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THE MINIMUM MAXIMUM OF A CONTINUOUS MARTINGALE
WITH GIVEN INITIAL AND TERMINAL LAWS

BY DAVID G. HOBSON1 AND J. L. PEDERSEN

University of Bath and ETH Zürich

Let (Mt )0≤t≤1 be a continuous martingale with initial law M0 ∼ µ0,
and terminal law M1 ∼ µ1, and let S = sup0≤t≤1 Mt . In this paper we prove
that there exists a greatest lower bound with respect to stochastic ordering of
probability measures, on the law of S. We give an explicit construction of this
bound. Furthermore a martingale is constructed which attains this minimum
by solving a Skorokhod embedding problem. The form of this martingale is
motivated by a simple picture. The result is applied to the robust hedging of
a forward start digital option.

1. Introduction. Let µ0 and µ1 be probability measures on R, let M ≡
M(µ0,µ1) be the space of all martingales (Mt)0≤t≤1 with initial law µ0 and
terminal law µ1 and let MC ≡ MC(µ0,µ1) be the subspace of M consisting of the
continuous martingales. For a martingale M ∈ M let S ≡ sup0≤t≤1 Mt and denote
the law of S by νM . In this article we are interested in the sets P ≡ P (µ0,µ1) ≡
{νM ;M ∈ M} and PC ≡ PC(µ0,µ1) ≡ {νM;M ∈ MC} of possible laws ν. In
particular we find a greatest lower bound for PC . (The problem of finding an upper
bound has been studied elsewhere.) Here comparisons of measures are made in
the sense of stochastic domination. The fact that M is a martingale with no jumps
imposes quite restrictive conditions on the law of the maximum ν.

Our motivation for studying this problem is twofold. First, this work extends
results of Perkins which cover the situation when the initial law is a unit mass
(see Remark 2.3). Second, there is an application to mathematical finance and the
construction of hedging strategies for exotic options which are robust to model
misspecification (see Remark 3.2).

Clearly M is empty unless the random variables corresponding to the laws µi

have the same finite mean, and henceforth we will assume without loss of
generality that this mean is zero. Moreover a simple application of Jensen’s
inequality shows that a further necessary condition for the space to be nonempty
is that ∫ ∞

x
(y − x)µ0(dy) ≤

∫ ∞
x

(y − x)µ1(dy) ∀x.(1)
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This condition is also sufficient; see, for example, [19], Theorem 2, or [11],
Chapter XI. It follows from the construction in [4] that this is also a necessary
and sufficient condition for MC to be nonempty. Henceforth we assume that (1)
holds.

Consider first the problem of determining bounds on P (δ0,µ1), where δ0 is
the unit mass at 0. This problem is a special case of a problem first considered in
[2, 6]. Let � denote stochastic ordering on probability measures [so that ρ � π if
and only if ρ((−∞, x)) ≥ π((−∞, x)) ∀x], and let ρ∗ denote the Hardy transform
of a probability measure ρ. Then it follows from [2, 6] and from [1] that

δ0 ∨ µ1 � ν � µ∗
1.(2)

Kertz and Rösler [10] have shown that the converse to (2) also holds: for any
probability measure ρ satisfying δ0 ∨ µ1 � ρ � µ∗

1, there is a martingale with
terminal distribution µ1 whose maximum has law ρ. (See also [17] for a proof
of these results based on excursion theory which will motivate many of our
arguments.) Thus

P (δ0,µ1) ≡ {ν : δ0 ∨ µ1 � ν � µ∗
1}.

Note that the lower bound is attained by a martingale which consists of a single
jump at time 1 where the jump is chosen to have law µ1.

Now consider PC(δ0,µ1). Then the least upper bound is unchanged since there
is a continuous martingale whose maximum has law µ∗

1, as can be seen from
the example in [17]. Moreover, Perkins [12] gives an expression for the greatest
lower bound, which to be consistent with future notation we shall label ν#(δ0,µ1).
This lower bound will arise as a special case of the construction we give below
for general initial conditions. See Remark 2.3 for a discussion of the Perkins
construction and its relationship to the construction we give. In summary, when
the starting measure is a point mass,

PC(δ0,µ1) ⊆ {ν :ν#(δ0,µ1) � ν � µ∗
1}

and both ν#(δ0,µ1) and µ∗
1 are elements of PC .

We are interested in the problem with a general initial condition. As Kertz and
Rösler ([10], Remark 3.3) observe,

PC(µ0,µ1) ⊆ P (µ0,µ1) ⊆ {ν :µ0 ∨ µ1 � ν � µ∗
1}.(3)

Further Hobson [7] derives a least upper bound ν∗
0,1 for both of the sets PC(µ0,µ1)

and P (µ0,µ1). Since there is a continuous martingale with the correct marginal
distributions whose maximum has law ν∗

0,1, the least upper bound is attained in
each case.

The main result of this article is that there is a greatest lower bound ν# ≡
ν#(µ0,µ1) for PC , and that this bound is attained; that is, there exists ν# ∈ PC

such that ν# � ν for all ν ∈ PC . The measure ν# is difficult to characterize but
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we give a simple pictorial representation in Figure 1 below. It turns out that it is
simple to show that ν# is a lower bound, but comparatively difficult to show that it
is attained.

If the continuity restriction is dropped, then it is easy to define a lower bound ν#
for P (µ0,µ1) nonconstructively via

ν#
(
(−∞, x)

)≡ sup
M∈M

(
νM(−∞, x)

)
.

However, there is a simple example in [7] to show that for general initial
measures this lower bound for P is not attained. Again any minimal element
of P corresponds to a martingale with a single jump at time 1. These two factors
explain why it is more interesting to restrict attention to continuous martingales,
a restriction that we now make.

The problem of characterizing the greatest lower bound for the maximum of
a martingale constrained to have given initial and terminal laws has an application
to the pricing of derivative securities in mathematical finance. The derivatives
in question are forward start barrier options and lookbacks. This idea has been
explored by Hobson [8] and Brown, Hobson and Rogers [3]. It was this derivative
pricing problem which provided the original motivation for studying martingale
inequalities of the type in this paper.

The remainder of this paper is constructed as follows. In the next section we
construct the measure ν#(µ0,µ1) and give some examples. In Section 3 we show
that this measure is stochastically dominated by every measure in PC(µ0,µ1). We
also briefly outline the connection between this result and a problem in the robust
hedging of financial derivatives. Finally, in Sections 4 and 5, we show that ν# is an
element of PC and hence that it is a greatest lower bound. At first reading of these
final two sections the reader is invited to think of measures µi which are discrete
as this frequently simplifies the analysis. Note that, even in this case, the law ν# is
not discrete; see Example B.

2. The main result. The main result is contained in the next theorem. Let µ0
and µ1 be two centered probability measures on R satisfying the inequality (1)
[i.e., MC(µ0,µ1) is then nonempty]. For i = 0,1 we set

ci(x) = E(Mi − x)+ =
∫
(x,∞)

(u − x)µi(du)(4)

for x ∈ R and from (1) it follows that c1(x) ≥ c0(x). Hence the function

c(x) = c1(x) − c0(x)(5)

is nonnegative. Define

�(x) = µ1
(
(−∞, x)

)− sup
y<x

c(x) − c(y)

x − y
.(6)
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THEOREM 2.1. � is a left continuous distribution function. Further, for any
continuous martingale M ∈ MC(µ0,µ1), and for any x ∈R we have that P(S <x)

≤ �(x). Moreover, there exists a continuous martingale M# ∈ MC(µ0,µ1) with
maximum S# for which P(S# < x) = �(x) for each x ∈ R.

COROLLARY 2.2. Define the probability measure ν# = ν#(µ0,µ1) by

ν#((−∞, x)
)= �(x).(7)

Then ν# is a greatest lower bound for PC(µ0,µ1). In particular, ∀ ν ∈ PC(µ0,µ1)

we have ν# � ν and ν# ∈ PC(µ0,µ1).

Before we prove the theorem in later sections we will first describe the
construction of M# and look at some examples to make the construction clearer.
For this we need some notation. Let Fi be the distribution function associated
with µi . For x ∈ R we define

γ (x) = sup
y<x

c(x) − c(y)

x − y
.(8)

The two functions ci(x) are convex and hence the left derivative of c(x) exists and
is given by c′−(x) = F1(x−) − F0(x−). If the supremum in (8) is not attained,
then γ (x) = c′−(x). We define the function x �→ g(x) as follows. For x ∈ R, let
g(x) ≤ x be the maximal value where the supremum in (8) is attained and if the
supremum is not attained g(x) = x. Note that in the cases γ (x) = c′−(x) then
g(x) = x. See Figure 1.

FIG. 1. The construction of γ (x) and g(x) involves finding a tangent to c(·) which crosses c(·) at x
and which is supporting for c(·) to the left of x. γ (x) is the slope of the tangent and g(x) is the point
supporting the tangent. If there is more than one point supporting the tangent, as in this figure, then
g(x) is the largest such point.
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With the above notation we can describe the martingale M#. On some suitable
sample space define the following three elements:

1. a random variable B0 with law µ0;
2. a random variable G with law

P(G ≥ s|B0 = r)

= exp
(

−
∫
(r,s)

F c
1 (du)

F0(u−) − �(u)

) ∏
u∈[r,s)

(
1 − �F1(u)

F0(u−) − �(u)

)+

for s > r , where F c
1 is the nonatomic part of F1; at present we do not exclude

the possibility G = ∞;
3. a Brownian motion (Wt)t≥0 independent of B0 and G.

Then Bt = B0 + Wt is a Brownian motion with initial law µ0. Let St =
max0≤r≤t Br and define the stopping times

τG = inf{t > 0 | St ≥ G},
τg = inf{t > 0 | Bt ≤ g(St )},
τ = τG ∧ τg.

In later sections we will prove that Bτ has law µ1 and Sτ has law ν#. See
Figure 2 for a picture of the stopping times. Then M# is a time change of Bt∧τ and

FIG. 2. Describing stopping times in the (Bt , St ) plane. The horizontal lines to the left of the line
y = x are representations of excursions down from the maximum of Brownian motion.
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FIG. 3. (Left) A drawing of c(x) in Example A; the slope of the tangent at g(x1) is γ (x1).
(Right) A drawing of g(x) in Example A.

is given by

M#
t = B(t/(1−t))∧τ , t ≤ 1.(9)

This construction involves the use of independent randomization using the random
variable G. For comments on the necessity of such randomization see Remark 2.3
below. We begin, however, with some examples of the construction.

EXAMPLE A. Let µ0 = δ0 and let µ1 be the uniform distribution on [−1,1].
Then we compute that

c(x) = (1
4 (1 − x)2 + x

)
1(−1<x<0) + 1

4 (1 − x)21(0≤x<1)

and g(x) = x − 2
√
x for 0 < x ≤ 1 and g(x) = x elsewhere (see Figure 3). This

example is also studied in [12].

EXAMPLE B. Let µ0 be the uniform measure on {−1,1} and let µ1 have
atoms at −2,0,2 with probability p,1 − 2p,p respectively, where 1

4 < p < 1
2 .

Then we compute that

c(x) = p(2 + x)1(−2<x<−1) + (
2p − 1

2 − (1
2 − p

)
x
)
1(−1≤x<0)

+ (
2p − 1

2 + (1
2 − p

)
x
)
1(0≤x<1) + p(2 − x)1(1≤x<2).

If 3
8 ≤ p < 1

2 , then g(x) = −2 if −1 < x ≤ 2 and g(x) = x elsewhere. If 1
4 <p< 3

8 ,
then

g(x) =




−2, if −1 < x ≤ 0 and
2

8p − 1
< x ≤ 2,

0, if 1 < x ≤ 2

8p − 1
,

x, elsewhere.

The cases are illustrated in Figures 4 and 5.
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FIG. 4. Two drawings of c for different parameter values in Example B: (left) for p = 1/3; (right)
for p = 4/10.

FIG. 5. Two drawings of g for different parameter values in Example B: (left) for p = 1/3; (right)
for p = 4/10.

EXAMPLE C. This is an example to show that the function g can get
complicated with even simple expressions for µ0 and µ1. Let µ0 be the uniform
measure on [−2,−1] ∪ [1,2] and let µ1 be the uniform measure on [−3,−2] ∪
[−1/2,1/2] ∪ [2,3]. The functions c and g are illustrated in Figure 6; γ and �, in
Figure 7. Note that for x values in the range of [1/8,1] we have that g(x) = x.

FIG. 6. (Left) A drawing of c(x) in Example C. (Right) A drawing of g(x) in Example C.
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FIG. 7. The left diagram represents γ in Example C. The right diagram shows the distribution
functions F0,F1 and � for this example. Note that �(u) ≤ min{F0(u−),F1(u−)}.

REMARK 2.3. Perkins [12] has studied the problem under the assumption
that µ0 = δ0. Although it is defined in a different fashion our function g is exactly
−γ+ in the notation of [12]. In the Perkins construction the stopping time τG is re-
placed by a stopping time of the form τγ− = inf{t > 0 | Bt ≥ γ−(− min0≤u≤t Bu)},
where γ− is a positive increasing function. Except when µ1 has an atom at 0 (i.e.,
µ0 and µ1 have a simultaneous atom) the Perkins construction gives a method of
constructing a Skorokhod embedding of the law µ1 using a stopping time which
is adapted to the Brownian motion. The Perkins construction has the property of
minimizing the law of the maximum of (Bt∧τ )t≥0. Furthermore, in the case where
µ0 = δ0 this construction has the remarkable additional property that it simultane-
ously minimizes the laws of both sup0≤t≤τ Bt and − inf0≤t≤τ Bt [12, 13].

We believe that, using the ideas of Perkins, it should be possible to construct an
adapted stopping time for the case µ0 �= δ0 provided µ0 and µ1 have no atoms in
common. However, since in general some independent randomization (represented
by the random variable G) is necessary, we have not pursued this direction of re-
search. Moreover, by considering the form of the optimal martingale in Example B
(with p = 3/8), we can see that it is not possible with general starting measures to
simultaneously minimize sup0≤t≤1 Mt and − inf0≤t≤1 Mt .

In his paper Perkins also makes some comments about the problem with general
starting measure ([12], pages 220–222). These comments are predicated on an er-
roneous claim (3.35) which allows the problem to be reduced to that with M0 ∼ δ0,
but which is in conflict with (1). This explains why we reach a different conclusion.

3. The lower bound. The first step in the proof of Theorem 2.1 is to verify
that � is indeed a lower bound.

LEMMA 3.1. For any M ∈ MC(µ0,µ1) we have that P(S ≥ x) ≥ 1 − �(x)

for x ∈ R, where � is given in (6).
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PROOF. Let x be fixed. Suppose that y < x. Then we have the inequality

1{S≥x} ≥ 1{M1≥x} + (M1 − x)+

x − y
− (M0 − x)+

x − y
− (M1 − y)+

x − y
+ (M0 − y)+

x − y

+ 1{y<M0<x}
M1 − M0

x − y
+ 1{S≥x}1{y<M0<x}

x − M1

x − y
,

(10)

which can be verified on a case-by-case basis. Since M is a continuous martingale
we have equality in Doob’s submartingale inequality and hence

E

(
x − M1

x − y
; S ≥ x, y <M0 < x

)
= 0.

By taking expectation in (10) and using the martingale property we have that

P(S ≥ x) ≥ P(M1 ≥ x) + c(x) − c(y)

x − y

for any y < x and the result follows. �

REMARK 3.2. The above proof has a financial interpretation in the pricing
of a forward start digital option (see [3, 8] for greater details). Let (Mt) denote
the price process of an asset and suppose for simplicity that there are zero-interest
rates and no transaction costs. From the general theory of mathematical finance it
follows that the fair price of a European call option with strike x and maturity T

is E((MT − x)+), where the expectation is taken with respect to the martingale
measure. Thus for pricing purposes we may assume that M is a martingale.

To fit in with previous notation, suppose the current time is −1 and T = +1.
Suppose we know the call prices at times 0 and 1 for this asset. Then we can
derive the laws µ0 and µ1 of M0 and M1 respectively, under the pricing measure.

Consider the digital option on sale at time −1 which pays one unit if the value
of the asset is above the barrier x at any time in the period [0,1]; that is, the payoff
is given by

1{max0≤t≤1 Mt≥x}.

If we assume that the price process is continuous, then from the above lemma we
have that

P

(
max

0≤t≤1
Mt ≥ x

)
≥ P(M1 ≥ x) + sup

y<x

[c1(x) − c0(x)] − [c1(y) − c0(y)]
x − y

,

where ci(x) = E((Mi − x)+) is the price of a call option with strike x and
maturity i.

Inequality (10) can be used to motivate a hedging strategy. Initially (at time −1)
we fix any y < x and buy a binary option with payoff 1{M1≥x}, buy 1/(x − y)

maturity 1 calls with strike x, sell 1/(x − y) maturity 0 calls with strike x, sell
1/(x − y) maturity 1 calls with strike y and buy 1/(x − y) maturity 0 calls with
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strike y. This is the static part of the hedge and costs µ1([x,∞)) + ([c1(x) −
c0(x)] − [c1(y) − c0(y)])/(x − y). For the dynamic part of the hedge we proceed
as follows. If the underlying asset at time 0 is lower than or equal to y, or greater
than or equal to x we do nothing. If the underlying asset at time 0 is between y

and x we buy 1/(x − y) units of the underlying asset and if the underlying asset
subsequently reaches the level x we sell 1/(x − y) units of the underlying asset.

From inequality (10) we have that for each y this is a subreplicative strategy. The
cost of the strategy is µ1([x,∞)) + ([c1(x) − c0(x)] − [c1(y) − c0(y)])/(x − y),
which is a lower bound on the price of a digital option. Since y < x is arbitrary the
greatest lower bound on the price of a digital option is

µ1
([x,∞)

)+ sup
y<x

[c1(x) − c0(x)] − [c1(y) − c0(y)]
x − y

.(11)

If the digital option is offered for sale below this price, then arbitrage profits can
be made. Further this analysis is completely independent of the model for the
behavior of the underlying asset. The only assumption that has been made is that
the price process is continuous.

Of course the digital option may trade for a price above the bound in (11).
However, the result of Theorem 2.1 is that if the ask price is above the bound (11),
then it is not possible to create riskless profits unless further assumptions about
the dynamics of the price process are made (for instance, that the price process is
exponential Brownian motion).

4. Some preliminary lemmas. In this section we state some technical results
which will be required in the sequel. Some of the proofs are relegated to the
Appendix, although we try to explain intuitively why they must be true.

Recall the definitions of �, γ and g:

�(x) = µ1
(
(−∞, x)

)− γ (x);
γ (x) = sup

y<x

c(x) − c(y)

x − y
;(12)

and g(x) is the value of y where the supremum in (12) is attained. If the supremum
is not attained, then we set g(x) = x. If the supremum is attained at more than one
value of y, then we choose the largest (or more precisely the supremum) of the
candidate values.

LEMMA 4.1. The function x �→ γ (x) is positive, left-continuous and has no
downward jumps.

PROOF. This is a standard piece of analysis given the fact that the left
derivative of c exists, is bounded and indeed equals F1(x−) − F0(x−). That it
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must be true is best seen by drawing a picture, and recalling the intuition that γ
represents the gradient of a supporting tangent. See Figure 1. �

Now we prove one of the statements in Theorem 2.1, namely that the candidate
law � is indeed (a left-continuous version of) a distribution function.

PROPOSITION 4.2. x �→ �(x) is a left-continuous distribution function; that
is, � is increasing, left-continuous and satisfies �(−∞) = 1 − �(+∞) = 0.
Further, �(x) ≤ F0(x−) ∧ F1(x−) and ��(x) ≤ �F1(x).

PROOF. From Lemma 4.1 and the representation �(x) = F1(x−) − γ (x) it
follows that � is left-continuous and ��(x) ≤ �F1(x). Note further that γ (x) ≥
0 ∨ (F1(x−) − F0(x−)) and hence �(x) ≤ F0(x−) ∧ F1(x−). It is clear that
γ (±∞) = 0 (e.g., by dominated convergence) so to complete the proof we only
need to verify that � is increasing.

By (4) and (5) we have the following expression for �:

�(x) = F0(x−) − sup
z<x

∫
(z,x)

u − z

x − z

(
µ0(du) − µ1(du)

)
.(13)

Fix y > x. With the above observations we have the following:

Case 1. γ (y) = c′−(y). Then

�(y) = F0(y−) ≥ F0(x−) ≥ �(x).

Case 2. γ (y) > c′−(y) and g(y) ≤ x. Then from (13),

�(y) = F0(y−) −
∫
(g(y),y)

u − g(y)

y − g(y)
µ0(du) +

∫
(g(y),y)

u − g(y)

y − g(y)
µ1(du)

≥ F0(y−) −
∫
(g(y),x)

u − g(y)

y − g(y)

(
µ0(du) − µ1(du)

)−
∫

[x,y)
µ0(du)

= F0(x−) −
∫
(g(y),x)

u − g(y)

y − g(y)

(
µ0(du) − µ1(du)

)

≥ F0(x−) − sup
z<x

∫
(z,x)

u − z

x − z

(
µ0(du) − µ1(du)

)= �(x).

Case 3. γ (y) > c′−(y) and x < g(y). From the first line in the previous case,

�(y) ≥ F0(y−) −
∫
(g(y),y)

u − g(y)

y − g(y)
µ0(du)

≥ F0(y−) −
∫
(g(y),y)

µ0(du)

= F0
(
g(y)

)≥ F0(x−) ≥ �(x).

Hence � is increasing. �
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The conclusion is that ν# is a probability measure which, by Lemma 3.1, is
a lower bound for PC . We summarize this in a proposition.

PROPOSITION 4.3. Let M be a continuous martingale with initial law µ0 and
terminal law µ1. Let ν be the law of the maximum process S. Then ν# � ν; that is,
for all ν ∈ PC(µ0,µ1) we have that ν# � ν.

It remains to show that ν# ∈ PC(µ0,µ1). This is the subject of the next section.
For the remainder of this section we state further lemmas, beginning with one on
the properties of g.

LEMMA 4.4. The function x �→ g(x) has the following properties:

(a) if z ≥ x, then either g(z) ≤ g(x) or g(z) ≥ x;
(b) if g(x) < x, then c′−(g(x)) ≤ γ (x) ≤ c′+(g(x));
(c) if g(x) = x, then F0(x−) = �(x).

PROOF. These statements are best understood using a picture; recall Figure 1.
Statement (b) follows from interpretation of γ as the gradient of the tangent to c

at g(x), and (c) is true by l’Hôpital’s rule. �

It follows from the lemma that the typical behavior of g is either that g(x) = x

or that g(x) < x and g is decreasing. In fact if g increases, then it must increase to
the diagonal.

LEMMA 4.5. (a) If xn ↓ x, with g(xn) ≥ x, then �(x+) = F0(x).
(b) If g(x) < x over an interval (y, z), and if g(z−) ≡ limu↑z g(u), then

g(z) = g(z−).

PROOF. (a) By Lemma 4.4(b) we have c′−(xn) ≤ γ (xn) ≤ c′−(xn) ∨
{supy∈[x,xn] c′+(y)} and so γ (xn) → c′+(x) = F1(x) − F0(x).

(b) g is decreasing over the interval (y, z) and so g(z−) exists and g(z−) < z.
Further, Lemma 4.4(a) shows that either g(z) = z or g(z) ≤ g(z−). The left
continuity of γ implies

γ (z) = γ (z−) = lim
x↑z

c(x) − c(g(x))

x − g(x)
= c(z) − c(g(z−))

z − g(z−)
.

Thus g(z−) attains the supremum in (12) so, by the definition of g as the maximal
solution, we have g(z−) ≤ g(z) < z. This means that the first case cannot occur
and by the second case we must have g(z) = g(z−). �

We set A+ = {x :�(x+) = F0(x)}, A− = {x :�(x) = F0(x−)} and let A =
A+ ∪A−. Note that the set A is closed. A will play a special role in the next section,
where we show that, for the optimal martingale, if M0 < x ∈ A, then necessarily
S ≤ x also.
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LEMMA 4.6. If x /∈ A+, then γ is continuous at x and decreasing to the right
of x. Hence ��(x) = �F1(x).

PROOF. If x /∈ A+, then by the previous lemma for all y in some interval
(x, x + δ) we have g(y) < x < y.

Since x /∈ A+, we must have c′+(x) < γ (x), and for y in some smaller interval
(x, x + δ′) we have c(y) < c(x) + (y − x)γ (x). Then

γ (y) ≤ c(x) + (y − x)γ (x) − c(g(y))

y − g(y)

= c(x) − c(g(y))

x − g(y)

x − g(y)

y − g(y)
+ y − x

y − g(y)
γ (x)

≤ x − g(y)

y − g(y)
γ (x) + y − x

y − g(y)
γ (x) = γ (x).

Thus γ is decreasing to the right of x.
Right continuity, and hence continuity, will follow if limy↓x γ (y) ≥ γ (x).

Suppose first that g(x) < x. Then

γ (y) ≥ c(y) − c(g(x))

y − g(x)
→ γ (x).

Conversely, if g(x) = x, then for δ > 0,

γ (y) ≥ c(y) − c(x − δ)

y − (x − δ)
→ c(x) − c(x − δ)

δ
.

As δ ↓ 0 we recover γ (x+) ≥ c′−(x) = γ (x). �

REMARK 4.7. If x /∈ A−, then it is easy to show that γ is decreasing to the
left of x.

LEMMA 4.8. (a) If I is an open interval disjoint from A, then∫
I

dv

v − g(v)
= −

∫
I

dγ (v)

F0(v−) − �(v)
.

(b) Further if g(x) < x, then γ satisfies

γ (x) =
∫

{y>x,g(y)≤g(x)}
F0(y−) − �(y)

y − g(y)
dy.

PROOF. γ is decreasing, and so γ is differentiable outside a Lebesgue null
set. The main task is to show that γ is absolutely continuous. For a full proof see
the Appendix. �
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We close this section with a couple of lemmas concerning distribution functions,
the proofs of which are in the Appendix. We denote the distribution function of
a measure φ by Fφ , the atoms by �Fφ and the nonatomic part of the distribution
by F c

φ .

LEMMA 4.9. Let π,ρ be two measures on R satisfying π � ρ. Let J (x) :=
Fπ(x−) − Fρ(x−). If Fπ and Fρ have no simultaneous jumps on the interval
[u,y) and if J is positive over this interval, then

1

J (y)
exp

(
−
∫ y

u

F c
ρ (dv)

J (v)

) ∏
v∈[u,y)

(
1 − �Fρ(v)

J (v)

)

= 1

J (u)
exp

(
−
∫ y

u

F c
π(dv)

J (v)

)( ∏
v∈[u,y)

(
1 + �Fπ(v)

J (v)

))−1

.

LEMMA 4.10. Let π , ρ and J be as above. Fix y ∈ R, and define z# =
supv<y{v :J (v) = 0 or J (v+) = 0}. Suppose z# < y. Then

∫
[z#,y)

Fπ(du)

J (u)
exp

(
−
∫ y

u

F c
π (dv)

J (v)

) ∏
v∈[u,y)

(
1 + �Fπ(v)

J (v)

)−1

= 1.

5. The minimum maximum is attained. In this section we construct a mar-
tingale M# which is an element of MC(µ0,µ1) and has the property that its
maximum S has the law ν# from (7). Thus, not only is ν# a lower bound for
PC(µ0,µ1) but also ν# ∈ PC(µ0,µ1).

The key idea in the construction of M# is to exhibit the martingale as
the solution of a Skorokhod embedding problem (see [7, 17]). Let (Bt )t≥0 be
a Brownian motion with initial law µ0. The problem is to find a stopping time τ

such that Bτ has the law µ1 and supt≤τ Bt has the law ν#. Then we can define M#

as a time change of B by

M#
t = B(t/(1−t))∧τ .(14)

M#
t is a true martingale and not just a local martingale provided that (Bt∧τ )t≥0 is

uniformly integrable.
Before we outline the construction we wish to make one simplifying observa-

tion. If µ0 and µ1 both contain an atom of size at least m at some point x, then
we can, and do, insist that the martingale M remains constant at x over [0,1] on
an appropriate part of the sample space (randomizing at time 0 if necessary). This
means that in our construction we only have to deal with measures µ0 and µ1 with
no common atoms.



992 D. G. HOBSON AND J. L. PEDERSEN

Recall the definition of g from earlier sections and that in Section 2 we defined
a Brownian motion B with initial law µ0 and a random variable G which depended
on B only through the initial value B0:

P(G ≥ s|B0 = r)

= exp
(

−
∫
(r,s)

F c
1 (du)

F0(u−) − �(u)

) ∏
u∈[r,s)

(
1 − �F1(u)

F0(u−) − �(u)

)+
.

(15)

Let St = max0≤s≤t Bs and define the stopping times

τG = inf{t > 0 | St ≥ G},
τg = inf{t > 0 | Bt ≤ g(St )}.

Set τ = τG ∧ τg .
We have to prove two identities in law, namely that Bτ ∼ µ1 and Sτ ∼ ν#. We

consider the second identity first, but we begin with a useful lemma. Recall the
definitions of the sets A+,A− and A before Lemma 4.6.

LEMMA 5.1. (a) Suppose x ∈ A−. If B0 < x, then Sτ < x.
(b) Suppose x ∈ A+. If B0 ≤ x, then Sτ ≤ x.

Note that both these statements should be interpreted in an almost sure sense.

PROOF. If B0 = r , let Hz denote the first hitting time by B of level z > r .
Case 1. B0 = r < x and (r, x) is disjoint from A. If (r, x) is disjoint from A,

then certainly by Lemma 4.5(b), g(z) < z on (r, x]. Suppose x ∈ A−. We show

∫
(r,x)

F c
1 (du)

F0(u−) − �(u)
− ∑

u∈[r,x)
log

(
1 − �F1(u)

F0(u−) − �(u)

)+
= ∞(16)

so that P(G ≥ x|B0 = r) = 0 and τG < Hx , almost surely. We prove this is the
case where F0 and F1 have no atoms, but the general case is very similar and just
involves additional terms written as sums as well as integrals.

By considering

−∞ =
∫
(·,x)

d
[
ln
(
F0(u−) − �(u)

)]

=
∫
(·,x)

dF0(u)

F0(u−) − �(u)
−
∫
(·,x)

d�(u)

F0(u−) − �(u)

we deduce that this final integral must be infinite. Also, by Lemma 4.8,∫
(·,x)

du

u − g(u)
= −

∫
(·,x)

γ (du)

F0(u−) − �(u)
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and this first integral is finite so that∫
(·,x)

dF1(u)

F0(u−) − �(u)
=
∫
(·,x)

d�(u)

F0(u−) − �(u)
+
∫
(·,x)

γ (du)

F0(u−) − �(u)
= ∞.

Now suppose x ∈ A \ A−. Then �(x+) = F0(x) and

0 <F0(x−) − �(x) ≤ F0(x) − �(x+) + ��(x) ≤ �F1(x)

by the last part of Proposition 4.2. Then P(G > x|B0 = r) = 0 and Sτ ≤ x (almost
surely).

Case 2. B0 = r < x and (r, x) is not disjoint from A. We show either that there
is an interval (y, z) ⊂ (r, x) disjoint from A with z ∈ A or that Sτ < x for some
other reason. In the former situation we can apply the results from the previous
case to the interval (·, z) to deduce that Sτ < z or Sτ ≤ z as appropriate.

If there is no interval disjoint from A, then either there exists y ∈ (A \ A−) ∩
(r, x) or A− is dense in (r, x). If y ∈ (A \ A−) ∩ (r, x), then by the final argument
in Case 1 applied at y we have 0 < F0(y−) − �(y) ≤ �F1(y) and P(G > y|
B0 = r) = 0. If A− is dense in (r, x), then since A is closed (r, x) ⊆ A. Either
there exists y ∈ (A \A−)∩ (r, x), a case already covered, or (r, x) ⊆ A−. Then for
y, z ∈ (r, x) with y < z we have

c(z)− c(y) =
∫ z

y
c′−(u) du

=
∫ z

y
γ (u) du

≥ (z − y)γ (z),

this last line following since γ is decreasing except on A+. Thus

γ (z) ≤ c(z) − c(y)

z − y
≤ sup

v<z

c(z) − c(v)

z − v
= γ (z)

and since g(z) is the largest value where this supremum is attained we have
g(z) ≥ y. But y is arbitrary so g(z) = z. Finally τ ≤ τg ≤ Hz so Sτ ≤ z < x.

Case 3. B0 = x and x ∈ A+. If �F1 > 0, then

F0(x−) − �(x) ≤ F0(x) − �(x+) + ��(x) ≤ �F1(x)

and P(G > x|B0 = x) = 0 and Sτ ≤ x almost surely. Otherwise, F1 is continuous
at x and then ��(x) = 0 so that F0(x−) ≥ �(x) = �(x+) = F0(x). In particular
�F0(x) = P(B0 = x) = 0. �

LEMMA 5.2. Suppose the open interval (u, y) is disjoint from A, so that
g(v) < v over this interval. Then

P(Sτg ≥ y|B0 = u) = exp
(

−
∫
(u,y)

dv

v − g(v)

)
.
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PROOF. This result is a standard result from excursion theory; see [16] or [14].
However, for completeness, and since excursion ideas are the essential insight in
later proofs, we provide a full proof.

By Lévy’s theorem (S, S − B) has the same law as (L, |W |) for Brownian
motion W with local time L at 0. (To match initial conditions, if S0 = B0 = u,
we define W0 = 0 and L0 = u.) Then, since τg = inf{t > 0 :Bt ≤ g(St )} we have
that τg has the same law as T , where T = inf{t > 0 : |Wt | ≥ Lt − g(Lt )}.

If N is the Poisson point process of excursions of |W | from 0, then the rate of
excursions of height at least h is h−1. We say an excursion at local time l is a
success if the maximum modulus of the excursion exceeds l − g(l) and then the
number of successes before local time y > u is a Poisson random variable with
mean α, where

α =
∫ y

u

dl

l − g(l)
.

In particular, the probability that there have been no successes before the local time
reaches y is e−α . Finally

(Sτg ≥ y|B0 = u) ≡ (LT ≥ y|L0 = u)

and this last event is the event that the first success occurs after the local time
reaches y. �

PROPOSITION 5.3. We have that Sτ ∼ ν#.

PROOF. For y ∈ A we have P(Sτ < y) = P(B0 < y) = �(y), or P(Sτ ≤ y) =
P(B0 ≤ y) = �(y+).

Otherwise, consider y /∈ A and define z# = z#(y) = supz<y{z ∈ A}. If z# = y,
then by left continuity P(Sτ < y) = P(B0 < y) = �(y). So suppose z#(y) < y.
Then

P(Sτ ≥ y) =
∫

R

P(Sτ ≥ y|B0 = u)µ0(du)

= P(B0 ≥ y) +
∫

[z#,y)
P(Sτg ≥ y|B0 = u)P(G ≥ y|B0 = u)µ0(du)

= P(B0 ≥ y) +
∫

[z#,y)
µ0(du) exp

(
−
∫
(u,y)

dv

v − g(v)

)

× exp
(

−
∫
(u,y)

F c
1 (dv)

F0(v−) − �(v)

) ∏
v∈[u,y)

(
1 − �F1(v)

F0(v−) − �(v)

)+

= P(B0 ≥ y) +
∫

[z#,y)
µ0(du) exp

(
−
∫
(u,y)

�c(dv)

F0(v−) − �(v)

)

× ∏
v∈[u,y)

(
1 − ��(v)

F0(v−) − �(v)

)
,
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where in the last equality we have used Lemma 4.8(a), �c = F c
1 − γ c and

Lemma 4.6.
If we now apply Lemma 4.9 with Fρ(u) = �(u+) and Fπ(u) = F0(u), then this

becomes

P(Sτ ≥ y) = P(B0 ≥ y) + (
F0(y−) − �(y)

)
×
∫

[z#,y)

µ0(du)

F0(u−) − �(u)
exp

(
−
∫
(u,y)

F c
0 (dv)

F0(v−) − �(v)

)

× ∏
v∈[u,y)

(
1 + �F0(v)

F0(v−) − �(v)

)−1

.

Finally, applying Lemma 4.10, with π = µ0 and ρ = � we get that

P(Sτ ≥ y) = P(B0 ≥ y) + (
F0(y−) − �(y)

)= 1 − �(y),

and the result follows. �

PROPOSITION 5.4. For the above construction we have that Bτ ∼ µ1.

PROOF. From the construction we have that if Bτ < Sτ , then Bτ =g(Sτ )<Sτ .
This happens if the Brownian motion has an excursion down below the maximum
(at s) which reaches g(s). Results from excursion theory (recall Lemma 5.2) give
that this happens at rate (s − g(s))−1. Then

P(Bτ < y) = P(Sτ < y) + P(Sτ ≥ y,Bτ < y)

= �(y) +
∫

{z≥y,g(z)<y}
P(B0 < z,Sτ ≥ z)

dz

z − g(z)

= �(y) +
∫

{z>y,g(z)≤g(y)}
F0(z−) − �(z)

z − g(z)
dz

= �(y) − γ (y) = F1(y−),

where Lemma 4.4(a) guarantees that the sets over which we integrate match up
and the last line follows from Lemma 4.8(b). �

For M# from (9) we have as a corollary of the above proposition the main result
of the paper.

THEOREM 5.5. M# ∈ MC(µ0,µ1) and for any ν ∈ PC(µ0,µ1) stochasti-
cally dominates ν#.

PROOF. From Lemma 2.3 in [17] (the condition µ0 ∼ δ0 being not necessary)
it follows that (B(t/(1−t))∧τ )t≥0 is uniformly integrable, and hence M# is a mar-
tingale, provided that limx↑∞ x(1 − �(x)) = 0. Since limx(1 − F1(x)) = 0 by
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dominated convergence, it is sufficient to show that xγ (x) → 0. This is easily
shown by considering the cases g(x) < x/2, x/2 ≤ g(x) < x and g(x) = x

separately. We assume x > 0.
For g(x) < x/2 we have

xγ (x) = x
c(x) − c(g(x))

x − g(x)
< 2c(x),

for x/2 ≤ g(x) < x we have

xγ (x) ≤ 2g(x)c′+
(
g(x)

)
and for g(x) = x we have xγ (x) = xc′−(x). Since both c and x(1 −Fi(x)) tend to
zero, we are done. �

APPENDIX

PROOF OF LEMMA 4.8. (a) On I ⊂ Ac we must have g(v) < v and �(v) <

F0(v−) [by Proposition 4.2 and Lemma 4.4(c)]. Further, by Lemma 4.6 and
Remark 4.7, γ is continuous and decreasing so that γ (dv) must exist. We prove
that γ is absolutely continuous on I with Radon–Nikodym derivative

γ (dv)

dv
= −

(
F0(v−) − �(v)

v − g(v)

)
.(17)

Suppose v ∈ I is chosen outside a countable set so that F0,F1,� and the
decreasing function g are all continuous at v. Then, for y > v,

c(y)−c(v) =
∫ y

v
c′−(z) dz =

∫ y

v

(
F1(z−)−F0(z−)

)
dz ≥ (y −v)

(
F1(v)−F0(y)

)
and this implies that

0 ≥ γ (y) − γ (v) ≥ c(y) − c(g(v))

y − g(v)
− c(v) − c(g(v))

v − g(v)

≥ c(v) + (y − v)(F1(v) − F0(y)) − c(g(v))

y − g(v)
− c(v) − c(g(v))

v − g(v)

= − c(v) − c(g(v))

(y − g(v))(v − g(v))
(y − v) + F1(v) − F0(y)

y − g(v)
(y − v)

and so

lim inf
y↓v

γ (y) − γ (v)

y − v
≥ − γ (v)

v − g(v)
+ F1(v) − F0(v)

v − g(v)
= −

(
F0(v) − �(v)

v − g(v)

)
.

We can obtain the reverse inequality by considering

γ (y) − γ (v) ≤ c(y) − c(g(y))

y − g(y)
− c(v) − c(g(y))

v − g(y)
.
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FIG. 8. D(x) is the set {y > x :g(y) ≤ g(x)} so that the interval (α,β] is disjoint from D. The
gradient of the line joining (px(u), c(px(u))) and (qx(u), c(qx(u))) is u.

Hence γ is differentiable outside a countable set T with derivative given by the
right-hand term of (17). Since the derivate is integrable over the set I \T it follows
from (3.27.5) in [9] that γ is absolutely continuous with the right density.

(b) Fix x. Let D(x) = {y > x :g(y) ≤ g(x)}. Then γ restricted to D is easily
seen to be strictly decreasing and onto [0, γ (x)) and hence has a well-defined
inverse qx(·). Let px(·) be given by px(u) = g(qx(u)). Then

px(u) ≤ g(x) < x < qx(u)

and γ (qx(u)) = u. See Figure 8.
Then ∫

{y>x,g(y)≤g(x)}
F0(y−) − �(y)

y − g(y)
dy =

∫
D(x)

dγ (y)

=
∫

{u : qx(u)>x}
dγ

(
qx(u)

)

=
∫ γ (x)

0
du = γ (x). �

PROOF OF LEMMA 4.9. Denote J c(x) = F c
π(x) − F c

ρ(x). Then we have that

d[logJ (x)] = dJ c(x)

J (x)
+ log

J (x+)

J (x)

= dJ c(x)

J (x)
+ log

(
1 + �Fπ(x)

J (x)

)
+ log

(
1 − �Fρ(x)

J (x)

)
,
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where, in the last line, we have used the fact that Fπ and Fρ have no common
jumps. If we integrate over the set [y, x) we obtain that

log
J (x)

J (y)
=
∫
(y,x)

F c
π(du)

J (u)
−
∫
(y,x)

F c
ρ (du)

J (u)

+ ∑
u∈[y,x)

log
(

1 + �Fπ(u)

J (u)

)
+ ∑

u∈[y,x)
log

(
1 − �Fρ(u)

J (u)

)

and the result follows easily. �

PROOF OF LEMMA 4.10. Define the function

K(x) ≡ Ky(x) = −
∫

[x,y)
F c
π(dv)

Fπ(v−) − Fρ(v−)

− ∑
v∈[x,y)

log
(

1 + �Fπ(v)

Fπ(v−) − Fρ(v−)

)
.

Then we have K(y) = 0 and

K(x) ≤ −
∫ y

x
d
(
log{Fπ(v−) − Fρ(v−)}),

where the integral on the right-hand side can be taken over either [x, y) or (x, y).
It follows that K(z#) = −∞. Then we have

d
[
eK(u)

] = eK(u) F c
π (du)

Fπ(u−) − Fρ(u−)
+ eK(u)

(
eK(u+)−K(u) − 1

)

= eK(u) F c
π (du)

Fπ(u−) − Fρ(u−)
+ eK(u) �Fπ(u)

Fπ(u−) − Fρ(u−)
.

If we integrate over the set [z#, y) we get that

1 = eK(y) − eK(z#) =
∫

[z#,y)

Fπ(du)

Fπ(u−) − Fρ(u−)
eK(u). �
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