BMwD® No NONP@ MLE (or OLS) MLE

o-u® Yes(© NONP, MLE, NLS,GMM | NONP, MLE, NLS, GMM
CIR SR© Yes® NONP, NLS, GMM NONP, NLS, GMM

Note: (a)—the Brown

(d)—the Nonparametric estimator;
(e)— the process is strictly stationary in the steady state as the initial

t —1tg — +oo.
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(c)—the Cox-Ingersoll-Ross sgquared-root process;
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Table2
Brownian Motion with Drift: Simulation Results of the Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)

(62(Xt) = 02 = 0.0004):

a Summary Statistics of the Sampling Distributions of the Nonparametric Estimator of o2 at Different Values of X;:

Xt Median Mean Variance M.SE. Skewness Kurtosis Wilcoxon
(104 | @t | @) | ao (1072) (1072) Test® (10-2)

0.05 3.998 3.997 5.836 5.89%5 5872 1320 8.779 ()
0.06 3.998 3.997 5,836 5.89%5 5872 1320 8779 (+)
0.07 3.998 3.997 5.336 5.8%5 5872 1.320 8.779 (1)
0.08 3.998 3.997 5.836 5.89%5 5872 1320 8.768 (+)
0.09 3.998 3.997 5,836 5.89%5 5872 1320 8.790 (+)
0.10 3.998 3.997 5,836 5.89%5 5872 1.320 8.790 ()

b. Summary Statistics of the Sampling Distribution of the Parametric Estimators of o2
Method Median Mean Variance M.SE. Skewness Kurtosis

@4 | @b | @ty | @) | @o?) (10-2)

MLE 4.000 3.998 5.877 5.887 -5.708 1.108

c. Median Test for Multi-Sample of Nonparametric Estimates at Different Values of Xt:

Hypothesis Ho: Test Statistic® [ Critical Value (5%)
Samples of Nonparametric Estimates at
Different Values of X Have the Same Median 0.600 16.92

Note: (&) The null hypothesis of the pair-wised Wilcoxon test is Ho: the median of the samples of
the absolute bias of the nonparametric estimates at certain value of X, is not greater than that of the
maximum likelihood (ML) estimates. In the large sample case (say n > 25), an approximate statistic of
the Wilcoxon matched-pairs signed-ranks test is z = ﬁ;ﬁ’é%n[—ﬂ]ﬁj which follows a standard normal
distribution, where n is the sample size, T is the sum of the positive ranks of the difference between
two samples based on the null hypothesis. The test statistic reported in the tableis corresponding to the
above null hypothesis Hq at 5 % significance level. “+" in the brackets denotes the hypothesisis not
rejected, “—" denotes the hypothesisis rejected.

(b) The extension of the multi-sample median test dtatistic is given by x? =
2, ZLl[@jé—iE‘j)—z] which follows the x?2 distribution with degrees of freedom (n — 1), where n
is the number of independent samplesto be tested, E;; is the combined sample median of all the sam-
ples, O, is the number of observationsin the jth sample which are less than the combined sample
median, and O,; is the number of observationsin the jth sample which are greater than the combined
sample median.
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Table3

Ornstein-Uhlenbeck Process: Simulation Results of the Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)

(62(Xt) = o2 = 0.0004)

a Summary Statistics of the Sampling Distributions of the Nonparametric Estimator of o2 at Different Values of X;:

Xt Median Mean Variance M.SE. Skewness Kurtosis | Wilcoxon
(104 | @4 | @) | ot (1072) (1072) Test@®

0.05 3.999 3997 5.873 5.883 -5.863 1.568 1437 (+)
0.06 3999 3997 5.872 5.882 -5.845 1.659 1441 (+)
0.07 3.999 3997 5.871 5.881 -5.824 1.752 1.439 (+)
0.08 3.999 3997 5.871 5.881 -5.800 1847 1437 (+)
0.09 3.999 3997 5.871 5.881 -5.774 1.943 1433 (+)
0.10 3999 3997 5.871 5.881 -5.745 2.040 1.430 (+)

b. Summary Statistics of the Sampling Distributions of the Parametric Estimators of o2:

Method Median Mean Variance M.SE. Skewness Kurtosis Wilcoxon
(104 | @4 | @y | @oth Test®

MLE 3.944 3.999 7.141 7.144 1.536 1.852

NLS 3935 3.992 9.692 9.760 -0.509 1.382 -3.548 (+)
GMM 3.942 3.995 7.725 7.792 -0.773 2.602 -17.34 (+)

. Median Test for Multi-Sample of Nonparametric Estimates at Different Values of X;
Hypothesis Ho: Test Statistic® | Critical Value (5%)
Samples of Nonparametric Estimates at

Different Values of X have the Same Median 1.800 16.92

Note: (a) See Table 2 note (a); (b) See Table 2 note (b).

Table4

Cox-Ingersoll-Ross SR Process: Simulation Results of the Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)

(62(X) = 02Xy = 0.007X¢)

a Summary Statistics of the Sampling Distributions of the Nonparametric Estimator of o2 at Different Values of X;

Xt (02(X0)10~%) | Median Mean | Vaiance | M.SE. | Skewness | Kurtosis | Wilcoxon
(104 | 0% | @0 | 1o 101 101 test®
0.05 (3.500) 3.864 3879 7.740 22111 0.3%5 4377 572
0.06 (4.200 4.320 4382 5519 7525 5.356 6.333 6070
0.07 (4.900) 4,934 4,958 3819 4154 9.373 2438 1372 (1)
0.08 (5.600) 5,651 5.668 5.566 6.030 8.012 24.95 “LA71 (+)
0.09 (6.300) 6.307 6.323 14.4% 14548 6.835 14.46 1842 ()
0.10 (7.000 7.016 7.083 21643 22.337 3.469 4528 2380

b. Summary Statistics of the Sampling Distributions of the Parametric Estimators of o2:

Method Median Mean Variance M.SE. Skewness Kurtosis | Wilcoxon
(1073 | @@03d (10°8) (10°8) (10 (101 Test@®
NLS 6.795 6.945 5774 6.074 -7.787 48.414 171 (+)
GMM 6.856 6.982 3421 3.454 1.777 -0.187

. Median Test for Multi-Sample of Nonparametric Estimates at Different Values of X;

Hypothesis Ho: Test Statisticl) | Critical Value (5%)
Sample of Nonparametric Estimates at
Different Values of Xt have the Same Median 11.61 16.92

Note: (a) See Table 2 note (a) for the explanation of the test statistic. For CIR process, the Wilcoxon
test is based on the sampling distribution of 62, which is calculated from 62 = 62(X;)/ X; for the
nonparametric diffusion function estimator, and the null hypothesis of the pair-wised Wilcoxon test is
against the sample of GMM estimates. (b) See Table 2 note (b).



Table5

Brownian Motion with Drift: Simulation Results of the Drift Estimators

(1,000 replications with sample size in each replication =5,000)

(1(Xt) = p = 0.0055)

Summary Statistics of the Sampling Distribution of the Parametric Estimators of p:

Method Para- Min Max Median Mean Variance MSE Skewness Kurtosis
meters | (102) | 102) | 103 | (10°3) (1074) (1074 (1072) (1072)
MLE 7] -6.689 8.149 4.254 4.144 4.132 4.147 -8.398 5371
Table6
Ornstein-Uhlenbeck Process: Simulation Resultsof the Drift Estimators
(1,000 replications with sample size in each replication =5,000)
(n(Xt) = Bl — Xt), f = 0.18, « = 0.086)
a Summary Statistics of the Sampling Distributions of the Parametric Estimators of « and f:
Method Para- Min Max Median Mean Variance MSE Skew- Kurto-
meters ness sis
MLE @ -2.801 5.606 0.057 0.079 8.056 10 2 8.059 102 8.907 195.86
B -2.119 29.176 2.653 5.487 17.059 45.227 1.293 2.654
NLS @ -2.695 7.509 0.059 0.112 0.219 0.220 10.523 144.34
B -3.079 24.667 3.707 7.205 22.825 72171 0.779 0.345
GMM @ -3.266 7.765 0.058 0.111 0.339 0.340 12.896 195.83
B -0.926 24.941 2.514 5.656 19.298 49.289 1.248 1.544
b. Summary Statisticsof the Sampling Distributions of the Estimators of «(Xt) at Different Xt:
Method | X¢(e(X¢) (1073)) | Median Mean Vaiance | M.SE. | Skewness | Kurtosis
1073 | @o® 1076 1076 10 10
NONP 0.05 (6.480, 4.720 4.570 1.120 4.773 -7.419 5.893
0.06 (4.680 2.567 2.479 1.057 5.996 -4.902 4.745
0.07 (2.880 1.426 1.135 1.025 4.084 -2.013 4976
0.08 (1.080 -0.073 -0.075 1.026 2.360 1.068 6.882
0.09 (-0.72) -2.886 -2.895 1.070 5.801 4.129 8.316
0.10 (-2.52) -5.052 -4.975 1.134 7.161 6.915 9.631
MLE 0.05 (6.480, 80.478 101.466 1225.2 2127.4 14.265 34.901
0.06 (4.680 39.283 46.423 794.81 969.06 8.786 27.046
0.07 (2.880 -3.761 -8.619 707.62 720.85 -3.746 25.367
0.08 (1.080 -46.08 -63.66 963.64 1382.8 -12.198 32474
0.09 (-0.72) -91.66 -118.70 1562.8 2954.90 -13.130 32.299
0.10 (-2.52) -139.03 -173.74 2505.3 5437.18 -13.814 29.775
NLS 0.05 (6.480, 113.20 136.29 1651.0 3336.1 9.401 11.282
0.06 (4.680 55.865 64.246 1068.5 1423.3 5.152 11.484
0.07 (2.880 -0.179 -7.801 942.44 953.84 -4.474 13.208
0.08 (1.080 -60.532 -79.847 1272.9 1927.8 -10.093 14.574
0.09 (-0.72) -123.16 -151.89 2059.9 4345.2 -10.288 11.799
0.10 (-2.52) -191.02 -223.94 33034 8206.0 -9.524 8.863
GMM 0.05 (6.480, 85.490 107.309 12711 2287.8 13.017 24.482
0.06 (4.680 40.933 50.072 795.92 1001.9 8.115 22.363
0.07 (2.880 -0.265 -7.166 709.21 719.30 -3.649 19.676
0.08 (1.080 -45.063 -64.403 1010.98 1439.79 -11.633 22,081
0.09 (-0.72) -89.312 -121.64 1701.25 3163.44 -13.444 22.050
0.10 (-2.52) -138.47 -178.88 2780.02 5890.25 -13.561 20.844
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Table7

Cox-Ingersoll-Ross SR Process: Simulation Results of the Drift Estimators
(1,000 replications with sample size in each replication =5,000)
(1(X) = Bla — Xt), B = 0.23,a = 0.076)

a Summary Statisticsof the Sampling Distributions of the Parametric Estimators of « and f:

Method Para- Min Max Median Mean Variance M.SE. Skew- Kurtosis
meters ness
NLS G 1058 | 6.090 0.056 0.238 1533 1559 7911 12438
B 7363 | 39.906 1.884 5.688 30.971 60.760 1533 4.206
GMM & 2065 | 5.164 0.054 008l | 9430102 | 9433102 | 6904 109.77
B 5492 | 2629 1752 4.355 14.606 31614 1568 3.657
b. Summary Statistics of the Sampling Distributions of the Estimators of «(Xt) at Different Xt
Method | X;(2(X{)(10~3)) | Median Mean Variance | M.SE. | Skewness | Kurtosis
@0® | @a?® | @b | a® a0 @ao b
NONP 0.05 (5.980) 6.149 6.734 8.968 9537 9.397 8.241
0.06 (3.680) 4854 5218 4378 6.744 12.466 25.632
0.07 (1.380) 2.887 2933 2282 4,694 4,206 4164
0.08 (-:0.92 0.940 0913 4473 7833 3163 9.548
0.09 (-3.22) 1472 1550 8.199 10.988 9483 20.078
0.10 (552 339 3954 9.871 12.323 -6.403 10.949
NLS 0.05 (5.980) 72505 101.25 1735.9 26435 20.103 95.22
0.06 (3.680) 28.161 43470 1035.7 11939 18568 93.07
0.07 (1.380) 11550 1431 948.29 927.91 1297 4520
0.08 (-:0.92 -49.03 -72.09 14738 1980.4 -13.805 39.06
0.09 (-3.22) 9400 | -12987 26123 42163 17.454 50.64
0.10 (552 14000 | -187.65 4363.7 7680.8 ~17.700 53.66
GMM 0.05 (5.980) 56.920 74.948 856.05 13317 13116 25.9
0.06 (3.680) 22228 30.879 567.52 64150 8.924 2546
0.07 (1.380) 12375 | 13191 57054 5OL.77 3276 2316
0.08 (-:0.92 42935 | -57.260 865.09 11826 -13.026 3556
0.09 (-3.22) 77483 | -101.33 14512 24137 -16.349 2434
0.10 (-552) 11261 | -145.39 232838 42854 -17.136 26.78
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a.Brownian Motion with Drift: Nonp, ML Estimates of o2
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Fig. 1. Sample Means of Diffusion Estimates at Different X;
(1,000 replications with sample size in each replication=5,000)
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a. O—U: Nonp, ML, NLS, GMM Estimates of w(Xy)
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Fig. 2. Sample Means of Drift Estimates at Different X;

(1,000 replications with sample size in each replication=5,000)



a. ECDF of Nonp Estimator of o2 b. ECDF of ML Estimator of g2
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Fig. 3. Brownian Motion with Drift: Empirical CDF of Diffusion Estimators
(1,000 replications with sample size in each replication=5,000)
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a. ECDF of Nonp Estimator of o2 b. ECDF of ML Estimator of g2
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a. ECDF of Nonp Estimator of o2 b. ECDF of NLS Estimator of 2
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(1,000 replications with sample size in each replication=5,000)
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a. Empirical CDF of Nonp Estimator of wu(Xt)

b. Empirical CDF of ML Estimator of w(Xt)
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Fig. 6. O-U Process. ECDF of Drift Estimatorsat X; = 0.07
(1,000 replicationswith sample size in each replication=5,000)
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Fig. 7. CIR Process: ECDF of Drift Estimatorsat X; = 0.07
(1,000 replications with sample size in each replication=5,000)
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b. Ornstein—Uhlenbeck Process:

ECDF of Nonp Estimatar of o at Different Values of Xt

a. Brawnian Motion with Drift Process:
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Fig. 8. ECDF of Nonp Diffusion Estimators at Different Values of X;
(1,000 replications with sample size in each replication=5,000)
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Fig. 9. O-U Process. ECDE of Drift Estimatorsat Different Values of X;

(1,000 replications with sample size in each replication=5,000)
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Fig. 10. CIR Process. ECDE of Drift Estimatorsat Different Values of X;
(1,000 replications with sample size in each replication=5,000)
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