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Practical Issues in Forecasting Volatility
Ser-Huang Poon and Clive Granger

A comparison is presented of 93 studu's thut conducted tests ofvohifility-forccastiug melhods on a
wide range of financial asset returns. The survey found that option-implied volatilify provides more
accurate forecasts than timc-scrics models. Among the time-series models, no model is a clear
jvhvicr, although a possible rankiiig is as folhnos: historical volatility, generalized autoregressive
conditional heteroscedasticity, and stochastic volatility. The survey produced some practical
suggestions for volatility forecasting.

V
olatility forecasting pkiys an important
rolf in investment, option pricing, and risk
management. We conducted an extensive
review of the vol a til ity-forecasting

research in the last 20 years (Poon and Granger 2003)
and provide here a summary and update of our
findings. The definition of volatility we used is tho
standard deviation of returns. The assets studied in
the 93 articles surveyed included stock indexes,
stocks, exchange rates, and interest rates from both
developed and emerging financial markets. The
forecast horizon ranged from one hour to one year
(a few exceptions extended the forecast horizon to
30 months and to five years).

We review three main categories of time-series
model—namely, historical volatility, models in the
autoregressive conditional heteroscedasticity
(ARCH) class, and stochastic volatility models—as
well as forecasting based on implied volatility
derived from option prices. We present here a
description of these models, a summary of our
survey results, and a discussion of the characteris-
tics of market volatility that affect the choice ot'
model, common objectives of voUitility forecasting,
and the impact of outliers. Finally, we provide
some practical advice on volatility forecasting.

Types of Volatility Models
The four types of volatility-forecasting methods
we surveyed are historical voUitility (HISVOL),
ARCH models, stochastic volatility, and option-
implied volatility.

The HISVOL mode IS

(1)
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where
fTj = expected standard deviation at time /
(j) = the weight parameter
a = historical standard deviation for periods

indicated by the subscripts
This group includes random walk, historical aver-
ages, autoregressive (fractionally integrated) mov-
ing average, and various forms of exponential
smoothing that depend on the values of ^, the
weight parameter.

The second group is the ARCH model and its
various extensions, including the nonlinear ones:

f; = tJ + E,, (2a)

where
r, - return of the asset at time /
)a = average return
t;, = residual rettu^ns, defined as

(2b)

where Zf is standardized residual returns and
conditional variance, defined as

h, =

is

(2c)

k=l

in which
tl) = a constant term
p - number of autoregressive terms
/ = order of the autoregressive term
P - autoregressi\'e parameter
i] - number of moving-average terms
k = order of the moving-average term
a = moving-average parameter

The stochastic volatility (SV) model is defined as
/-, = M-M:,, (3a)

vvith
t:,=;,exp(0,5/g (3b)

January/February 2005 www, cf a pubs. o rg 45



Financial Analysts Journal

and

(3c)

where u, is an innovation term. Tiie variables u, and
Zj could be correlated.

The fourth type of model deals with option-
implied standard deviation (ISD) based on the
Black-Scholes (1973) model and various generali-
zations. If 5̂  denotes the option-pricing model and
c is the price of the optitin, then

c = X (S, X, a, K, 7"), (4)

where
S - price of the underlying asset
X - exercise price
o - volatility
R = risk-free interest rate
T - time to option maturity

The ISD is the \ alue that causes the right-hand side
of Equation 4 to equal the market price of option c.

In liquation 1, the historical volatilities—that
is, c,_|, a,_2, .. ., cr,_.j—have to be calculated some-
how from historical returns before the \'olatility
mode! can be estimated. The various ways of cal-
culating these historical volatilities and the differ-
ent lengths of sample data used can lead to very
different volatility forecasts. Recent research
shows that daily realized volatility calculated from
intrdday squared returns measured at 5-minuteor
15-minute intervals produces the best results.

The models given in Equations 2 and 3 are
similar in being hased on fitting the return distri-
bution. This characteristic is convenient for the
user because daily returns are available for many
financial time series. The disadvantage of such an
approach is that the volatility structure is then
constrained by the choice of return distribution.
For example, V"'' (i,- + "V !' a,, should not exceed

1 in the ARCH model (Equation 2), The SV model
(Equation 3) is more flexible than the ARCH model
because of the second innovation term, u,. But the
introduction of u, makes direct inference of Cj
much more complex. Limited research findings
published to date provide no clear evidence to
indicate that SV provides better forecasts than
HISVOL or ARCH.

Option-implied volatility (Equation 4) works
in a way that is compieteiy different from the three
time-series models. Technically, such information
as historical returns and historical volatility is not
needed. On the assimiption that option-pricing
function g is correct, a single option price is suffi-
cient to produce an estimate of future \'olatility.
Option market prices appear to have a premium.

however, over Black-Schoies prices. Hence, Black-
Scholes ISD tends to be higher than actual volatil-
ity. To overcome this bias, historical volatility is
used for calibration, as follows:

and
'( + 1

'T+l

\MSD.+c,w\ih t = 1.2 7 - 1

{5b)

where a and |5 i\rc regression parameters and cTŷ j
is the \'olatility forecast at 7 + 1. The time f option
price and ISD contain volatility information on the
future up to option maturity.

Volatility-Forecasting Contests
In our review of the results in 93 \ olatilit)' studies,
we excluded all the papers that had no forecasting
content and the papers with forecasts that are not
out of sample. Table 1 simimarizes outcomes for
the 66 papers that provided pairwise comparisons
(GARCH stands for generalized autoregressive
conditional heteroscedasticity). The first column
should be read as follows: A > B means Model A
performed better than Model B.

Table 1. Summary of Pairwise Outcomes for
66 Studies

NumLxTot Percentage of
Comparison OiilconiL' Studie.s Studifs

HISVOL > ARCH
AKCH > HISVOL

HISVOL > ISD

[SD > HISVOL

GAKCH > ISD

ISD > ARCH

SV> HISVOL

SV > AKCH

ARCH >SV

ISD > SV

22
17

8

26

1

17

3

3

1

1

56
44

24

76

6
94

The overall ranking suggests that ISD provides
the best forecasts, followed by HISVOL and
CARCH with roughly equal performance, although
HISVOL may perform somewhat better. The num-
ber of studies involving SV is so small that we could
not make any clear statement about the SV model.

The success of the implied-volatility method
should not be surprising because these forecasts are
based on a larger and timelier information set.
Options are written on limited classes of assets,
however, and are traded in only a handful of
exchanges. For example, equity stocks in many
enu'rging markets are important components of an
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international equity portfolio but many of these
stocks and stock market indexes have no iisted
option contracts. So, time-series models, although
inferior to option-implied models, will continue to
play an important role in volatility forecasting.

Among the 93 papers, 17 studies compared
alternative versions of ARCH. Among the 17 stud-
ies, the more general GARCH clearly dominated
ARCH. In general, models that incorporated vola-
tility asymmetry, such as EGARCH ("E" for "expo-
nential") and CJR-GARCH ("GJR" for Glosten,
jagamiathan, and Runkle 1993), performed better
than GARCH, but certain specialized specifications,
such as fractionally integrated GARCH and regime-
switching GARCH did better in some studies.

An important question that has not yet been
addressed is: How well do the volatility-forecasting
models complement each other cross-sectionally
and through time? Different methods may be cap-
turing the information set differently, and which
method is superior may depend on market condi-
tions. Unfortunately, little research has been done
on the performance of combined volatility fore-
casts. Only 3 of the 93 papers surveyed evaluated a
combination of forecasts. Two studies found it to be
helpful, but another did not.

Also rarely discussed in the 93 papers is
whether one method is significantly better than
another. The forecast evaluation criteria in the
papers often bear no relation to the objectives of
\olatility forecasting as we outline them later.
Thus, although we can suggest that a particular
method of forecasting volatility is the best, we can-
not state that the benefits of a method outweigli the
costs of using it rather than some simpler approach.

The comparisons we have made here are
broadly based and brush aside many finer points.
For example, the papers reviewed did not all study
identical assets over the same sample period or
adopt the same forecast horizon. Moreover, the sur-
vi\'orship bias in the publication process inevitably
leads to some studies being conducted simply to
support the viewpoint that a particular method is
useful (that is, the paper might not ha\'e been sub-
mitted or accepted for publication if the required
result had not been reached). This bias is one of the
ob\ ious weaknesses of a stLidy such as ours.

Characteristics of Financial
iViarket Voiatiiity
Financial market volatility hasa number of charac-
teristics that are generally well cited in the litera-
ture. One of the facts is that volahlity persists and
clusters. This characteristic is illustrated in Figure
1. Panel A shtiws realized volatility of returns (cal-

culated from cumulative intraday returns) on the
S&P 500 Index for the period 1 February 1983
through 31 luly 2003.' The S&P 500 volatility pre-
sented was truncated at 4 percent so that the series
could be studied without the overwhelming dom-
inance t>f three large values (10.0 percent on 19
October 1987,14.3 percent on 20 October 1987, and
7.7percenton29Octoberl997). Panel A shows that
high-volatility days tend to group together and that
the same is true for low-volatility days.

Panel B of Figure 1 presents the autocorrelation
and partial autocorrelation coefficients of the first
1,000 lags of S&P 500 realized volatility.^ Volatility
persistence manifests itself in the autocorrelation
coefficient, which remains significantly greater than
zero after 1,000 lags. The partial autocorrelation
coefficient approaches zero as lag length extends
beyond 25. This strong persistence gives rise to the
"long memory" effect, which we return to later.

Another important characteristic of the finan-
cial markets is \'o[atility asymmetry, which is par-
ticularly prominent in the equity markets. Figure 2
shows the impact of S&P 500 returns on S&P 500
volatility on the contemporaneous day and volatil-
ity on the following day. The scattergram is based
on the following regression:

where n^y is the realized volatility calculated from
intraday S&P 500 returns, D ĵ is a dummy variable
that takes the value of 1 for r, < 0 and 0 otherwise,
and similarly, D^T is 1 for r,_i < 0 and 0 otherwise.
With (J| > \h "Snd |33 > P4 in absolute terms, the
impact of returns on volatility is clearly stronger in
bear markets than in bull markets.

A similar phenomenon appears in interest rate
series, but interest rates tend to be dominated by a
level effect (whereby high volatility is associated
with high interest rate levels and low volatility is
associated with low interest rate le\'els).

Some stock markets have experienced shifts in
voiatiiity; an example is provided by the returns
on the South Korean Stock Exchange Composite
Index (KOSPl), shown in Panel A of Figure 3. The
shift that is so visible coincided with the Asian
crisis in 1997. A shift in volatility level can also be
detected for some exchange rates and interest
rates—possibly coinciding vvith the timing of pol-
icy changes. The impact on interest rates of the U .S.
Federal Reserve's policy introduced in the 1980s
can be cieariy seen in the U.S. dollar one-month
MBOR, shown in Panel B of Figure 3.̂  But in the
300 or more financial time series that we have
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Figure 1. Realized Volatility of S&P 500 Returns, 1 February 1983 through 31 Juiy 2003
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encountered, we hav'e found no steady linear
upward trend in financial market \'o!atility.

As noted, strong volatility persistence, or long
memory, is another well-known fact about finan-
cial market volatility; it has been extensively dis-
cussed (see, e.g., journal of Econometrics 1996, voi.
73, no. 1). Researchers have noticed that the auto-
correlation of the function of returns, lr,f with d >
0, is slow to decay, particularly when i/ - 1 (Taylor
1986). Table 2 presents the sum of autocorrelation
coefficients of the first 1,000 lags for 20 seiected
financial time series and two simulated ARCH
processes—GARCH(1,1) and GjR(l,l). Both simu-
lated processes had specifications that produced
strong volatility persistence. We used four types of
daily volatility proxies; absolute return, Zpdri);
squared return, I.pir'^2); logarithm of absolute
return, Sp(ln|;-|); and trimmed absolute return,
ZpdTrl). (Trimming is explained in the note to
Table 2.) The logarithmic transformation and trim-
ming procedure had the effect of reducing the
impact of outliers, whereas taking the square of the
returns amplified the influence of large values.

i4igh autocorrelation \'alues indicate long
memory. Thus, Table 2 suggests that financial time
series have far longer memories than do stationary
CARCH and GJR processes. Alt the time-series
voiatiiity models were designed to capture \'olatil-
ity persistence. The stationary GARCH and GJR
models had memories that were too short to fit the
fact of long memory in volatility.

The fractionally integrated (FI) model is the
only linear model that has a memory long enough
to fit the empirical observatitms, and some research-
ers have found Fl volatility models to forecast well.
The concern is that, e\'en though Fl models may
match the characteristic of long memory, they may
still not reflect the trtie volatility process.

The important question is: What is the eco-
nomic explanation forsuch a long memory in finan-
cial market volatility? Do we expect financial
marketsand market participants to has'e memories
as long as the memory implied in Fl models?

At the time of this writing, researchers have
ft>und alternative nonlinear volatility models that
will produce a iong memory in absoiute returns but
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Figure 2. S&P 500 Voiatiiity Asymmetry, 1 February 1983 through 31 July 2003
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the \'oLitility process has siiort-memory dynamics.
These modeis include the bre îk process in Granger
and i-iyung (2004), regime switching in Diebold
and inoue {2001), volatility components in î ngie
and Lee (19^4), and the stocliastic unit root process
in Yoon (2003). These alternative modeis are \r\\x\-
iti\'eiy appealing, and some of them provide a bet-
ter fit to the empirical dnta than tiie Fl models
because of additit)nal parameters. Whether they
pro\'!de better Forecasts is an empirical question.

Objectives of Volatility
Forecasting
ilie main reason for the prominent roie that \'olal:il-
ity plays in financial markets is that volatility is
associated witii risk and uncertainty, Ihe key
attributes in investing, option pricing, and risk man-
agement. Heteroscedasticity, a technical term for
time-\'tirying voiatiiity, makes the estimation of
asset-pricing reiationships inefficient. Hence,
econometric techniques are needed in controlling
for heteroscedasticity in financial market modeling.

ARCH and SV are useful in this pursuit because they
are estimated on the basis of return distribution,
ARCH models, in addition, are easy to impiement.

Risk and Risk M a n a g e m e n t . Voiatiiity isa
measure tor tiie second moment of a disti'ibution.
The first moment is the mean, the third is skevvness,
and tile fourth, kurtosis. For a normally distributed
\'ariabie, skevvness is always 0 ':i]'^d kurtosis is
aiways 3. So, the first two moments alone are suffi-
cient statistics for summarizing the characteristics
of the entire bell-shaped distribution. It is, there-
fore, convenient to eqLiate return and risk to the
first two moments of the return distribution, and
indeed, this assumption is fundamental in
Markowitz mean-\'ariance portfolio theory and the
capital asset pricing model.

Researchers ha\e iong noted, hovve\'er, that
financial asset returns are not ntM'mally distributed
(.Mandeibrot i%3; Fama l%3). Data collected since
tile 1960s show that stock market returns are usu-
ally negatively skewed and have high kurtosis. In
the United States, for example, the excess kurtosis
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Figure 3. Shifts in Volatility

A. Daily Returns on KOSPl, May 1975-July 2003
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(i.e., kurtosis in excess of 3) is 2.37 for 20-day retii rns
and 35.58 for l~day returns. If the period before
1985 is excluded, excess kurtosis is 44.07 and skew-
ness is -2.1 for daily returns. Both figures are sta-
tistically different from zero. Similar patterns
prex'ail in stock markets all o\'er the world. They
are clear evidence that stock market returns are
anything but normal. ARCH standardized residu-
als are closer to normal but are still not normal. An
asset-pricing model that takes into account higher
moments and extreme events is needed.

If risk is defined as the possibility of negative
returns and large losses, the lower quantiles are a
more relevant risk measure than \ olatility because
high volatility may be driven entirely by a large
positive return. The industry practice of reporting
x'alue at risk (VAR) is, in fact, reporting the 1 per-
cent quantile {or 0 if this figure is nonnegati\ e). The
1 percent quantile for U.S. stock market returns is
-2.37percent, but the maximum one-day loss in the
United States in the post-1985 data is 22.8 percent.
Hong Kong's 1 percent quantiie is -2,53 percent,
which is smaiier than the U.S. result, hut the maxi-
mum one-day loss is a staggering 40.54 percent.
Thus, the quantile is an incomplete description of

the tail size. Expected shortfall is a better measure,
and a good model of expected shortfall must
involve extreme-value techniques.^

Option Pricing. An option represents a finan-
cial claim whose payoff is contingent on the occur-
rence of an uncertain event. For an equity call
option, for example, the payoff will depend on how
much the terminal stock price exceeds the exercise
price. The risk-neutral valuation principle estab-
lished by Black and Scholes means that the mean
return on the stock is irrelevant and \'olatility is the
most important factor in determining option prices.
Hence, by observing option prices traded in the
market, we can infer the market's view of future
volatility over the option's maturity. Given the
sophistication and efficiency of the financial mar-
kets in processing information, it is no surprise that
option-implied volatility has been shown to pos-
sess stronger x'olatility-forecasting power than
time-series models using only historical informa-
tion. (3ut there is a catch: Option-implied volatilities
of different strike prices can be vastly different. The
question that follows, then, is: Which of the implied
volatilities should one use?
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Table 2. Sum of Autocorrelation Coefficients of First 1,000 Lags in Selected Financial Time Series
and Simulated ARCH Processes: Various Start Dates, Ending 22 July 2003

Data Series

Stock imirke! itidcxes

S&P 500 Composite (U.S.)

DAX 30 Industrial (Germany)

NIKKEI 225 Stock A\ erage (Japan)

CAC40(Hrancf)

FTSE All Share and FTSK 100

Average

Stocks

C'adbury Schweppes

Marks and Spencer Group

Shell Transport

FTSE Small-Cap Index

Average

Exchiiugf raffs

U.S, dolIar/U.K. pound

Australian dollar/U.K. pound

Mexican peso/U.K. pound

Indonesian rupi.ih/U.K. pound

Average

hitfrcsl md's

U.S. one-month Furodollar depoi^its

U.K, interbank one-month rate

Venezuelan par Brady Lxuid

Korean overnight call

Average

Coiiiiiioditics

Gold, U.S. dollar/troy oz. (London Bullion Market),
fixing, close

Silver, U.S. cents/troy O7. (London Bullion
Market), fixing

Brent oil (one-month forward), U.S. dollar/barrel

Average

Average tor .ill

Simulated GARCH

Mean

Standard deviation

Simulated G|K

Mean

Standard de\ iation

N

9,676

9,634

8,443

8,276

8,714

7,418

7,709

8,115

4,437

7,942

7,859

5,394

2,964

8,491

7,448

3>279

2,601

6,536

7,780

2,389

10.000

10,000

l p ( n)

35.6H7

75.571

89.559

43.310

30.817

54.484

4S.607

40.635

38.447

25.381

3H.342

56.308

32.657

9.545

20.814

29.832

281.744

12.644

19.236

54.643

92.107

125.304

45.504

11.532

60.782

54.431

1.045

1.044

1.443

1.704

llMr-^^)

3.912

37.102

23.405

17.467
12.615

IH.400

14.236

17.541

20,078

3.712

15,142

24.652

0.052

1.501

4.427

7.783

20,782

0.080

9.444

12.200

10.752

39.305

8.275

5.464

17.683

14.113

1.206

1.232

2.308

2.048

IpOnlf-IJ

27.466

41.840

84.257

22.432

18.394

.18.888

85.288

67.480

44.711

.̂ 5.152

5H.158

84.717

72.572

13.760

31.504

50.640

327.770

22.401

32.485

57.276

110,2.33

140.747

88.706

9.882

74.778

65.445

0.478

0.688

0.870

0.408

Ip(iTr|)

40.838

74.IS6

95.784

46.539

33.194

54.110

50.2:15

42.575

40.035

28.533

40.344

57.432

48.241

i 4.932

21.753

35.589

331.H77

25.657

14.800

56.648

108.496

133.880

52.154

11.81

65.448

61.555

1.033

1.0H6

1.894

1.660

Note: Tr denotes trimmed rotums, whereby all returns in the 0,! percejit lail are forced to t<ike the 0.1 percent quantilu \ alue.

Figure 4 presents the implied volatilities ot"
Vodaphone PLC stock options <is of 25 July 2003.
The options traded on Vodaphone shares have
maturities ranging from one month to two years.
The .Y-axis is the "moneyness," defined as S/Xe~' ,
where S is the Vodaphone share price on 25 July
2003, Xis the strike price, t'is the base of the natural

logarithm, r is the T-bill rate, and T is the option
maturity. If Black-Scholes is correct, there can be
only one value for implied volatility for all options
of the same maturity. Tn Figure 4, the implied vol-
atility at tho low strike price is higher than that at
the high strike price, and the difference is most
marked for the short-maturity option.
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Figure 4. Black-Scholes Implied Volatility for
Vodaphone PLC Stock Options,
25 July 2003
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options of a particular maturity T satisfy the follow-
ing relationship.

(7)

the fitted risk-neutral distribution will have large
negative skevvness and high kurtosis. On the one
hand, the risk-neutral and actual stock price distri-
butions do not have a strict one-to-one relationship
{Camara forthcoming), btit we can at least conclude
that the market does not price options based on the
assumption that the stock price has a lognormal
distribution or that stock returns have a normal
distribution. Otherwise, the implied-volatility
graph should be flat. On the other hand, as the time
horizon increases, the distribution of long-horizon
returns tends toward normal because of the central
limit theorem. This conclusion is snpptM'ted by the
actual retLU'n data and the flatter implied volatility
in Figure4 for the options with the longer maturities.

Setting the Biack-Scholes model aside, note
that using the implied volatility of at-the-money
(ATM) options is more popular in volatility fore-
casting than using the implied volatilities of the
other options. "I'he strong liquidity of ATM options
also means that they are the least likely to be con-
taminated by pricing frictions. Implied s'olatility
based on ATM options has been shown time and
again {e.g., Christensen and Prabhala 1998; Fleming
1448; Fderington and Guan 2000; Li 2002) to ha\'e
the greatest information content about tutu re \'ola-

tility, even if Black-Scholes is not the correct model
for pricing options. Fquation 5 is often used to cor-
rect any bias caused by model misspeci fiea tion.

Thorny Outlier Issues
Outliers are large observations that come from a
distribution different from the one generating day-
to-day financial market variations. These outliers
ha\'e a big impact on volatility estimation, model-
ing, and forecasting, but time-series volatility mod-
els based only on historical price information are ill
designed for predicting unforeseen and unprece-
dented extreme events. Therefore, to penalize these
models for errors that arise because of unpredict-
able outlier events is not logical. To reduce the influ-
ence of hea\'y tails and occasional large shocks,
some have suggested that volatility modeling and
forecast evaluation be based on absolute or logarith-
mic returns instead of squared returns (e.g.. Pagan
and Schwert 1990). The importance of tail e\'ents in
financial markets and risk management cannot,
however, be denied. So, outliers might be better
studied separately with the use of a crisis model or
techniques based on extreme-value theories.

If we accept the argument for separate e\ alua-
tion, the next question is: How should o]^c handle
these outliers? The ways in which outliers have
heen tackled in the literature depend greatly on the
outliers'size, thefrequency of their occurrence, and
whether the outliers produced an additive or a
multiplicative impact.

For rai-e and additive outliers, the most com-
mon treatment is simply to remo\'e them from the
sample or ouiit them in the likelihood calculation
(Kearns and Pagan 1993). For rare and multiplicative
outliers that produce a residual impact on volatility,
some researchers ha\e included a dummy \ ariable
in the conditional volatility equation after the outlier
returns ha\e been dummied out in the mean equa-
tion (Blair, Poon, and Taylor 2001), as follows:

(8a)

i th

and

(8c)

where \\i\ and ij/̂  represent the crash impact on,
respectively, the retum and the conditional vari-
ance. In Blair et al., D; is 1 when t refers to, for
example, 19 October 1987 and 0 otherwise.
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For outliers that occur more often, rescarcliers
may consider that the market has gone into d dif-
ferent mode and tliey may use a switching model
(Friedman and Laibson *

with

and

where F is calculated as

(Mb

(9c)

1

ihn:j-_|<-

if m::

and (7 is a constant term.
Researchers have documented that volatility

caused by large returns (positix'e or negative) is less
persistent than day-to-day volatility (Kderington
and Lee 2001). If the outliers or group of adjacent
large numbers are caused by a shift in volatility
level, then such a level shift should be adjusted as
in Aggarwal, lnclan, and Leal (1999):

'•, - M + i: , , ( l U . i )

with

and

h, -

(U)b)

(10c)

where D,, . . ., D,, are dummy variables taking a
value of 1 from each point of sudden change ot
\'ariance onwards and 0 otherwise.

The biggest difficulty in practice is that, e\'en
long after the outlier events, it is hard to identify
which of these four cases the outlier belongs to—
whether the event to be modeled is important
because of size, frequency, additive impact, or mul-
tiplicative impact.

Option-implied volatility is a market-based
volatility estimate and is the method least influ-
enced by historical outliers, unless the outlier
events fundamentally changed the option market's
perception of future volatility. For example, some
have claimed that the option market behaved as if
it had "crashophobia" after the October 1987 mar-
ket drop (Rubinstein 1994).

The SV models ha\ e a noise term in the \'ola-
tility dynamic and are thus more flexible and less
affected by large outliers than the AKCH modeis,
which are, in turn, less severely affected than his-
torical methods. Flistorical standard de\'iation will
be affected by ^^n outlier as long as it is in the

volatility estimation period. For x'olatility estima-
tion in all time-series models, we recommend trim-
ming the outliers by imposing a cap on the largest
\ alues (see Huher 1981 for details) if one believes
that the outlier e\'ent is an exception and not likely
to be repeated.

Tips for Volatility Forecasters
All forecasting exercises consist of three main
stages: Define the objectives of the forecast, develop
and test competing models, and forecast the \'ola-
tility values. All three stages involve complex
issues, but the first stage crucially determines the
course of action to be taken in the second and third
stages. Here is some practical advice.

Stating the Objectives of Volatility Fore-
casting. First, be very clear about the objective (see
the section "Objectives of Volatility Forecasting"),
and accept the fact that no single model will fit all
purposes. In risk management, for example, mod-
els for the tail distribution are needed.

Second, recognize what is being forecasted and
its use. For example, if the volatility defined in a
volatility swap contact is the standard deviation of
a specified period, then you must adjust for option-
implied bias. If the objective is to price an option,
you must not correct for the implied \'olatility bias
because the bias will be canceled cmt when implied
volatility is fed back into the pricing model.

Building Volatility Models and Producing
Forecasts. High-frequency data produce more
accurate estimates for actual volatility and pro-
\'ide nn>re accurate volatility forecasts than low-
frequency data. Note, however, that the frequency
should not be "ultrahigh." In a developed market,
such as the United States, a five-minute inter\'al
has been generally recommended. The measure-
ment interval will be longer for less liquid mar-
kets. Andersen and Bollersiev (1998) and Oomen
(2004) provicle some guidelines for determining
the optimal frequency.

Volatility is a measure of average deviation
from the mean. For a small sample, the sample
mean is an extremely noisy estimate of the true
mean in many financial time series. This flaw will
have a direct impact on any volatility estimate or
forecast. The mean estimate can be impro\'ed only
by lengthening the sample period, not by sampling
the data more frequentlv. Hence, a common prac-
tice in the stock and currency markets is to take
deviation from zero based on the observation that
the daily and weekly mean returns in speculative
markets are close to zero.
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Returns on speculative assets are not indepen-
dently and identically distributed. Hence, variance
of long-horizon returns is the aggregation (not the
multiple) of single-period \'ariances. The option-
implied model provides volatility forecasts over
fhe option's life. Any attempt to scale option-
implied volatility to match a different horizon by
using the square root of time will introduce error,
the magnitude of which will depend on the slope
of the volatility term structure.

Historical standard deviations are model free
but greatly depend on how they are calculated
(whether they are calculated from daily or weekly
returns, whether the sample period is, for exam-
ple, three or five years, whether the calculation
covers overlapping periods, and so on). Condi-
tional volatility models, such as ARCH and SV,
and option-implied volatility models are spared
these complications, but they are subject to model
misspecifications.

Implied volatility for equity series is known to
be unstable and is plagued with measurement
errors and the \ariations caused by bid-ask
spreacis. Some intertemporal averaging (using, for
example, the five-day average) and the use of past
implied \'olatility as an instrumental \ ariable have
been shown to be helpful. Implied volatility usually
dominates other \'olatility forecasts, but using the
implied volatility of index options for the smaller
markets, such as Sweden, works less well (Frenn-
berg and Hansson 1995).

Option-implied volatility is also widely docu-
mented to be biased. It under forecasts low \ olatil-
ity and overforecasts high volatility; on average,
implied-volatility estimates are greater than actual
volatility. Because measurement error in option
prices and noise in estimating actual volatility do
not give a direction to the hias, the upwardly biased
implied-volatility estimate has been linked to a
volatility risk premium. Equation 5 provides an
effective way to correct this bias.

Evaluating Volatility-Forecasting Methods.
Be cautious about claims of superior toivcasting per-
formance. Take care to check that the study included
out-of-sample forecasts and that the forecast errtir
statistics differed significantly among models. What
were the forecast evaluation criteria? If the evalua-
tion was based on squared \'ariance errors, then the
standard error oi the error statistics (often not
reported) will be large because of the difficulty in
estimating the fourth moment for thick tails.

Different cost functions will favor different
forecasting methods. For example, nonlinear
GARCH forecasts may produce smaller mean abso-
lute errors than exponentially weighted moving

average (EWMA) forecasts, but the tighter CARCH
forecasts are likely to produce more VAR violations
than FWMA forecasts.

As fhe forecast horizon lengthens, the advan-
tage of sophisticated volatility models diminishes.
For a horizon exceeding one year, Figlewski (1997)
found that volatility forecasts deri\-ed from using
low-frequency data from a sample period at least
as long as the forecast horizon in the simple histor-
ical method produced the best result. Alford and
Boatsman (1995) found that using median histori-
cal volatility of comparable companies adjusted for
industry and size worked best for five-year-ahead
equity volatility forecasts.

Conclusion
Financial market volatility is clearly forecastable.
Research has shown that the forecasting power for
stock index volatility is 50-58 percent for horizons
of 1 to 20 trading days. The one-day-ahead forecast-
ing record for exchange rates is 10-15 percent and
is likely to increase by about threefold if the L'.V post
\'olatility is measured more accurately. The one-
week-ahead and one-month-ahead records for
forecasting short-term interest rates have been doc-
umented to be, respectively, 8 percent and 24 per-
cent. The current debate focuses on how far ahead
one can accurately forecast and to what extent vol-
atility changes can be predicted.

Based on fhe forecasting results, option-
implied x'olatility dominates time-series models
because the market option price fully incorporates
current information and future volatility expecta-
tions. Between historical volatility and ARCH
models, we found no clear winner, but they are
both better than the stochastic volatility model.
Despite the added flexibility and complexity of SV
models, we found no clear evidence that they
provide superior \'olatility forecasts. Also, high-
frequency data clearly provide more information
and produce better volatility forecasts, particu-
larly over short horizons.

The conclusion that the option-implied
method provides the best forecast does not violate
market efficiency because accurate x'oiatility fore-
casts do not conflict with underlying asset and
option prices being correct.

Options are not available for all assets, so using
historical volatility must be considered. These
models are not necessarily less sophisticated than
ARCH models. For example, the realized-volatility
model of Andersen, Bollersiev, Diebold, and Labys
(2003) is classified as a historical volatility model.
The important aspects of using historical models
are(l) that actual volatility be measured accurately
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and (2) that when high-frequency data are avail-
able, that information improves volatility estima-
tion and forecasts.

A potentially useful area for future research is
whether forecasting power can be enhanced by
using exogenous variables. For example, Bittling-
mayer (1998) linked voiatility to macroeconomic
news and systemwide factors; Spiro (1990) and
Glosten et al. found a positive relationship between
interest rates and volatility; Bollersiev and Jubinski
(1999) found a positive relationship between trading

\'olume and volatility; Hamilton and Lin (1996)
showed that \-tilatility is higher during recessions.
Taylor and Xu (1997) fit 120 seasonal factors (repre-
senting hour, day, and week) to the conditional
variance. What the literature has not yet shown is
how these relationships improve \'olatility forecasts.

Poon worked on this project whik she was a
visiting scholar in thc Economics Depnrtimvit of the
Uiiivcrsitif of California at San Die^^o. She is grateful to
the ihiiversity of California at Sun Diego for its •support.

Notes
In the early parl of the sample pericid, we measured intra-
day return5 at 311-minute iind 15-minLite intiTvalK becausf
tht' return series contained significant autucurrt'l.itions,
possibly a^ a result of the loss frequently traded stocks. In
the more recent ptirt of the sample period, n-niinute returns
were used.
The iiutocorrelation coofticient measures the unaMidition.it
correl.ition between two series, \vhere.̂ ^ the p.irti.il autocor-
relation coefficient measures the relationship between two
series conditional on the relationships of all pr('\'iou.s laĵ s.
For example, one v\ould compute the partial for laj:; 2 by
estimating the regression twice. The first regression would
be the regression of the series on its digged 1 wiiues. The
residual \a!ueot the first regression wouki then be used to
regress on the series' laĵ ged 2 values. The rt'j;ression coef-
ficient of the second regression would be the partial auto-
correlation at lag 2.

The Federal Reserve's objective for open-market
operations—purchases and sales of U.S. Treasury and ted-
eriil agency securities—during the l̂ Htls gradually shifted
toward attaining a specified le\ el of the federal funds rate.
Tlie PI volatility models used in many papers alknv a linear
trend in \ ol.itility. One exception is the specification used by
Bollersiev and Mikkeisen (! W9!. Hwang and Satchell (I W,S)
made an adjustment specifically to renu)\ e this linear trend.
Hxtreme-value theory is a branch ot statistics that has its
main focus on the tail distribution. Returns and other oti.ser-
vations that fall in the lail region are by definition large in
magnitude and rare in occurrence.
Teirhnically, frequent large numbers should not be called
"outliers" because outliers shouid be rare.
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