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General Restrictions on Prices of Financial Derivatives
Written on Underlying Diffusions

Abstract

It is shown that in any diffusive one-factor model of the term structure, the prices of bonds and

of term structure puts decrease as the short-term interest rate increases. However, these prices

need not be monotone in the short-term rate, if that rate can experience jumps.

An important comparative statics implication of the monotonicity result for diffusive models

is that to a higher short-term interest rate corresponds a yield curve that lies uniformly above the

curve that corresponds to a lower short-term rate. Furthermore, if the diffusion that describes the

short-term rate is also homogeneous, then two yield curves that are measured at different dates

cannot intersect when drawn from the same time origin. If empirically they do intersect, then the

short-term rate cannot be described by a one-factor homogeneous diffusion.

It is also shown that if the second partial derivative w.r.t. to the short-term interest rate of the

drift of the one-factor diffusion describing that rate is less than or equal to 2—special cases being

the linear drift models—then the prices of deterministic-coupon bonds and term structure puts

are convex in that rate.

The last result is derived using probabilistic representations of solutions to parabolic partial

differential equations. The same methodology is used to derive restrictions on prices of European,

American, and Asian options when the underlying price follows a stochastic volatility diffusion.

Bounds, asymptotic results, and representations are derived for different linear differential

transformations of derivative price functions like option’s delta, rho, and theta. An example from

these results is the fact that the rho of a European call written on a stochastic volatility underlying

asset is equal to the price of a digital call with the same exercise price, the same time to

expiration, and the same underlying asset as the call, multiplied by the time to expiration and by

the exercise price.

The methodology is described in sufficient detail to allow for its ready application in a variety

of situations.



General Restrictions on Prices of Financial Derivatives

Written on Underlying Diffusion Processes

1   Introduction and Summary

This paper is a sequel to Bergman, Grundy, and Wiener (1996); it further explores general

restrictions on prices of financial derivatives written on underlying diffusions.

After a brief review of probabilistic solutions to PDEs which are used extensively in this

paper, general restrictions on term structure derivative prices are deduced in Section 3. The

setting is that of a diffusive one-factor model of the short-term interest rate, particular instances

of which where extensively investigated in the financial literature. See Black and Karasinski

(1991); Constantinides (1992); Cox (1975); Cox, Ingersoll, and Ross (1980, 1985); Brennan and

Schwartz (1979); Brown and Dybvig (1986); Chan et al. (1992); Courtadon (1982); Dothan

(1978); Duffie and Kan (1993); Ho and Lee (1986); Hull and White (1990); Longstaff (1992);

Marsh and Rosenfeld (1983); Merton (1973); Pearson and Sun (1994); and Vasicek (1976). It is

shown in Section 3 that in such a setting, if the terminal payoff function of an interest rate

derivative, as well as the dividend paid to it, are non-increasing in that rate, then its price is also

non-increasing in that rate. An explanation is given for why this is no longer true if the short-term

interest rate process may experience jumps. Examples for such derivatives are zero-coupon

bonds and term structure puts, ie,1 put options written on bonds or directly on the interest rate.

An immediate comparative statics implication is that in a diffusive one-factor model of the

interest rate, to a higher short-term rate corresponds a yield curve that lies uniformly above the

1 The modern British convention is used, by which “eg” and “ie” are written without the periods. This

is kinder to the eye.

yield curve that corresponds to a lower short-term rate; the two do not intersect. Furthermore, if,
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as is true of most diffusive one-factor models, the drift and the diffusion functions are also

independent of time, ie, the diffusion is homogeneous, then two yield curves that are measured at

different dates cannot intersect when drawn from the same time origin. If empirically they do

intersect, then the short-term rate cannot be described by a one-factor homogeneous diffusion.

Another result is that if the second partial derivative w.r.t. to the short-term interest rate of the

risk-adjusted drift of the one-factor diffusion describing the short-term rate is less than or equal

to 2—special cases being the linear drift models—then the prices of zero-coupon bonds and term

structure puts are convex in that rate. The majority of the one-factor models considered hitherto

in the literature postulate drifts that are linear in the short-term rate, and, therefore, the prices of

bonds and term structure puts are convex in the short-term rate in all these models.

This convexity result is derived using the methodology developed in Bergman (1983). According

to it, properties of a linear differential transformation of a financial derivative’s price function—like

option’s delta, rho, or any other “Greek” quantity—are arrived at in the following way. First, the

linear differential transformation, or operator, is applied to the partial differential equation (PDE)

and to the boundary and end conditions which the derivative’s price function satisfies. Notably,

the PDE is almost always of the parabolic type. Second, the order of partial derivatives in the

PDE is interchanged to get a new parabolic PDE in which the transformed price function serves

as the “solution” function. This function can then be represented as a probabilistic solution which

uses the information embodied in the coefficients of the new PDE and in the transformed

boundary and end conditions.2 In many important cases, this probabilistic solution allows the

derivation of general properties of the transformed price function. A brief review of the mathematical

results concerning probabilistic solutions to parabolic PDEs in a context relevant to the applications

herein is provided in Section 2.

This methodology, that in Section 3 is used to explore general properties of interest rate

derivatives, is used again in Section 4 to investigate general restrictions on American style

2 Fournié et. al. (1997) arrive at probabilistic representations of derivatives of option prices using the
Malliavin calculus. Their purpose is the construction of efficient numerical algorithms for computing these

quantities.

options written on tradable assets whose prices follow diffusions with stochastic volatility, ie,
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volatility that may depend on the concurrent price of the underlying asset. Proposition 7 and 8

extend results in Bergman, Grundy, and Wiener (1996) to American options. The former proposition

provides the probabilistic representations of an American option delta and the riskless position in

the option’s replicating portfolio, namely, the option price minus the product of the underlying

price and the option’s delta. Proposition 8 uses these representations for delta and for the riskless

position in the option’s replicating portfolio for placing general bounds on those quantities.

Using Lemma 9, Proposition 10 states general asymptotic results concerning European and

American delta and their riskless positions. Specifically, it is shown that the limit of those

quantities at any time before expiration, as the underlying price increases without limit, is equal

to the similar limit taken at expiration. Corollary 11 gives the implications of these results to

calls and puts on stochastic volatility underlying assets. Both European and American put deltas

approach zero as the underlying price increases without bound. Under the same circumstances,

an American call delta approaches one, while a European call delta approaches a “discount

factor” with a discount rate that is equal to the difference between the dividend rate paid to the

underlying and that which is paid to the call.

Proposition 12 gives a general representation of the rho of a European option in terms of the

price of another option written on the same stochastic volatility underlying asset. A special case

of that result states in Corollary 13 that the rho of a European call written on a stochastic

volatility underlying asset is equal to the price of a digital call with the same exercise price, the

same time to expiration, and the same underlying asset as the call, multiplied by the time to

expiration and by the exercise price. Proposition 12 also provides asymptotic results about rho,

which, in the case of a call option, translate to the statement that as the underlying price increases

beyond bound, its rho approaches the product of the discounted exercise price and the time to

expiration. Proposition 12 also states that if the second partial derivative of the final payoff

function w.r.t. the underlying price maintains a uniform sign, then that sign is inherited by the

partial derivative of rho w.r.t. the underlying price.

Proposition 14 has results about the theta of a call option written on a stochastic volatility

underlying asset. For example, it states that at any time before expiration, as the underlying price
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increases without bound, the call’s theta approaches the negative of the product of the discounted

exercise price and the interest rate.

To stress that the methodology employed in this paper can be applied to settings with dimension

larger than one, Section 5 derives general bounds on derivatives of the prices of Asian type

options. Section 6 concludes the paper.

2 Probabilistic solutions to parabolic PDEs:

a brief review

The analysis that follows makes extensive use of probabilistic solutions to parabolic PDEs.

Therefore, a brief review of the relevant results—an adaptation from Friedman (1975, ch 6, sec

5) or Duffie (1996, Appendix E)—is in order. Define a domain Q := {(x, t) : tß[0,²²T),   x(t) < x

<   x(t )}, where   x and   x  are continuous functions of time [but   x(t ) = -¥ or   x(t ) = ¥,

tß[0,²²T] are also formally allowed]. A partial differential operator P defined on the domain Q is

called parabolic, if it is of the form

Pu(x, t) := ut(x, t) +   
1
2
A2(x, t)uxx(x, t)

+ B(x, t)ux(x, t) + C(x, t)u(x, t) + H(x, t).  (1)

Consider the problem

Pu(x, t) = 0 in Q  (2)

u(x, T) = g(x) x ßá  x(T),   x (T)â  (3)

uá  x(t), tâ =   fá  x(t), tâ tÊ ßÊ [0,²²T]  (4)

uá  x(t), tâ =   fá  x(t), tâ tÊ ßÊ [0,²²T].  (5)

Equation (2) is called a parabolic PDE; condition (3), where g is a known function, is its end

condition; and (4) and (5), with   f  and   f  some known functions, are the upper and the lower

boundary conditions, respectively. If this problem has a unique solution, then under some regularity
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conditions on the functions involved,3 this solution has a probabilistic representation which is

constructed as follows.

For any point (x, t) in the domain Q, reading the functions A and B off the operator P in (1),

define an auxiliary Itò process {  Xs
x t, : t ø s ø T} in â as the solution to

dXs = B(Xs, s)ds + A(Xs, s)dWs,   t ø s ø T,    Xt = x ß(   x(t),   x (t)),  (6)

where {Wt : 0 ø t ø T} is a one-dimensional Brownian motion.4 It will be assumed that the drift

and the diffusion functions, B and A, are such that the diffusion (6) is regular on (0,Ê²°), which

means that starting from any point in (0, °), the process can reach any point in (0,²°). The

end-points of the interval on which the process is regular—the regularity interval—may be either

attainable or unattainable. An unattainable boundary is one that cannot be reached in finite time

from within the regularity interval of the process. Whether a boundary is unattainable is determined

by the behavior of the functions, B and A, near that boundary. See Karlin and Taylor (1981, ch

15) for a description of diffusion boundary classification. For example, the commonly used

geometric Brownian motion is regular on (0, °), and both zero and infinity are unattainable.5 In

the sequel, it will always be assumed that infinity is unattainable.

For any (x, t) in Q, define   t x,t := inf {s |   Xs
x t,  =   x(s)} to be the first time the auxiliary

process Xx,t hits the upper boundary of Q. Define   t
x,t for the lower boundary in a similar way.

The superscripts x and t will usually be omitted form X and t in what follows; no confusion

3 Sufficient conditions require that all of σ, B, C, H, and u are continuous, and g,   f ,   f  are piecewise
continuous; the solution u, and the functions σ, B, H, g,   f , and   f  satisfy a polynomial growth condition in x; C is
nonnegative; and σ and B are also Lipschitz in x; see Duffie (1996, p.295).

4 The Brownian motion is defined on a probability space {W, �, P}, where W is the state space, � is the
collection of events, P is the probability measure, and {�t: 0 ø t ø T} are the information sets revealed by the
Brownian motion. Formally, � is a s-algebra, and {�t: 0 ø t ø T} is the Brownian filtration generated by Wt

 . For
the definitions, see, for example, Duffie (1996).

5 Intuitively, as the GBM approaches zero from above, both the drift and the volatility of the process
vanish; motion dies out; and zero remains unattainable. By contrast, in a regular Brownian motion, even with a
positive drift which acts to drive the process away from zero, the volatility is unaffected by the approach to zero, and
the vigorous wiggling of the process can bring it down to zero.

should arise. To simplify the notation further, Ex, t will denote the expectation given that the
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process X starts from x at time t, so that, for example, E[f(  Xs
x t, , tx,t)] will be written

Ex,ÊÊÊÊÊÊ tÊÊ[f(Xs, t)]. Also, 1condition will denote the indicator function that takes the value 1 if the

“condition” is true, and zero otherwise.

 The probabilistic representation of the solution is then given by

u(x, t)   = Ex, tÓexpÒ    t

T
ò C(XÂ, l)dlÔ g(XT)    1T£min( , )t t Õ

+ Ex, tÓexpÒ    t

t

ò C(XÂ, l)dlÔ   f á  x(  t )â    1t t£min( , )T Õ

+ Ex, tÓexpÒ    t

t

ò C(XÂ, l)dlÔ  fá  x(  t)â    1t t£min( , )T  Õ (7)

+ Ex, tÓ    t

Tmin( , , )t t

ò expÒ    t

s
ò C(XÂ, l)dlÔH(Xs, s)dsÕ.

Intuitively, this probabilistic representation of the solution u(x, t) to the problem, (2), (3), (4),

and (5), can be interpreted as comprising four contributions. The first term on the RHS of (7) is

an average over all the “discounted” end values of u, namely g(XT), in the event that the

auxiliary process X reaches time T neither having hit first the upper nor the lower boundaries.

The instantaneous “discount” rate at time l is -C(XÂ, l). The second contribution on the RHS of

(7) is the average over all the “discounted” upper boundary values of u, namely   f á  x(  t )â, in the

event that the auxiliary process X hits the upper boundary for the first time at   t , provided that

time comes before hitting the lower boundary for the first time and before time T. The third

contribution on the RHS of (7) is analogous to the second in the obvious way. Finally, the fourth

contribution is a “discounted dividend stream” at a rate H(Xs, s), averaged over all sample paths

of the auxiliary process X until the first time it hits one of the boundaries or reaches time T

having hit neither.

Note that the “discount rate” and “dividend streams” are used here as metaphors that become

literal only when the solution is the price of an asset. However, in the analysis that follows,

u(x, t) will generally not be an asset’s price, but, instead, a quantity related to a price, eg, a first

partial of a price of a derivative with respect to some state variable.
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Suppose that the lower boundary of Q is at x = 0 for all tß[0,²²T], ie,   x(t) ® 0, and suppose

also that the boundary is unattainable. This implies that the event   t< min(  t , T) is null, and

therefore the third term on the RHS of (7) equals zero. This, in turn, means that specifying the

lower boundary condition (5) has no effect on the solution to PDE (2), and that limx�0u(x, t),

being a function of t on the domain [0,²²T), is forced by the PDE, the end condition (3), and the

upper boundary condition (4), provided, of course, that the upper boundary is attainable. If the

upper boundary is an unattainable boundary, then it too does not affect the solution. See Feller

(1951).

3   Term Structure Derivatives

General properties of bonds and other term structure derivatives in a diffusive one-factor model

of the term structure are derived in this section. In such a model, the risk adjusted process of the

short-term interest rate follows a real valued diffusion {Xt ; 0 ø t ø T¢} , regular on (0, °), that

solves the stochastic differential equation,

 dXt = m(Xt , t)dt + s(Xt , t)dWt ;  0 ø t ø T¢,   X0 Î (0, °),   (8)

where {Wt : 0 ø t ø T¢} is a one-dimensional Brownian motion,6 where m and s satisfy

Lipschitz conditions in x and have derivatives mx , sx, mxx , and sxx that are continuous and satisfy

growth conditions in x. The nature of the boundaries of the risk-adjusted process (8) at zero and

at infinity is the same as that of the original (non-adjusted) interest rate diffusion. (Otherwise, the

risk-adjusted measure would not be equivalent to the original one.) As discussed in Section 2, the

types of boundaries of the diffusion X depend on the behavior of the drift and diffusion functions,

m(x, t) and s(x, t), near zero and “near” infinity. As stated above, it will be assumed that x = °

is an unattainable boundary. For x = 0, two types of boundary will be considered; a natural

6 The Brownian motion is defined as in footnote 4.

unattainable boundary and an absorbing boundary, wherein the interest rate stays after hitting it
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once. A particular diffusive one-factor model of the term structure with absorption of the short-term

rate at zero is analyzed by Longstaff (1992), who provides an enlightening discussion of the

effects of specifying different boundary types on term structure models. Although absorption at

zero may seem less realistic than unattainability of zero, since one-factor models tend to perform

empirically best only in short runs, ruling out the stochastic dynamics of the interest rate that

may eventually lead to absorption in the longer run, may be overly restrictive.

It should be remarked that the lower boundary of the short-term interest rate need not be set to

zero. Any number can serve that role without changing the results, including a negative number

or even minus infinity (as long as the latter is unattainable).

An interest rate (European type) derivative is a security that contracts to pay g(x) dollars at

some terminal time T (ø T ¢) if the realization of the interest rate is then XT = x, and also

contracts to pay out at any time tß[0,²²T] a dividend at the rate h(x, t) dollars if Xt = x. The price

of such a derivative, v(x, t), is then the solution to the parabolic PDE

vt(x, t) +   
1
2
s2(x, t)vxx(x, t) + m(x, t)vx(x, t)

          -xv(x, t) + h(x, t) = 0,      in â++þ[0,²²T),  (9)

with end condition

v(x, T) = g(x),     on â++,  (10)

which is the only condition that is both required and that can be imposed in the case that x = 0 is

an unattainable boundary. On the other hand, if x = 0 is an absorption barrier, then a boundary

condition along that boundary is needed, which equilibrium considerations require to be
 

v(0, t) = g(0) +     t

T
ò h(0, s)ds,     tß[0,²²T].  (11)

The reason is that once the interest rate hits zero at time t and is absorbed there, the owner of the

derivative is guaranteed to get g(0)  dollars at expiration time T, which is worth g(0) dollars

already at t, because the interest rate is sure to stay at zero until expiration T. This is the first



Page 9

term on the RHS of (11). In addition, the owner is guaranteed to get a dividend rate of h(0, s) at

any time s in the interval [t,²²T]. Again, because the interest rate is sure to stay at zero level after

t, the present value of that dividend stream at t is the integral term on the RHS of (11).

The sufficient regularity conditions of footnote 1 for a probabilistic representation of the

solution to problem (9) are assumed here as well. Note that the auxiliary process for that

representation is none other than the risk adjusted process (8). The following proposition is well

known for the case where zero is unattainable. It is stated for completeness and for the proof

when zero is absorbing.

PROPOSITION 1.  In a diffusive one-factor term structure model, when x = 0 is an unattainable

boundary, the price of an interest rate derivative with terminal payoff function g receiving a

dividend rate h is the solution to problem (9) and (10), and can be represented probabilistically

as

v(x, t) = Ex, tÓexp Ò    t

T
ò -XldlÔ g(XT)Õ

+ Ex, tÓ    t

T
ò exp Ò    t

s
ò -XldlÔh(Xs, s)dsÕ.  (12)

This is also the probabilistic representation of the solution to (9), (10), and (11) when x = 0 is an

absorbing boundary.

Proof: See the Appendix.

PROPOSITION 2.  In a diffusive one-factor model of the term structure, if both the terminal payoff

g(x) of an interest rate derivative and the dividend rate h(x, t) paid to it are non-negative and

non-increasing in x, then the price of that derivative is non-increasing in the short-term interest

rate. If g(x) is also positive on a positive measure real set, then the price of the derivative is

strictly decreasing in the short-term rate.

Proof: Comparing statics, consider two alternative values, x1 and x2, for the short-term interest

rate at time tß[0,²²T), such that x1 < x2. The aim is to show that v(x1, t) ù v(x2 , t). Making
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explicit the dependence of X on its initial value at time t, it follows from the fact that increasing

the initial condition of an SDE increases the entire solution path,7 that "l ß[t,²²T):     X
x t
l

1 , ø     X
x t
l

2 ,

almost surely (where the inequality is strict a.s. in a right neighborhood of t). In particular,

  XT
x t1 , ø   XT

x t2 ,  a.s. Therefore, exp Ò    t

T
ò -    X

x t
l

1 , dlÔ > exp Ò    t

T
ò -    X

x t
l

2 , dlÔ and g(  XT
x t1 , ) ù g(  XT

x t2 , );

both almost surely. Taking expectations, it follows that the first summand on the RHS of (12) is

no less at (x1, t) than at (x2, t). Since h(x, t) is non-increasing in x, it follows that "s²ß ² [0,²²T]:

h(  Xs
x t1 , , s) ù h(  Xs

x t2 , , s) a.s., hence the second summand is also no less at (x1, t) than at (x2, t). Í

Examples of term structure derivatives to which Proposition 2 applies are (i) a deterministic-

coupon bond; one that pays $1 at maturity date T, gbond(x) = 1, and also pays a dividend at a

preset rate h(t), usually some positive constant [denote the time t price of such a bond by

vbond(x, t; T)] ; (ii) a European put option on a deterministic-coupon bond, which is a contract to

pay gput-on-bond(x) = [K - vbond(x, T²; T)]+ dollars at put expiration time T²ß[T,²²T¢] if the

short-term interest rate is then x (assuming the bond is priced correctly in the market); (iii) a put

option on the interest rate itself, which is a contract to pay gput-on-interest(x) = [K - x]+ dollars at

time T²ß[T,²²T¢] if the short-term interest rate is then x. The last two instruments will be called

term structure puts, for short. The implications of Proposition 2 to the price behavior of these

derivatives and to the term structure of interest rates are summarized in the following two

corollaries.

COROLLARY 3.  In a diffusive one-factor model of the term structure, the prices of (i) a deterministic-

coupon bond, (ii) a European put option on such a bond, and (iii) a European put option on the

short-term interest rate; all strictly decrease in that rate.8

7 The argument here is similar to the one given in Duffie (1996, pp. 183, 184) and in Bergman, Grundy,
and Wiener (1996, the “no crossing-over property”).

8 Consistent with Corollary 3, in a special diffusive one-factor term structure model, Longstaff (1992)
demonstrates that the price of a put on a later time interest rate decreases in the current interest rate.

Proof: An immediate application of Proposition 2.  Í
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Let vbond(x, t; T) denote the price of a zero-coupon bond at time t when the short-term interest

rate is x, and which contracts to pay $1 at time T. The yield to maturity is defined, Y(x, t; T) :=

    
-

-
ln ( , ; )v x t T

T t
bond . The yield curve, as of time t when the short-term interest rate equals x, is the

graph of Y(x, t; T) as a function of maturity T.

COROLLARY 4.  In a diffusive one-factor model of the term structure, the whole yield curve shifts

upwards with an increase in the short-term interest rate. Formally, let  x1 and x2  be two levels of

the short-term interest rate with x1 < x2. Then at any given time t, Y(x1, t; T) < Y(x2, t; T) for

all T. If, in addition, the drift and diffusion functions of the short-term interest rate process are

time-independent, then for all t, T, and D, Y(x1, t; T) < Y(x2 , t + D; T + D).

Proof: An increase in the short-term interest rate implies a decrease in vbond by Corollary 3,

which, by definition, implies an increase in Y for every T. The last inequality follows from the

fact that in the case of a homogeneous diffusion the transition density function depends only on

the time difference between the initial and the final states. Therefore, by (12), a zero-coupon

bond price depends only on the time remaining to its maturity, so that vbond(x, t; T) =

vbond(x, t + D; T + D). Í

The first part of Corollary 4 is a comparative static result. In addition, the latter part of Corollary

4 has an important empirical implication. Suppose that two yield curves are measured at two

different dates, and then are drawn starting from the same time origin. If the two curves intersect,

then the short-term interest rate cannot be described by a homogeneous one-factor diffusion

model.

The proof of Propsition 2 depends crucially on the increase of entire diffusion sample paths

with an increase in their initial values, which, in turn, follows from the almost sure continuity of

diffusion sample paths. This implies that counter examples to Propsition 2 and Corollaries 3 and

4 may be found when the interest rate process has discontinuous sample paths with positive

probability. Indeed, suppose that the interest rate process is such that when it reaches a value r0 it

jumps to a higher level. Then a comparative static decrease in the interest rate towards r0 may
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result in a decrease in the price of a zero-coupon bond. Intuitively, the decrease in the short-term

rate has two effects. It acts to increase the price of the bond, but at the same time it implies—in

the current example—an increase in the probability of a jump upwards in future spot rates, which

acts to decrease the bond price. Given a large enough jump amplitude and a large enough

probability for that jump, the latter effect may overwhelm the former.

In contrast, when the short-term interest rate follows a diffusion, the continuity of its sample

paths implies that a decrease, say, in the interest rate indicates that it is likely to stay in its new

lower locale for a while. Therefore, the only effect is an increase in the bond price.

The next proposition represents as expectations the first and the second partial derivatives of

the price of a term structure derivative. Those expectations are then used to derive general

properties of the derivatives.

PROPOSITION 5.  In a diffusive one-factor model of the term structure, the first partial derivative

of the price of a European type term structure derivative w.r.t. the short-term interest rate has a

probabilistic representation9 in â++þ[0,²²T),

vx(x, t) = Ex, tÓ    t

T
ò jt,s[hx(Xs, s) - v(Xs, s)]ds + jt,Tg¢(XT)Õ,   (13)

where jt,s  := exp(    t

s
ò [mx(Xl, l) - Xl]dl; where the auxiliary process X in (13) satisfies dXs =

B(Xs, s)ds + s(Xs, s)dWs; t ø s ø T, Xt = x; where B(Xs, s) := s(Xs, s)sx(Xs, s) + m(Xs, s);

and where it is assumed that B(Xs, s) and s2(Xs, s) make x = 0 and x = ° unattainable

boundaries for the process X.

The second partial derivative also has a probabilistic representation in â++þ[0,²²T),

vxx(x, t) = Er, tÓ    t

T
ò jt,s{hxx(Xs, s) + [mxx(Xs, s) - 2]vx(Xs, s)}ds + jt,Tg²(XT)Õ,  (14)

where jt,s := exp(    t

s
ò [s(Xl, l)sxx(Xl, l) + sx

2(Xl, l) + 2mx(Xl, l) - Xl]dl; where the auxiliary

9 Provided that the sufficient conditions, as in footnote 3, for the existence of probabilistic representations
are met.

process X in (14) satisfies dXs = B(Xs, s)ds + s(Xs, s)dWs; t ø s ø T, Xt = x; where
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B(Xs, s) := 2s(Xs, s)sx(Xs, s) + m(Xs, s); and where it is assumed that B(Xs, s) and s2(Xs, s)

make x = 0 and x = ° unattainable boundaries for the process X.

Proof: See the Appendix.

Remark 1: The assumption that x = 0 is an unattainable boundary is necessary for simplicity

of exposition. Other types of barrier at zero, like absorption, require more detailed treatment, but

imply most of the results herein.

Remark 2: Sufficient conditions for zero to be an unattainable boundary for the auxiliary

processes in (13) and in (14) are (i) that zero be an unattainable boundary for the risk-adjusted

short-term interest rate process (8), and (ii) that s be non-decreasing in the first argument. The

reason is that while the volatilities of the three processes are identical, the drifts of (13) and (14)

are not smaller than the drift of the risk-adjusted process.

Remark 3: The functions g¢ and g² may also be generalized functions. For example, if g(x) =

(x - K)+, then g¢ is the Heavyside function, and g² is Dirac’s delta function.

Inspection of (13) reconfirms that the conditions for a non-positive sign of vx(x, t) are those of

Proposition 2. Moreover, The integral term in the RHS of (13) is always non-positive, but the

sign of the other term depends on that of the random variable g¢(XT). In the case of a call option

on a bond or on the interest rate itself, it is non-negative, and it is positive on a positive measure

event. This implies that the sign of vx(x, t) is indeterminate in the case of a call option; see

Longstaff (1990) who demonstrates the change of sign of an interest rate call option price slope

in a particular diffusive one-factor model of the term structure.

COROLLARY 6.   Let m and s be the drift and the volatility functions of the risk-adjusted short-term

interest rate. If mxx(x, t) ø 2 on â þ [0,²²T) [eg, drifts linear in x] and if zero is unattainable by

the diffusion dXs = Ò2s(Xs, s)sx(Xs, s) + m(Xs, s)Ôds + s(Xs, s)dWs; t ø s ø T, Xt = x, then

the price of a deterministic-coupon bond is (quasi) convex in the short-term interest rate, and so

are the prices of a put option on such a bond and of a put on the interest rate.
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Proof: The conditions of Proposition 5 are satisfied in the corollary, whence vx(x, s) ø 0 for the

bond and the puts. The conditions of the corollary also imply hxx ® 0 and g²(x) ù 0 for all three

derivative assets. Using all this in (14) yields vxx(x, t) ù 0 on â++þ[0,²²T). Í

In most extant diffusive one-factor models of the term structure (see the Introduction), the

drift is linear in the short-term interest rate, ie, mxx(x, t) ® 0, and the condition that makes zero

an unattainable boundary for the auxiliary process in (14)—the probabilistic representation of the

second derivative of the price—are met. Therefore, in all those models, the prices of bonds, puts

on bonds, and interest rate puts are all convex in the interest rate.

Example. Consider the “square-root” risk adjusted process for the short-term interest rate in

Cox, Ingersoll, and Ross (1985), where m(x, t) := a - bx, with positive a, and s2(Xs, s) := h2x.

The auxiliary process in (14) has then a drift h2 + a - bx and volatility q2x. Since 0 < h2 <

2(a +h2) for all real h, therefore zero is always unattainable for the auxiliary process in (14) for

the current example, irrespective of whether the risk-adjusted interest rate process has zero as

an unattainable boundary as well. Therefore, since m(x, t) is linear in x, the price of a zero-coupon

bond (and those of the puts) is convex in the interest rate, both when zero is unattainable and

when it is attainable by the “square-root” risk-adjusted interest rate process. The first case

corresponds to Cox, Ingersoll and Ross’s (1985) bond price formula in their equation (23). The

second case corresponds to Longstaff’s (1992) bond price formula which he gets in his equation

(6) for the case that the risk-adjusted interest rate process is absorbed at zero. It can be verified

that both price formulas, that of CIR and that of Longstaff, are convex in the interest rate as

required by Corollary 6.

4   General restrictions on option prices: Further results

Bergman, Grundy, and Wiener (1996) derive general properties of European option prices. In

this section, which shares the same methodology with the previous one, I extend their results to

American type options and derive further results about the delta, rho, and theta of an option.
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The standard assumptions of the Black-Merton-Scholes option pricing model are employed in

the sequel, except that the underlying price process is not restricted to be a geometric Brownian

motion, but instead its volatility function may be stochastic. Specifically, the underlying price is

the real valued Itò process {St; 0 ø t ø T } which solves the stochastic differential equation10

 dSt = m(St, t)dt + s(St , t)dWt ;  0 ø t ø T ,   S0 Î â.   (15)

It will be assumed that m and s are such that the process (15) is regular on (0, °), and that zero

and infinity are unattainable boundaries (see above).

The underlying asset pays out a deterministic dividend yield d�. Price taking agents can

borrow and lend at a deterministic riskless interest rate r in a frictionless capital market, and

arbitrage opportunities are not possible. To simplify the notation, d� and r are assumed constant.

Both American and European type options will be treated. Specifically, consider an American

type option with an expiration date T which pays out a constant dividend yield d¯. If the owner

of the American option decides to exercise it at time t (ø T) when the underlying price has a

realization St = x, he gets the contractual payoff g(x) dollars, where g : â+ ® â+ is assumed to

be continuous and piecewise twice boundedely differentiable. Consideration of general payoff

functions is motivated by the existence of contingent claims whose payoff functions are not

piecewise linear, like the “turbo” or “power” options with g(x) := [xn - k]+; n rational. Like

above, the functions g¢ and g² may also be generalized functions. As a technical condition, it is

assumed that both the interest rate and the underlying’s dividend yield are not smaller than the

dividend yield on the option, ie, d¯ ø r and d¯ ø d�.

Assuming the American Regularity Conditions [Duffie (1996) p. 173], the function v²:²â++ ´

[0,²²T] ® â+, which assigns to the American option its no-arbitrage price v(x, t) when the time t

underlying price is x, can be characterized as follows. Let C Í â++ ´ [0,²²T) be the continuation

10 Here, W is a Brownian motion like above. The drift and the diffusion functions, m and s are assumed to
be Borel measurable, continuous, Lipschitzian in their first argument, and satisfy a growth condition, so that a
unique solution to the SDE is guaranteed.

region and let E Í â+ ´ [0,²²T) be the exercise region of the option. Together, E and C partition
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â++ ´ [0,²²T]. The optimal exercise boundary is the boundary between the two regions where the

option is optimally exercised, if and when the underlying price hits it from within the continuation

region. In general, depending on the payoff function, the optimal exercise boundary can have

more than one branch, but for ease of notation it will be assumed that it is the graph of a twice

differentiable function xf²:²[0,²²T) ® â; t a xf(t). According to this assumption, one region lies

“above” the other. For example, the exercise region of an American call lies above its continuation

region, and the reverse is true of an American put.

Define the Black-Merton-Scholes parabolic differential operator11 �BMS by

    �BMSv(x, t) := vt(x, t) +   
1
2
s2(x, t)vxx(x, t) + (r -  d�²)xvx(x, t) + (d¯ - r)v(x, t). (16)

Then on the continuation region v(x, t) satisfies the Black-Merton-Scholes PDE

�BMSv(x, t) = 0,   (17)

with the end condition,

v(x, T) = g(x), for x ß â++,  (18)

and a free boundary condition,

vxáxf(t), tâ = g¢áxf(t)â, for tß[0,²²T],  (19)

which implicitly defines the optimal exercise boundary [see Brekke, K. A. and B. Oksendal

(1991)]. By the maintained assumption that zero is an unattainable barrier, boundary conditions

along x = 0 should not be specified, [Feller (1951), see above]. Completing the characterization

of the option price is the requirement that v(x, t) = g(x) hold on the exercise region E .

A European option will also be considered that is exercisable only at expiration time T with a

payoff function g and that pays out a constant dividend yield d¯. It is characterized similarly to

11 The mathematics that follows is standard, but operator notation simplifies the exposition considerably.

an American option, except that the continuation region C extends over all of â+ ´ [0,²²T]. The
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end condition is then v(x, T) = g(x), x ß â++. Again, boundary conditions along x = 0 are not to

be specified.

The next propositions are valid for two different interpretations; each needs its own auxiliary

stochastic process

      dXs = B(Xs, s)ds + s(Xs, s)dWs,    t ø s ø T,     Xt = x, (x, s) ß C ,  (20)

where s is taken from (15), and where B is defined separately for each interpretation below.

(a) Delta interpretation

Define

�v(x, t) := vx(x, t)

�g(x) := g¢(x)

d := d� - d¯

B(x, s) := s(x, s)sx(x, s) + (r - d¯)x.

If v(x, t) is the option price at time t when the underlying price is x, then �v(x, t) is the option’s

delta, hence the designation “delta interpretation.” Note that by the definition of B the corresponding

auxiliary process (20) is not the risk neutralized underlying process.

(b) Riskless position interpretation

Define

�v(x, t) := v(x, t) - xvx(x, t)

�g(x) := g(x) - xg¢(x)

d := r - d¯

B(x, s) := s(x, s)sx(x, s) - s2(x, s)/x + (r - d�)x.

If v(x, t) is the option price at time t when the underlying price is x, then �v(x, t) is the number

of dollars invested in the riskless asset in the portfolio that replicates the option, hence the

designation “riskless position interpretation.” Again, in general, the corresponding auxiliary

process (20) is not the risk neutralized process.
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For both interpretations, if the continuation region is below the exercise region, it will be

assumed that B and s in (20) are such that zero is unattainable by the auxiliary process.

 PROPOSITION 7.  For both the delta and the riskless position interpretations [� := 
    
¶
¶x

 and � :=

1 - x
    
¶
¶x

, respectively]: let v(x, t) be the solution to the Black-Merton-Scholes PDE (17) with

end and boundary conditions (18) and (19) . Then at any point (x, t) in the continuation region,

the following holds for an American option,

 �v(x, t) =  Ex, tÓe
-d(t - t)�gáxf(t)â1t<TÕ

+ e-d(T - t)Ex, tÓ�g(XT)1t=TÕ,  (21)

and the following holds for a European option

 �v(x, t) =  e-d(T - t)Ex, tÓ�g(XT)Õ,  (22)

where the expectation is taken w.r.t. the auxiliary process (20).

Under the delta interpretation (with the respective form of the B function), Proposition 7

states that the deltas of both an American and a European12 options are equal to the discounted

expectation of their deltas on the boundaries of the continuation regions, where the expectation is

taken at time t with respect to the auxiliary process X which starts then at x, and where the

discounting is at a rate that is equal to the difference between the dividend yields on the

underlying and on the option. For example, writing equation (22) explicitly yields that a European

option’s delta is

 D(x, t) :=  vx(x, t) = e-(d� - d )̄(T - t)Ex, tÓg¢(XT)Õ,  (23)

where X satisfies dXs = [s(Xs, s)sx(Xs, s) + (r - d¯)Xs]ds + s(Xs, s)dWs; t ø s ø T,

12 The European part of Proposition 7 was proven in Bergman (1983).

Xt = x. Because of the drift, X is generally not the risk-neutralized process of the underlying.
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Under the alternative interpretation, Proposition 7 states—for American and European

options—that the riskless position is equal to the discounted expectation of the riskless position

on the boundaries of the continuation regions. For a European option, equation (22) yields

 v(x, t) - xvx(x, t) =  e-(r - d¯
)(T - t)Ex, tÓg(XT) - xg¢(XT)Õ,   (24)

where the auxiliary process X satisfies dXs = [s(Xs, s)sx(Xs, s) - s2(Xs, s)/Xs +

(r - d¯)Xs]ds + s(Xs, s)dWs; t ø s ø T, Xt = x. Again, X is usually not the risk-neutralized

process of the underlying.

The proof is constructive, and can be used in different applications, including the propositions

below about option rho and theta. It will therefore be given in the form of an algorithm. The

general idea is the following. In order to analyze a transformation �v of the price function v,

where the latter is the solution to a known parabolic PDE (like the Black-Merton-Scholes equation),

it is very useful to represent �v as an expectation of a known function of a random variable with

a known distribution. This can be accomplished if another parabolic PDE can be found which �v

satisfies, because then �v can be represented as a probabilistic solution of that other PDE, ie, as

an expectation. To find this other PDE, apply the operator � to the original PDE and get a

second PDE in the function v. Then try to interchange the order of the operator � throughout that

second PDE, “pushing” it to the right until it ends up just to the left of all occurrences of the

function v in that PDE. If this can be done, you’ve got a third PDE with �v playing the role of

the unknown function. In most cases, this third PDE would turn out to be parabolic, because the

original PDE is. This method has already been applied in the proof of Proposition 5.

Proof: A proof in the form of a structured algorithm is given in the Appendix.

Since �BMS is itself parabolic, Proposition 7 holds for a third interpretation as well, in which

� is the identity operator. In that case, B(x, t) = (r -  d�²)x,  C(x, t) = (d¯ - r) = d, and

H(x, t) = 0. The auxiliary process X is then the risk-neutralized underlying price process

(adjusted for the option’s dividend payout) satisfying,
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dXs = [(r - d¯)Xs]ds + s(Xs, s)dWs;     t ø s ø T,   Xt = x,  (25)

and the probabilistic representation of the solution is none other than the risk-neutral valuation of

the option.

The bounds in the next proposition follow almost directly from the probabilistic representations

of Proposition 7.

 PROPOSITION 8.   For both the delta and the riskless position interpretations,

 denote   �g := 
    
inf
zÎâ

�g(z) and   �g := 
    
sup
zÎâ

�g(z).

For an American type claim,

 (i) If 0 ø   �g ø   �g , then e
-d(T - t)

  �g ø �v(x, t) ø   �g,

(ii) If   �g < 0 ø   �g , then   �g ø �v(x, t) ø   �g,

(iii) If   �g ø   �g  < 0, then   �g ø �v(x, t) ø e-d(T - t)
  �g,

where the inequalities on the RHS hold at any (x, t) in the continuation region.13

For a European type claim,

e
-d(T - t)

  �g ø �v(x, t) ø e-d(T - t)
  �g .  (26)

Proof: See the Appendix.

An American call’s delta corresponds to case (i) of the proposition. It implies that this delta is

always bounded between zero and one, irrespective of the dividend yields on the underlying and

on the call. An American put’s delta corresponds to case (ii); its delta is bounded between zero

13 In the exercise region, the option value function is identical to the payoff function. Obviously, the
properties of the former are those of the latter.

and negative one. In particular, Proposition 7 implies that monotonicity w.r.t. the underlying of
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both American and European contingent claim prices is a property inherited from the monotonicity

of their payoff function.14

Under the riskless position interpretation, case (ii) applies to an American call implying that

the number of dollars invested in the riskless asset in the portfolio that replicates it is always

bounded between zero and minus the exercise price. For an American put, case (i) translates to a

similar boundedness between zero and the exercise price. It is easy to verify that if the underlying

follows a geometric Brownian motion, then in all these examples the bounds are the tightest

possible.

Bergman, Grundy, and Wiener (1996) have shown that convexity (concavity) in the underlying

price is a European option price function property inherited from the convexity (concavity) of its

payoff function. Using different methods, El Karoui, Jeanblanc-Picqué, and Shreve (1996) have

shown that the convexity inheritance is true of an American option as well. This result can also

be derived using the methods of the current paper. In fact, defining the operator �v(x, t) :=

vxx(x, t) and �g(x) := g²(x), and using the same algorithm as in the proof of Proposition 7, it is

straightforward to show that option’s gamma can be represented probabilistically as

 vxx(x, t) =  Ex, tÓjt, tvxxáxf(t), tâ1t<TÕ

+ Ex, tÓjt,T g²(XT)1t=TÕ,  (27)

where B(x, t) = 2s(x, t)sx(x, t) + (r - d�)x , C(x, t) = "[s(x, t)sx(x, t)]/"x + (r + d� -

2d�), and where jt, t = exp[    t

t

ò C(Xs, s)ds]. The quantity vxxáxf(t), tâ can be shown to be

non-negative for all tß[0,²²T], if g is convex. Therefore, using (27), vxx(x, t), option’s gamma, is

non-negative for all (x, t) in the continuation region. Noteworthy, unlike convexity, concavity of

an American type option price is generally not inherited from the payoff function. The reason is

that the value of an American claim is derived by maximizing over stopping times, and the

14 For European options, this has been shown in Bergman (1983) and in Bergman, Grundy, and Wiener
(1996). The European results are given here for completeness.

“max” function is convex.
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For asymptotic results concerning option prices and transformations thereof, the following

lemma is needed. It states that if a “well-behaved” diffusion is started at ever increasing levels,

the probability that it reaches below a fixed value in finite time tends to zero. (Somewhat

picturesquely, after smoke is puffed out from ever increasing altitudes, a ground-level measurement

of smoke concentration will detect vanishingly decreasing quantities.) The lemma is then used to

deduce that when a diffusion is started out at a high altitude, the value of an expectation of a

function of its level at any subsequent time gets almost all of its contributions from high altitude

realizations of that diffusion.

LEMMA 9.  Let Xx,t be the solution to dXs = B(Xs, s)ds + s(Xs, s)dWs; t ø s ø T ¢, Xt = x,

where B and s are functions with suitable regularity properties (footnote 3). Then "T ß [t,²²T¢] ,

"a²: 
    
lim
x­¥

Pr Ò  XT
x t,  ø aÔ = 0.

The proof of the lemma is technical and uninformative; it is therefore omitted. The asymptotic

result in the next proposition follows from the probabilistic representations of Proposition 7 and

from Lemma 9.

 PROPOSITION 10.  Provided that limz­¥�g(z) exists, the following equalities are true for a

European type option for both the delta and the riskless position interpretations

 "t Î [0,²²T]²: ed(T - t)
limx­¥�v(x, t) = limx­¥Ex, tÓ�g(XT)Õ = limz­¥�g(z), (28)

The equalities are also true for an American type option, provided that the continuation region is

above the exercise region (eg, put). If the exercise region is above the continuation region (eg,

call), then (28) is trivially true with d = 0.

Proof: See the Appendix.

The following corollary is an immediate consequence of Proposition 10 under the delta

interpretation.
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COROLLARY 11.   At any time before expiration, the delta of a put option, either an American or a

European, written on a stochastic volatility underlying asset, tends to zero as the underlying

price increases without bound. Formally, ×tß[0,²²T]²: limx­¥px(x, t) = 0, where p is the put’s

price. Similarly, the delta of a European call written on a stochastic volatility underlying asset

tends to exp[-(d� - d¯)(T - t)], and that of an American call tends to 1.

In the next proposition the operator � := "/"r (partial derivative w.r.t. the interest rate) is

applied to the Black-Merton-Scholes PDE to produce an expectation representation of an option’s

rho [r(x, t) := vr(x, t; r)].15

 PROPOSITION 12.  The rho of a European option, with payoff function g(x) and with dividend rate

d¯, that is written on a stochastic volatility underlying asset that pays a dividend rate d�, is equal

to the time to expiration multiplied by the negative of the price of a European option also paying

a dividend rate d¯ but with a payoff function g(x) - xg¢(x) written on the same underlying asset,

Formally, At any point (x, t) in â+ þ [0,²²T],

r(x, t) = -(T - t)e
-(r - d¯

)(T - t)Ex, t[g(XT) - XTg¢(XT)],   (29)

where XT is the random value, as of time T, of the risk-neutralized underlying (auxiliary)

process (25).

Therefore, rho always lies in the interval

á(t - T)e-(r - d¯
)(T - t)

    
sup
zÎâ

[g(z)-zg¢(z)],(t - T)e-(r - d¯
)(T - t)

    
inf
zÎâ

[g(z)-zg¢(z)]â,   (30)

and,

 "tÎ[0,²²T]²:  limx­¥r(x, t) = -(T - t)e-(r - d¯
)(T - t)

limz­¥[g(z) - zg¢(z)].  (31)

15 One cannot naively compute rho by taking the partial w.r.t. the interest rate “under the expectation sign”
in the risk-neutralized representation of the price function, because a small change in the interest rate also affects the
auxiliary (risk neutralized) process.
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If g²(x) maintains a uniform sign on â+ (eg, call or put), then 
    
¶r
¶x

 (which is equal to 
    
¶
¶
D
r
) inherits

that sign on â+ þ [0,²²T].

Proof: See the Appendix.

Corollary 13 below gives the immediate implications of Proposition 12 to calls and puts. In

the following, H denotes the Heavyside function that maps the negatives to zero and the non-

negatives to one.

COROLLARY 13.   (i) The rho of a European call written on a stochastic volatility underlying asset

is equal to the price of a digital call with the same exercise price, the same time to expiration,

and the same underlying asset as the call, multiplied by the time to expiration and by the exercise

price.

Formally, at any point (x, t) in â+ þ [0,²²T],

rcall(x, t) =  (T - t)Ke
-(r - d¯

)(T - t)Ex, t[H (XT - K)]

= (T - t)K³(Price of a digital call),
and,

rput(x, t)  =  -(T - t)Ke
-(r - d¯

)(T - t)Ex, t[H (K - XT)]

= -(T - t)K³(Price of a digital put),

where XT is the random value, as of time T, of the risk-neutralized underlying process (25).

(ii)  The rho of a call option and that of a put are bounded:

0 ø rcall(x, t) ø (T - t)e-(r - d¯
)(T - t)K,

-(T - t)e-(r - d¯
)(T - t)K ø rput(x, t) ø 0.

(iii)  Asymptotically,

×t ² ß² [0,²²T]²: limx­¥rcall(x, t) = (T - t)e-(r - d¯
)(T - t)K,

×t ² ß² [0,²²T]²: limx­¥rput(x, t) = 0.
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Proof: A direct application of Proposition 12. Í

The next proposition provides an expectation representation of theta, the time derivative of

the price of a contingent claim [Q(x, t) := vt(x, t)], which is then used to derive asymptotic

results of a call’s theta. For simplicity, it is assumed that the volatility parameter depends only on

the underlying price but not on time, ie, s = s(x).

 PROPOSITION 14.  Let the underlying asset pay no dividend, and let its volatility parameter be

time independent [s = s(x)]. Then at any point (x, t) in â+²²þ²²[0,²²T], the theta of a European

option with payoff function g can be represented as

Q(x, t;²²T) = e-r(T - t)Ex, tÓ-  
1
2
s2;;;;(XT)g²(XT) + rÒg(XT) - XT g¢(XT)]Õ,   (32)

where XT is the random value, as of time T, of the risk-neutralized underlying process.

In particular, the theta of a call option on such an underlying is given by

Qcall(x, t;²²T) = -e
-r(T - t)Ò

  
1
2 s2;;;;(K)f(K, T; x, t) + rK

    K

¥

ò f(y, T; x, t)dyÔ,  (33)

where f(³, T; x, t) is the probability density of   Xs
x t, .16

Therefore, (i) a call’s theta is always nonpositive; (ii)

"tÎ[0,²²T)²: limx­¥Qcall(x, t;²²T) = -e
-r(T - t)rK;  (34)

and (iii) if zero is an unattainable boundary of the underlying risk-neutralized process, then

"tÎ[0,²²T)Ê²: Qcall(0, t; T) = 0.

Furthermore,

"x Î â+ : lim(T – t)­¥Qcall(x, t; T) = 0;  (35)

16 In other words, f(y, T; x, t) is the transition density function of the risk-neutral process from level x at
time t, to level y at time T.



Page 26

    

lim ( , ; )
( )T t

x t T
x K
x K

rK K x
–

call¯
=

<

-¥ =

- <

ì

í
ï

î
ï0

0
Q  (36)

Proof: See the Appendix.

Expectedly, the results in (34), (35), and (36) which are true for an underlying asset with time

independent, stochastic volatility, are consistent with Figures 14.5 and 14.6 in Hull (1997),

which were drawn for the special case of a geometric Brownian motion.

5    Restrictions on prices of Asian options

The methodology used above generalizes readily to more than one dimension. As an illustration

I’ll consider Asian contingent claims that depend on the average of the underlying price taken

over some time interval. Formally, define It :=     0

t
ò Stdt, where {St; 0 ø t ø T }  is the process

defined in (15). Note that since the underlying can generally take on negative values—as when it

is the value of a forward contract—so can its time integral, It. An Asian claim is a contract that

promises to pay g(ST, IT) dollars at expiration time T, where g is some real function on â2.

Examples include the average strike call, g(ST, IT) = (ST - IT/T)+ and the average rate call,

g(ST, IT) = (IT/T - K)+.

Bergman (1981, 1985) has derived a PDE which has to be satisfied by prices of general

path-contingent claims. In particular, he showed that the no-arbitrage value of an Asian option at

any time tß[0,²²T) is v(St,  It,  t), where v(x, i, t) is the solution to the parabolic PDE

�Asianv(x, i,  t) = 0,   (37)

defined on â2 ́  [0,²²T] with end condition

v(x, i,  T) = g(x, i) for  (x, i)ß â2,  (38)
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and where the parabolic differential operator �Asian is defined (assuming zero dividends) by

�Asianv(x, i,  t) := �BMSv(x, i,  t) + xvi(x, i,  t)

      = vt(x, i,  t) +²  
1
2
s2(x, ²²t)vxx(x, i,  t)²+²r²xvx(x, i,  t) + xvi(x, i,  t) -² ²rv(x, i,  t).  (39)

The next proposition brings the methodology developed herein to bear on PDE (37) to produce

an expectation representation of the first partial of the price of an Asian claim w.r.t. the underlying

price (the hedge ratio or number of underlying units in the replicating portfolio), and to produce

an expectation representation of the first partial w.r.t. the updated time average of the underlying.

 PROPOSITION 15. The following representations hold for an Asian claim that is written on a

stochastic volatility underlying asset.

v2(x, i,  t) = Ex, i, tÓe
-r(T - t)g2(XT, JT)Õ,  (40)

v1(x, i,  t) = Ex, i, tÓ    t

T
ò v2(Xs, Js,  s)ds + g1(XT, JT)},  (41)

where X is the risk-neutralized underlying process; where Jt :=     0

t
ò Xtdt; and where Ex, i, t

denotes expectation given that Xt = x and that Jt = i. These representations imply that at any

point (x, i,  t) Î â2 ´ [0,²²T], the following bounds hold for an Asian claim.

e
-r(T - t)

    
inf

( , )
( , )

y j
g y j

Îâ2 2  ø v2(x, i,  t) ø e-r(T - t)

    
sup

( , )

( , )
y j

g y j
Îâ2

2  ,  (42)

    
inf

( , )
( , )

y j
g y j

Îâ2 1  + 
    
1-e

r

r T t– –( )

    
inf

( , )
( , )

y j
g y j

Îâ2 2  ø

v1(x, i,  t) ø

 
    

sup
( , )

( , )
y j

g y j
Îâ2

1  +
    
1-e

r

r T t– –( )

    
sup

( , )

( , )
y j

g y j
Îâ2

2  .  (43)
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The proof uses the same principles as the previous proofs, and is therefore omitted.

The implications of Proposition 15 to specific Asian options are given in the next corollary.

COROLLARY 16.   (i) For the average strike call option, g(ST, IT) = (ST - IT/T)+,  the following

bounds hold at any point (x, i,  t) Î â2 ´ [0,²²T]

-[1 - e-r(T - t)] / rT ø v1(x, i,  t) ø 1,

-e
-r(T - t) / T ø v2(x, i,  t) ø 0.

(ii) For the average rate call option, g(ST, IT) = (IT/T - K)+, that is written on a stochastic

volatility underlying asset, the following bounds hold at any point (x, i,  t) Î â2 ́  [0,²²T]

0 ø v1(x, i,  t) ø [1 - e-r(T - t)] / rT,

0 ø v2(x, i,  t) ø e-r(T - t)/ T,

and at any (x, i) Î â2: limt­Tv1(x, i,  t) = 0.

Proof: A direct application of Proposition 15. Í

6   Conclusions

It was shown that in a diffusive one-factor model of the term structure, the prices of bonds and of

term structure puts decrease as the short-term interest rate increases. However, these prices need

not be monotone in the short-term rate, if that rate can experience jumps.

An important comparative statics implication is that to a higher short-term interest rate

corresponds a yield curve that lies uniformly above the curve that corresponds to a lower

short-term rate. Furthermore, if the diffusion that describe the short-term rate is also homogeneous,

then two yield curves that are measured at different dates cannot intersect when drawn from the
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same time origin. If empirically they do intersect, then the short-term rate cannot be described by

a one-factor homogeneous diffusion.

It was also shown that if the second partial derivative w.r.t. to the short-term interest rate of

the drift of the one-factor diffusion describing that rate is less than or equal to 2—special cases

being the linear drift models—then the prices of deterministic-coupon bonds and term structure

puts are convex in that rate.

The last result was derived using probabilistic representations of solutions to parabolic partial

differential equations. The same methodology was used to derive restrictions on prices of European,

American, and Asian options when the underlying price follows a stochastic volatility diffusion.

Bounds, asymptotic results, and representations were derived for different linear differential

transformations of derivative price functions like option’s delta, rho, and theta. An example from

these results is the fact that the rho of a European call written on a stochastic volatility underlying

asset is equal to the price of a digital call with the same exercise price, the same time to

expiration, and the same underlying asset as the call, multiplied by the time to expiration and by

the exercise price.

The methodology used in this paper was described in sufficient detail to allow for its ready

application in a variety of situations.
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Appendix
Proof of Proposition 1.

That x = ° is formally equivalent to   t  = °, so the second term in (7) is zero. That x = 0 is

also an unattainable boundary is formally equivalent to   t = °. In that case,     1T£min( , )t t  = 1

almost surely; the second and third terms in (7) are equal to zero; and min(  t ,   t , T) = T. The

result follows.

When x = 0 is an absorption barrier, noting that expÒ
    t

s
ò -XÂdlÔ = 1, (7) becomes

v(x, t)  = Ex, tÓexpÒ    t

T
ò -XÂdlÔ g(XT)    1T£tÕ

+ Ex, tÓexpÒ    t

t

ò -XÂdlÔ Òg(0) +
    t

T
ò h(0, s)dsÔ    1t<TÕ

+ Ex, tÓ    t

Tmin( , )t

ò expÒ    t

s
ò -XÂdlÔh(Xs, s)dsÕ

= Ex, tÓexpÒ    t

T
ò -XÂdlÔ g(XT)Õ

+ Ex, tÓexpÒ    t

t

ò -XÂdlÔ Ò
    t

T
ò h(0, s)dsÔ    1t<TÕ

+ Ex, tÓ    t

Tmin( , )t

ò expÒ    t

s
ò -XÂdlÔh(Xs, s)dsá    1t<T +     1t³TâÕ

= Ex, tÓexpÒ    t

T
ò -XÂdlÔ g(XT)Õ

+ Ex, tÓ
    t

T
ò expÒ    t

s
ò -XÂdlÔ Òh(0, s)dsÔ    1t<TÕ

+ Ex, tÓ    t

t

ò expÒ    t

s
ò -XÂdlÔh(Xs, s)ds    1t<TÕ

+ Ex, tÓ    t

T
ò expÒ    t

s
ò -XÂdlÔh(Xs, s)ds    1t³TâÕ.

This immediately yields (12). Í
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Proof of Proposition 5.

It will prove useful to denote by "x, "xx, and "t the operations of taking partial derivatives in the

obvious way. Take the partial derivative of the PDE (9), then interchange the order of partial

differentiation as necessary to get

"tvx(x, t) +   
1
2
s2(x, t)"xxvx(x, t) + Òs(x, s)sx(x, s)² + m(x, s)Ô"xvx(x, t)

          + Òmx(x, s) - xÔvx(x, t) - v(x, t) + hx(x, s) = 0,     in â++þ[0,²²T).   (A1)

Differentiating the end condition (10) w.r.t. x as well yields the end condition for (A1):

vx(x, T) = g¢(x),     on â++.  (A2)

Treating v(x, t) as a known function, equation (A1) is a parabolic PDE that must be satisfied by

vx(x, t) with end condition (A2). Since, by assumption, x = 0 is an unattainable boundary for

(A1), and therefore specification of a boundary condition there, is neither possible nor needed.

Therefore, the solution to (A1) and (A2) can be represented as in (13). The probabilistic

representation (14) is proven similarly by taking yet another derivative w.r.t. x of (A1) and its

end condition (A2).  Í

Proof of Proposition 7.

The proof is described as an algorithm in four steps.

 Step 1. Apply the operator � to the Black-Merton-Scholes PDE (17) to get the PDE

��BMSv(x, t) = 0 on the option’s continuation region C. Apply � to both sides of the end

condition (18) to get

�v(x, T) = �g(x), x ßâ,  (A3)

and using (19), get that

�v(xf(t), t) = �g(xf(t)) for tß[0,²²T].  (A4)
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Step 2. Rewrite ��BMSv(x, t) as P�v(x, t), interchanging the order of derivatives where

necessary.17 In fact, P is identified as that operator which satisfies the identity ��BMSv(x, t) =

�v(x, t) on C. This last identity and ��BMSv(x, t) = 0 imply that

P�v(x, t) = 0 on C .  (A5)

Denoting u(x, t) := �v(x, t) and f(x) := �g(x), equations (A5), (A3), and (A4) can be rewritten

as

Pu(x, t) = 0 on C  (A6)

u(x, T) = f(x), x ßâ,  (A7)

uáxf(t), tâ = fáxf(t)â, tß[0,²²T].  (A8)

This means that the function �v(x, t) is a solution of PDE (A6) with end condition (A7) and

boundary condition (A8).

Step 3. Check whether P is a parabolic differential operator, ie, check if it is of the form

Pu(x, t) := ut(x, t) +   
1
2
s2(x, t)uxx(x, t)

+ B(x, t)ux(x, t) + C(x, t)u(x, t) + H(x, t).

 Step 4. If, indeed, P is parabolic, then, under regularity conditions,18 the results described in

Section 2 can be applied to write the probabilistic solution to the problem (A6) , (A7), (A8) in the

form

u(x, t)  = Ex, tÓjt, tfáxf(t)â1t<TÕ

+ Ex, tÓjt, Tf(XT)1t=TÕ

17 It is assumed that all the relevant (mixed) partial derivatives of v  are continuous, so that interchanging
the order of the partials is allowed.

18 The regularity conditions [(see Duffie (1996, p.295)] require that all of σ, B, C, H, f, and u are
continuous; the solution u, and the functions σ, B, H and f satisfy a polynomial growth condition in x; C is
nonnegative; and σ and B are also Lipschitz in x.

+ Ex, tÓ    t

t

ò jt, sH(Xs, s)dsÕ,    (x, t)²ß ²C  (A9)
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where X is the auxiliary process

dXs = B(Xs, s)ds + s(Xs, s)dWs,   t ø s ø T,    Xt = x,

where {Wt : 0 ø t ø T} is a one-dimensional Brownian motion, and where jt, s :=

expÒ    t

s
ò C(XÂ, l)dlÔ.

Indeed, P turns out to be parabolic under both interpretations. This is usually the case, since

�BMS is itself parabolic and � is a linear differential operator. For example, under the riskless

position interpretation P is parabolic with B(x, t) = s(x, t)"xs(x, t) - s2(x, t)/x + (r - d�)xÔ,

C(x, t) = d¯ - r, and H(x, t) = 0. Substituting these and u = �v and f = �g in (A9) yields

(21). For a European option, early exercise is impossible, which formally means Pr Ò1t<T = 1Ô

= 0, and therefore the first term in (A9) is also zero. This yields (22). Í

Proof of Proposition 8.

Using (21) and the assumptions that 0 ø d and 0 ø   �gyields

�v(x, t) ³   �gE x, tÓe
-d(t - t)

1t<T + e-d(T - t)
1t=TÕ

³   �gEx, tÓe
-d(t - t)

e
-d(T - t)

1t<T + e-d(T - t)
1t=TÕ

³ e-d(T - t)
  �gEx, tÓ1t<T + 1t=TÕ = e-d(T - t)

  �g . Í

This proves the left-hand inequality of (i). The other inequalities are proven similarly. Í

Proof of Proposition 10.

 The proof will be given for a European option. Denote L :=  limz­¥�g(z) and let     FT
x t,  be the

distribution function of  XT
x t, , the value of the auxiliary process at time T. By definition of L as a

limit, "e > 0, $ae such that "y > ae, |�g(z) - L| < e. Therefore, using (22), for a given e,
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inf

z aÎ -¥( , ]e
�g(z)

    
d yT

x t
a

F , ( )
-¥
ò
e

 + (L - e)
    

d yT
x t

a

F , ( )
e

¥

ò

 ø 
    

�g y d yT
x t

a

( ) ( ),F
-¥
ò
e

 + 
    

�g y d yT
x t

a

( ) ( ),F
e

¥

ò

= Ex, tÓ�g(XT)Õ = ed(T - t)�v(x, t)

ø 
    

sup
z aÎ -¥( , ]e

�g(z)
    

d yT
x t

a

F , ( )
-¥
ò
e

 + (L + e)
    

d yT
x t

a

F , ( )
e

¥

ò .

By Lemma 9, limx­¥
    

d yT
x t

a

F , ( )
-¥
ò
e

 = 0 and limx­¥

    
d yT

x t

a

F , ( )
e

¥

ò  = 1. Assuming that the “inf” and the

“sup” above are finite (the payoff function of most derivatives is bounded on any ray extending

to the left), sending x to infinity yields

L - e  ø limx­¥Ex, tÓ�g(XT)Õ = ed(T - t)
limx­¥�v(x, t) ø L + e,

which is true for any e. Taking e¯0 concludes the proof. When the “inf” and the “sup” above are

not both finite, the proof needs to be modified by a suitable generalization of Lemma 9. The

proof for the American case is similar to that of the European. Í

Proof of Proposition 12.

 Following the algorithm outlined in the proof of Proposition 7, apply the operator 
    
¶
¶r

 (the first

partial w.r.t the interest rate r) to the Black-Merton-Scholes PDE (17) (with dividend yields set

to zero) to get

    
¶
¶r

�BMSv(x, t) = 0.   (A10)

Recall that usually v(x, t) depends on r as a parameter. This dependence is not shown for brevity.

Rewrite (A10), bringing in the operator 
    
¶
¶r

 to the immediate left of the v throughout, to get
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¶
¶t

vr(x, t) +   
1
2
s2(x, t)

    
¶
¶

2

2x
vr(x, t)

+ (r -  d�²)x
    
¶
¶x

vr(x, t) - (r - d¯)vr(x, t) + l(x, t) = 0,  (A11)

where l(x, t) := -[v(x, t) - x"xv(x, t)]. PDE (A11) is parabolic with vr(x, t)—which is rho, by

definition—as the solution function. To get the end condition for this PDE, apply the 
    
¶
¶r

operator to the end condition (18)  and get the end condition

vr(x, T) = 
    
¶
¶r

g(x) = 0 on â+.

Reading the coefficient functions off PDE (A11) and using the end condition, yields the

probabilistic representation

r(x, t) =  vr(x, t) = -Ex, tÓ    t

T
ò e

-(r - d¯
)(s - t)[v(Xs, s) - Xsvx(Xs, s)]dsÕ

= -    t

T
ò e

-(r - d¯
)(s - t)Ex, t{EXs, se

-(r - d¯
)(T - s)[g(XT) - XTg¢(XT)]dsÕ

= -Ex, t[g(XT) - XTg¢(XT)]e
-(r - d¯

)(T - t)
    t

T
ò ds

= -(T - t)e-(r - d¯
)(T - t)Ex, t[g(XT) - XTg¢(XT)],

where result (24) was used to obtain the second line, and the law of iterated expectations – to

obtain the third.

The bounds in (30) follow immediately from (29). Equation (31) follows from (28) and (29).

To get the last result of the proposition, take the partial derivative of both sides of (A10) w.r.t.

x to get

    
¶
¶

¶
¶x r

�BMSv(x, t)

= 
    
¶
¶
v
t
xr  + 

    
1
2

2
2

2s
¶
¶

( , )x t
v
x

xr  + [rx + s(x, t)s1(x, t)]
    
¶
¶
v
x
xr  + xv11(x, t) = 0. 



Page 36

Similarly, the end condition for this PDE is vxr(x, T) = 
    
¶
¶

¶
¶x r

g(x) = 0. Whence, the

probabilistic solution is

    
¶
¶
D
r

 = 
    
¶r
¶x

 = vxr(x, t) = Ex, tÒ    t

T
ò Xsv11(Xs, s)dsÔ,  (A12)

where Xs is the appropriate auxiliary process. As shown by Bergman (1983) and by Bergman,

Grundy, and Wiener (1996), for European options with payoff function g, if g²(x) maintains

uniformly the same sign on â+, then the option’s gamma, v11(x, s), maintains the same uniform

sign on â+ þ [0,²²T). Therefore, by (A12), so does vxr(x, t). Í

Proof of Proposition 14.

Taking the partial derivative of the Black-Merton-Scholes PDE (17) w.r.t time yields �BMSv(x, t)

® �BMSv2(x, t) = 0, ie,

�BMSQ(x, t; T) = 0,        on â+ þ [0,²²T).  (A13)

To get the end condition for (A13), note that (17) implies that Q(x, T; T) = -  
1
2
s2(x)"xxv(x, T)

+ r[v(x, T) - x"xxv(x, T)]. But since v(x, T) = g(x), it follows that the end condition for PDE

(A13) is

Q(x, T; T) = -s2(x)g²(x) + r[g(x) - xg¢(x)],     on â+.  (A14)

Therefore, (32) is the probabilistic representation of the solution to (A13) and (A14).

For a call option, g(y) = (y - K)+, g¢(y) = H(y - K), g²(y) = d(y - K), and g(y) - yg¢(y)

= -KH(y - K), where H is the Heavyside function and d is Dirac’s delta. Substituting these in

(32) yields (33). By Lemma 9, limx­¥
    K

¥

ò f(y, T; x, t)dy =
    
lim
x­¥

PrÒXx,t
T  > KÔ = 1, and limx­¥f(K,

T; x, t) = 0 (otherwise, the Lemma is contradicted). Noting this and taking 
    
lim
x­¥

 of (33) yields

(34). If zero is a boundary from which the underlying risk-neutralized process cannot reach
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positive values, then f(y, T; 0, t) = 0, almost everywhere. Using this in (33) gives Qcall(0, t; T)

= 0.

For diffusions with “well behaved” s ;;;;(x), the expression in square brackets in (33) is finite as

long as T - t > 0. This observation yields the limit in (35).

Finally, observe that for regular diffusions, f(y, T; x, T) = d(y - x) [Dirac’s delta].

Therefore, by (33) lim(T-t)¯0Qcall(x, t; T) = -Ò
  
1
2 s2 ;;;;(K)d(K - x)+ rK

    K

¥

ò d(y - x)dyÔ, which

immediately implies (36).  Í
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