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This paper compares the forecasting performance of the range-based
stochastic volatility model with a number of other well-known forecasting
models. Each forecasting model is applied to a financial data set that
includes daily futures prices on, the S&P 500, ten year US government
bond series, crude oil prices, and the foreign currency exchange rate
between the Canadian and US dollar. Forecasts are evaluated out of
sample using forecast summary statistics as well as value at risk measures
like conditional coverage, independence and unconditional coverage.
Overall the forecast summary statistics show that for each financial series,
moving average, exponential smoothing and AR5 models to be better at
forecasting the log range than the stochastic volatility model. Value at
risk calculated from the stochastic volatility models does not reject
independence in each of the four financial series studied but does reject
conditional and unconditional coverage in all of the series studied. The
empirical density model does not reject unconditional coverage in three out
of the four financial series studied. All of the parametric models reject
conditional coverage. These results show how difficult it is to design a
good parametric value at risk model.

1. Introduction

Volatility modelling and forecasting in financial
markets is an important and interesting topic to
study. As financial markets around the world con-
tinue to move towards deregulation and globaliza-

tion, the need for good forecasts of financial volatility
as inputs into global risk management models
continues to grow. Volatility forecasts are important
inputs into option pricing models and risk manage-
ment models. It is well known that many financial
time series exhibit volatility clustering whereby

volatility is likely to be high when it has recently
been high and volatility is likely to be low when it
has recently been low. Generalized autoregressive
conditional heteroscedastic (GARCH) models are
particularly useful for modelling time-varying

conditional volatility and GARCH models are exten-
sively used by both researchers and practitioners.
GARCH models the time varying variance as a
deterministic function of lagged squared residuals
and lagged conditional variance.

An alternative way to model time varying volatility
is to use a stochastic volatility (SV) model (Taylor,

1982, 1986). SV models the variance as an unob-
served component that follows a particular stochastic
process. In this model, time-varying variance is
not restricted to follow a deterministic process. In
SV models it is usual to model volatility as a loga-
rithmic first order autoregressive process. This is a
discrete time approach to the diffusion process used
in the option pricing literature (Hull and White,
1987). The SV model is theoretically attractive
but empirically challenging because the unobserved

Applied Financial Economics ISSN 0960–3107 print/ISSN 1466–4305 online # 2005 Taylor & Francis Group Ltd 121

http://www.tandf.co.uk/journals
DOI: 10.1080/0960310042000299926

Applied Financial Economics, 2005, 15, 121–135



volatility process enters the model in a non-linear
fashion which leads to the likelihood function
depending upon high-dimensional integrals. A num-
ber of different approaches can be used to estimate
stochastic volatility models.

Stochastic volatility models can be estimated using
generalized method of moments (GMM) (Melino and
Turnbull, 1990), quasi-maximum likelihood (QML)
(Harvey et al., 1994; Ruiz, 1994), efficient method
of moments (EMM) (Gallant et al., 1997; Andersen
et al., 1999), Markov chain Monte Carlo (MCMC)
(Jacquier et al., 1994; Kim et al., 1998) and efficient
importance sampling (EIS) (Richard and Zhang,
1996; Liesenfeld and Richard, 2003).

The various methods differ in ease and speed of
estimation. MCMC and EIS dominate GMM and
QML in small samples (less than 500 observations)
but it is not clear whether the increased complexity
of these models is justified in practice for larger
samples. The QML method approximates a logarith-
mic chi-square process by a Gaussian process
and uses the quasi-likelihood to approximate the
likelihood function. QML is consistent and easy to
estimate, but it is inefficient (although less so in large
samples).

So et al. (1999) and Yu (2002) are two recent
studies that compare the usefulness of the stochastic
volatility model with GARCH models in applied
forecasting situations. So et al. (1999) found that
in modelling and forecasting foreign exchange
rates, the stochastic volatility model estimated as a
state space model does not, in general, outperform
GARCH models. Yu (2002) uses the stochastic
volatility model to forecast daily stock market
volatility for New Zealand. Using forecast accuracy
tests, he finds that the stochastic volatility model
outperforms GARCH models. The mixed results
from these two papers suggest that further research
is needed on the relative merits of stochastic volatility
models in applied forecasting situations.

Until recently, all of the stochastic volatility
models have focused on using either squared returns
or absolute returns as a proxy to the true but unob-
servable volatility. In a different approach to model-
ling stochastic volatility, Alizadeh et al. (2002)
propose using the price range in the estimation of
stochastic volatility models where the price range is
defined as the difference between the highest and
lowest log security prices over a fixed sampling
interval. The information contained in the open,
high, low, and close of a security price is widely
used in Japanese candlestick charting techniques
and other technical indicators (Nisson, 1991). Early
academic work on the range based volatility estima-
tor include Garman and Kless (1980), Parkinson

(1980), Beckers (1983) and Ball and Torous (1984).
Alizadeh et al. (2002) suggest that the range is a better
proxy to the true unobservable volatility because
more information is contained in the range than
in the squared daily returns. Security prices, for
example, can fluctuate greatly over a trading day
but it might happen that this day’s closing price is
similar to the previous day’s closing price. In this
case squared daily returns indicate little volatility.
In comparison, the difference between the daily high
and daily low would more accurately capture the
daily volatility. Alizadeh et al. (2002) show that
their range based volatility model is highly efficient
and approximately Gaussian. They estimate and
compare both one factor and two factor latent
volatility models for foreign exchange futures prices
and find that the two factor model has more desirable
regression diagnostics.

Recent developments in risk management and
financial engineering have highlighted the use of
value at risk (VaR) as a popular approach to measur-
ing market risk on a daily basis (JP Morgan, 1996;
Jorion, 1997; Alexander, 2001; Brooks and Persand,
2002, 2003; Christoffersen, 2003; Partnoy, 2003).
Value at risk specifies the portfolio loss that could
occur over a given time period with a given probabil-
ity. For example, a 1% one day VaR is the loss that
might occur one day in one hundred. VaR can be
used to measure the risk in stocks, bonds, commod-
ities, foreign currency exchange, options, futures,
forwards, and swaps. In the parametric approach
empirical models are used to estimate and forecast
volatility �̂�t. VaR grew out of the work that the
Basel Committee on Banking Supervision was doing
on measuring market risk (1988 Basel Accord, 1996
Amendment). On 28 January 1997, the US Securities
and Exchange Commission (SEC) passed a ruling
requiring companies to disclose more information
about their derivatives. VaR was one of the options
that the SEC gave firms for disclosing the risks
involved in trading derivatives. VaR measures are
now included in the annual reports of companies
doing business in the USA. In the parametric case,
the VaR for a given level of significance � is,
VaR� ¼ Z��̂�t, where Z� is the appropriate constant
from the standard normal tables. VaR can also be
measured non-parametrically by using the empirical
distribution to calculate the appropriate critical
value corresponding to an � level of significance.
Obviously, good forecasts of volatility are essential
to getting good estimate of VaR.

This paper uses a range based stochastic volatility
model to address a number of research questions.
First, the forecasting performance of a large number
of models, which include both regression and SV

122 P. Sadorsky



models, are compared and contrasted for a set of data
that is important from a global finance perspective.
Second, the forecasting performance of models
is compared and contrasted using a wider array of
forecast statistics than commonly used in most
other papers. Most papers evaluate the out-of-sample
forecasting performance of models using standard
forecast summary statistics like mean squared error,
mean absolute deviation, mean percentage error,
and Theil U statistics. In this paper forecast accuracy
is also evaluated using regression based market
timing equations. Third, forecasting performance is
evaluated using value at risk measures.

This paper is organized as follows. In Section II the
data are presented and analysed while in Section III
the forecasting models are described. Forecast
summary statistics are discussed in Section IV.
Out of sample forecasting results are reported in
Section V. Value at risk measures are presented and
discussed in Section VI. Section VII concludes the
paper.

II. Data

The data for this study consists of daily futures prices
on the foreign currency exchange between the
Canadian and US dollar, futures prices on the West
Texas Intermediate crude oil contract, futures prices
on the S&P 500 stock prices, and the futures prices on
the US ten year Government note. All of the data
are available from Prophet. The data set covers the
period January 1984 to December 2003. The daily
closing prices are transformed into continuously
compounded rates of returns

rt ¼ 100 * lnðSt=S�1Þ

where St is the closing price on day t and the sample
size runs from 1 to T. These returns will be used
to analyse value at risk. The range of the log-prices
is defined as the difference between the daily log
high price and the daily log low price.

Dt ¼ ln SH
t

� �
� ln SL

t

� �
The expected value of the squared range is

E D2
t

� �
¼ 4 lnð2Þ�2

Thus, a proxy for the daily variance is

�2
r, t ¼

1

4 lnð2Þ
D2

t

For estimation purposes, Alizadeh et al. (2002)
focus on the log range,

lDt ¼ lnðDtÞ

because the log range is approximately normally

distributed in many applied situations. Consequently,

in this paper, all models are estimated using the

log range.

For each variable, the standard deviation is much

smaller than its mean value and the mean value is

very close to the median value (Table 1). The log

range of oil prices and S&P 500 each display some

evidence of skewness and/or kurtosis. The crude

oil price series is skewed slightly to the left while

the S&P series is skewed to the right. A normally

distributed random variable has skewness of zero

and kurtosis of three. The probability values for the

Jarque and Bera (1980) test statistic indicate that the

Canadian dollar series and the Treasury note series is

each distributed normally.

Augmented Dickey and Fuller (1979) (ADF)

and Phillips and Perron (1988) (PP) unit root tests

for non-stationarity in the log range of the financial

prices indicate no evidence of non-stationarity

(Table 1). Each of the unit root test statistics is

calculated with an intercept in the test regression.

For each of these tests, the null hypothesis is a

non-stationary time series and the alternative hypoth-

esis is a stationary time series. The lag length for the

ADF test regression is set using the Schwarz informa-

tion criteria (SIC) and the bandwidth for the PP test

regression is set using a Bartlett kernel.

Table 1. Summary statistics of log range

cd cl sp ty

Mean �5.748 �3.896 �4.440 �5.272
Median �5.737 �3.873 �4.450 �5.277
Maximum �3.835 �1.261 �1.183 �3.310
Minimum �7.503 �6.877 �6.194 �7.018
Std. Dev. 0.543 0.629 0.530 0.494
Skewness �0.025 �0.201 0.306 0.081
Kurtosis 2.951 3.520 3.862 3.013
Jarque-Bera 1.024 90.016 234.012 5.449
Probability 0.599 0.000 0.000 0.066
Observations 5022 4992 5021 5006

Unit root tests
ADF 0.000 0.000 0.000 0.000
PP 0.000 0.000 0.000 0.000

cd, cl, sp, and ty denote the futures prices on the foreign
currency exchange between the Canadian and US dollar,
futures prices on the West Texas Intermediate crude oil
contract, futures prices on the S&P 500 stock prices, and
the futures prices on the US ten year Government note.
Probability values shown for unit root tests (Mackinnon,
1996). The lag length for the ADF test regression is set
using the Schwarz information criteria (SIC) and the
bandwidth (BW) for the PP test regressions is set using a
Bartlett kernel.

Stochastic volatility forecasting and risk management 123



The first ten autocorrelations for the log range of
each financial series are reported in Table 2. As a
basis of comparison, recall that the autocorrelations
for a randomly distributed variable should be less
than two standard errors. The large and slowly
decaying autocorrelations of the log range of each
series show strong volatility persistence for each
financial series.

III. Modelling and Forecasting
Financial Price Volatility

This section provides a brief overview of the models
used to forecast range based volatility. In this paper
daily ex post volatility is measured by the squared
range.

�2
r, t ¼ 0:361D2

t ð1Þ

At time period t, a 1 day forecast is made. Models
are estimated with five years of daily trading data
for a total of 1250 observations (5� 250).1 The esti-
mation period is then rolled forward by adding one
new day and dropping the most distant day. In this
way the sample size used in estimating the models
stays at a fixed length and the forecasts do not
overlap. Thus there are 3762 one day volatility
forecasts for the Canadian dollar series, 3732 one
day volatility forecasts for the oil prices series, 3761
one day volatility forecasts for the S&P 500 series,
and 3746 one day volatility forecasts for the treasury
note series.

The following models used are, random walk,
historical mean, moving average, exponentially
smoothing, linear regression model, autoregressive
models, and a stochastic volatility model. Moving
averages, exponential smoothing, linear regression
and autoregressive models are fairly basic techniques
in the applied forecasting literature (Hanke and
Wichern, 2005) while the stochastic volatility model
is at a much higher degree of complexity. All models
are estimated using the log range as the response
variable.

Random walk model

From a random walk (RW) model, the best forecast
of next period’s log range is this period’s estimate of
log range. As in other papers, the random walk model
is used as the benchmark.

^lDlDtþ1ðRWÞ ¼ lDt ð2Þ

Historical mean model

In the historical mean model, the best forecast of
next period’s log range is the average of the previous
volatilities. This approach assumes a stationary log
range series.

^lDlDtþ1ðHMÞ ¼
1

1250

X1249
j¼0

lDt�j ð3Þ

Moving average model

Moving average (MA) methods are widely used in
time series forecasting. In this paper a moving
average of length m where m¼ 20, 60, 180 days is
used to generate log range forecasts. Choosing these
lengths is fairly standard because these values of m
correspond to one month, three months and six
months of trading days respectively. The expression
for the m day moving average is shown below.

^lDlDtþ1ðMAðmÞÞ ¼
1

m

Xm�1

j¼0

lDt�j ð4Þ

Exponential smoothing

Exponential smoothing (ES) models are also very
widely used in applied forecasting. In ES models

1 The reported results for forecast summary statistics, value at risk, and their respective rankings are reasonably robust for
small (one or two year) changes in the estimation sample size.

Table 2. Autocorrelations of log range

Lags cd cl sp ty

1 0.496 0.629 0.485 0.307
2 0.454 0.602 0.491 0.289
3 0.423 0.587 0.458 0.262
4 0.412 0.571 0.459 0.275
5 0.412 0.568 0.441 0.309
6 0.391 0.548 0.429 0.238
7 0.389 0.534 0.413 0.241
8 0.384 0.528 0.424 0.231
9 0.376 0.527 0.413 0.24

10 0.384 0.526 0.409 0.227
11 0.383 0.511 0.391 0.228
12 0.364 0.514 0.379 0.193

s.e.e. 0.014 0.014 0.014 0.014

See Table 1 for variable definitions.
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the current forecast of log range is calculated
as the weighted average of the one period past
value of log range and the one period past fore-
cast of log range. This specification is appropriate
provided the underlying log range series has no
trend.

^lDlDtþ1ðESÞ ¼ � ^lDlDtðESÞ þ ð1� �ÞlDt ð5Þ

The smoothing parameter � lies between zero and
unity. If � is zero then the ES model is the same
as a random walk If � is one then the ES model
places all of the weight on the past forecast. In
the estimation process the optimal value of � was
chosen based on the root mean squared error
criteria. The optimal � is the one that records
the lowest MSE. The ES model and smoothing
parameter are estimated for each forecast horizon
using a 20 day, 60 day, 180, and 1250 day rolling
window. Exponential smoothing is used to model
volatility in JP Morgan’s RiskMetrics (JP Morgan,
1996).

Least squares linear regression model

This model uses an ordinary least squares
(OLS) regression model to model log range by
using a one period lagged value of past log range
as a driver.

^lDlDt, 1ðLRÞ ¼ �̂�0 þ �̂�1lDt�1 ð6Þ

Autoregressive model

This model uses an autoregressive (AR) process
to model log range. Five lagged values (correspond-
ing to one trading week) of past log range are used as
drivers to make a one period ahead forecast.

^lDlDtþ1ðAR5Þ ¼ �̂�0 þ �̂�1lDt þ �̂�2lDt�1

þ �̂�3lDt�2 þ �̂�4lDt�3 þ �̂�5lDt�4 ð7Þ

Discrete-time range-based stochastic
volatility (SV) model

Alizadeh et al. (2002) present a formal derivation
of the discrete time stochastic volatility model from
the continuous time stochastic volatility model. In
this paper, only the discrete time version is presented
and the interested reader is referred to Alizadeh et al.
(2002) for details.

The conditional distribution of log volatility is
approximately

ln �ðiþ1ÞH j ln �iH � N ½ln ��� þ �Hðln �iH � ln ���Þ,�2H �

ð8Þ

where H¼T/N and H is the sample length, T is the
sample period and N are the number of intervals.
The parameter � is a function that models the volatil-
ity of the unobserved volatility state variable �. It is
convenient to work with a volatility proxy statistic
that is a homogeneous in power �.

f ðsiH, ðiþ1ÞHÞ ¼ ��
iH f ðs�iH, ðiþ1ÞHÞ ð9Þ

Taking natural logarithms of both sides of Equation 9
yields,

ln j f ðsiH, ðiþ1ÞHÞj ¼ � ln �iH þ ln j f ðs�iH, ðiþ1ÞHÞj ð10Þ

where s* denotes the continuous sample path of a
standardized diffusion process.

The first term on the right-hand side of Equation 10
is proportional to log volatility and the second
term is a measurement error. Following Harvey
et al. (1994), Equations 8 and 10 can be written as
a linear state space system and estimated using a
Kalman filter.

ln �ðiþ1ÞH ¼ ln ��� þ �Hðln �iH � ln ���Þ

þ �
ffiffiffiffiffi
H

p
�ðiþ1ÞH ð11Þ

ln j f ðsiH, ðiþ1ÞHÞj ¼ � ln �iH þ E ln j f ðs�iH, ðiþ1ÞHÞj

þ "ðiþ1ÞH ð12Þ

Equation 11 is the state (transition) equation and
Equation 12 is the signal equation. In Equation 12,
E is the mathematical expectation operator. The
state equation errors � are i.i.d. N(0,1) and the signal
equation errors have zero mean.

A two-factor model can be represented by the
following state equation.

ln �ðiþ1ÞH ¼ ln ��� þ ln ���1, ðiþ1ÞH þ ln ���2, ðiþ1ÞH ð13Þ

ln �1, ðiþ1ÞH ¼ �1,H ln �1, iH þ �1

ffiffiffiffiffi
H

p
�1, ðiþ1ÞH ð14Þ

ln �2, ðiþ1ÞH ¼ �2,H ln �2, iH þ �2

ffiffiffiffiffi
H

p
�2, ðiþ1ÞH ð15Þ

The error terms �1 and �2 are contemporaneously
and serially independent N(0,1) random variables.

IV. Forecast Summary Statistics

The forecast summary statistics include well known
measures like mean squared error (MSE), mean
absolute deviation (MAD), mean percentage error
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(MPE), mean absolute percentage error (MAPE),
and the Theil U statistic.

MSE ¼

Pn
t¼1 e

2
t

n

MAD ¼

Pn
t¼1 absðetÞ

n

MPE ¼

Pn
t¼1 ðetÞ=lDt

n

MAPE ¼

Pn
t¼1 absðetÞ=lDt

n

U ¼

Pn
t¼1 ðlDtþ1 �

blDlDtþ1ÞPn
t¼1 ðlDtþ1 � lDtÞ

et is the forecast error between the actual and
predicted values of the log range in time period t
and n is the number of forecasts. These forecast
summary statistics are useful for comparing models
but they do not provide statistical tests of the differ-
ence between twomodels (Diebold, 1998, Chapter 12).
For example, one model may have a lower MSE
than another model but that doesn’t mean that the
difference between the two MSE values is statistically
significant from zero. Consequently, the forecast
summary statistics also include the Diebold and
Mariano (1995) test for a mean differential loss
function and several tests for market timing.

Diebold and Mariano (1995) develop a test of
forecast accuracy between two sets of forecasts
using the MSE. The null hypothesis of equal forecast
accuracy is tested based on E(dt)¼ 0 where E is the
mathematical expectation operator and dt ¼ e21t � e22t.
The variables e1t and e2t are forecast errors from
model 1 and model 2 respectively. The Diebold and
Mariano (1995) test statistic is

DM ¼ ðV̂Vð �dd ÞÞ�1=2 �dd � Nð0, 1Þ

where

�dd ¼ n�1
Xh
t¼1

dt and V̂Vð �dd Þ � n�1 �0 þ 2
Xh�1

k¼1

�k

 !

where n is the number of forecasts computed from
model 1 and model 2. The variable �k is the kth auto-
covariance of dt. Under the null hypothesis, DM is
asymptotically normally distributed. In this paper the
DM test is calculated from a loss differential that
compares the mean squared error of the correspond-
ing model with the mean squared error of the random
walk (Diebold, 1998, Chapter 12). A significant test
statistic indicates that the selected forecasting model
outperforms a random walk. Probability values are
shown in the tables.

Harvey et al. (1997) propose a modified DM
test (MDM) that improves upon the small sample
properties of the DM test.

MDM ¼
nþ 1� 2hþ n�1hðh� 1Þ

n

 !1=2

DM

The MDM test for h-step ahead forecasts is distrib-
uted as a t distribution with n-1 degrees of freedom.
Harvey et al. (1997) conduct Monte Carlo simula-
tions to compare the performance of the MDM
test with the DM test in a number of different applied
situations. They find that the MDM test performs
much better than the DM test across all forecast
horizons and in situations where the forecast errors
are autocorrelated or have non-normal distributions.

Another way of testing out-of-sample predictabil-
ity is to use a forecast accuracy regression test (RT).
This test compares the forecasted log range blDlD with
the actual log range lD. This test provides a way to
evaluate the ability of a forecasting model to predict
both the correct direction and magnitude. The test is
calculated by running the following ordinary least
squares (OLS) regression.

lDt ¼ c1 þ c2clDlDt þ �t

Newey and West (1987) heteroscedasticity and auto-
correlation consistent probability values are shown
in the tables. A good forecasting model should
have no intercept (unbiased) and a slope of 1.

V. Out of Sample Forecasting Results

For the log range of the Canadian dollar series, the
MSE ranks the AR5 first, MA20 second and ES
third, while the MAD ranks the MA20 first, AR5
second and ES third (Table 3). The Theil U statistics
ranks models in the same order as the MSE. The
MSE and MAD each rank the two-factor stochastic
volatility model ahead of the one-factor stochastic
volatility model although both models are ranked
towards the bottom. The MPE values indicate
that every model over predicts and the ES20 has
the least bias.

The regression based forecast accuracy tests (RT)
indicate that, except for the MA180, all of the models
have some bias (intercept significantly different from
zero at the 5% level). All models have some forecast-
ing power (the slope coefficient significantly different
from zero at the 5% level). The RT test indicates
that the MA180 is a good forecasting model because
it has no bias and a slope coefficient statistically
insignificant from one.
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Table 3. Forecast summary statistics for log range of Canadian dollar

RW HM MA20 MA60 MA180 ES ES20 ES60 ES180 LR AR5 SV1 SV2

MSE 0.304 0.252 0.191 0.205 0.223 0.192 0.199 0.195 0.194 0.214 0.191 0.219 0.216
MAD 0.440 0.402 0.347 0.359 0.374 0.348 0.354 0.352 0.350 0.367 0.347 0.372 0.363
MPE �0.005 �0.024 �0.006 �0.007 �0.010 �0.006 �0.004 �0.005 �0.005 �0.017 �0.011 �0.020 �0.011
MAPE �0.078 �0.073 �0.062 �0.064 �0.067 �0.062 �0.063 �0.063 �0.062 �0.066 �0.062 �0.067 �0.065

RANK MSE 13 12 2 7 11 3 6 5 4 8 1 10 9
RANK MAD 13 12 1 7 11 3 6 5 4 9 2 10 8

U 0.830 0.628 0.672 0.732 0.631 0.653 0.641 0.636 0.703 0.627 0.719 0.710
DM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MDM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RT
c1 �2.976 2.487 �0.565 �0.483 �0.241 �0.673 �1.010 �0.745 �0.712 0.587 0.295 2.184 �0.752
p(c1¼ 0) 0.000 0.000 0.000 0.000 0.136 0.000 0.000 0.000 0.000 0.000 0.027 0.000 0.009
c2 0.477 1.415 0.901 0.914 0.955 0.881 0.824 0.870 0.875 1.092 1.046 1.367 0.863
p(c2¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p(c2¼ 1) 0.000 0.000 0.000 0.000 0.114 0.000 0.000 0.000 0.000 0.001 0.048 0.000 0.007

Probability values shown for DM and RT. The forecast summary statistics include mean squared error (MSE), mean absolute deviation (MAD), mean percentage
error (MPE), mean absolute percentage error (MAPE), the Theil U statistic, Diebold and Mariano (1995) (DM); Harvey et al., 1997 (MDM) test for a mean differential
loss function (chosen model relative to a random walk), and a regression based forecast accuracy test (RT) test. The test is calculated by running an ordinary least squares
(OLS) regression of actual volatility on forecasted volatility. The intercept coefficient is c1 and the slope coefficient is c2. Newey and West (1987) heteroscedasticity and
autocorrelation consistent probability values are shown in the tables. A good forecasting model should have no intercept (unbiased) and a slope of 1.
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According to the DM and MDM tests, for

each financial series, each of the forecasting models

outperforms a random walk model (Tables 3, 4, 5,

and 6).2 This is encouraging because it means that

the benchmark RW model is consistently beaten by

each of the other models.

For the log range of the crude oil series, the MSE

ranks the AR5 first, MA20 second and ES third,

while the MAD ranks the MA20 first, ES second

and AR5 third (Table 4). The MSE and MAD each

rank the one factor stochastic volatility model ahead

of the two factor stochastic volatility model although

both models are ranked towards the bottom. The

MPE values indicate that every model over predicts

and the ES20 and ES60 have the least bias.

The regression based forecast accuracy tests (RT)

indicate that, except for the AR5, all of the models

have some bias (intercept significantly different from

zero at the 5% level). All models have some forecast-

ing power (the slope coefficient significantly different

from zero at the 5% level).

For the log range of the S&P500 series, the MSE

and the MAD rank the ES first, ES180 second and

ES60 third (Table 5). The MSE and MAD each rank

the two-factor stochastic volatility model ahead of

the one-factor stochastic volatility model. The MPE

values indicate that every model over predicts and the

ES20 has the least bias.

The regression based forecast accuracy tests (RT)

indicate that the LR, AR5 and SV1 each have no

bias and each of these models has a slope coeffici-

ent statistically insignificantly different from 1. All

models have some forecasting power (slope coefficient

significantly different from zero at the 5% level).

These results are important because even though

the stochastic volatility model doesn’t rank that

high according to MSE or MAD, it is one of the

three most preferred models according to RT.

For the log range of the US Treasury note series,

the MSE ranks the AR5 first, ES second and ES180

third (Table 6). The MAD ranks the AR5 first, MA20

second and ES third. The MSE and MAD each rank

the two factor stochastic volatility model ahead of the

one-factor stochastic volatility model. The MPE

values indicate that every model over predicts and

the ES60 has the least bias.

The regression based forecast accuracy tests (RT)

indicate that the LR and AR5 are each good fore-

casting models because they have no bias and each of

these models has a slope coefficient statistically

insignificant different from 1.

Overall these forecast summary statistics from
Tables 3, 4, 5, and 6 shows that the AR5, moving
average and exponential smoothing models to be
better than the stochastic volatility models in every
category (MSE, MAD, MPE, and MAPE). All
models overpredict and the ES20 has the smallest
bias for three of the four series studied. Based on
the MSE, the AR5 model is the best prediction
model in three out of the four securities studied.

The difference between the MSE for the best fitting
and the best fitting SV model (either one-factor or
two-factor) varies between 10% (treasury note) and
21% (oil). In comparison, the difference between
MAD for the best fitting model and the best fitting
SV model varies between 3.7% (Treasury note) and
9.3% (oil). Consequently, for three out of four series,
the difference in MAD between the best fitting model
and the SV model is not that great (less than 5%).

VI. Value at Risk

In this section value at risk measures are calculated
and compared. In the parametric approach the empiri-
cal models discussed in previous sections are used to
estimate and forecast volatility �̂�t. The VaR for a given
level of significance � is, VaR� ¼ Z��̂�t, where Z� is a
constant from the standard normal tables.

Empirical density (ED) estimates of VaR were
obtained by calculating the appropriate percentile
(1%) of the actual sample of returns over the
estimation period (1250 days).

VaR models can be backtested by first defining an
indicator series (I) that takes on the value 1 (0) if the
actual return in period tþ1 is less (greater) than the
forecasted VaR for the same time period.

Itþ1 ¼ 1, if rtþ1 < �VaRtþ1

Itþ1 ¼ 0, if rtþ1 > �VaRtþ1

The series Itþ1 is known as the hit sequence
(Christoffersen, 2003). Under the null hypothesis it
should not be possible to predict whether the VaR
will be violated in period tþ1. Thus the hit sequence
of violations will be distributed independently
across time as a Bernoulli random variable with the
following distribution function.

f ðItþ1, pÞ ¼ ð1� pÞ1�Itþ1pItþ1

p is the probability of the given level of significance at
which the VaR is being calculated.

2 In the analysis that follows, probability values from the DM and RT tests are being compared to 0.05.
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Table 4. Forecast summary statistics for log range of crude oil

RW HM MA20 MA60 MA180 ES ES20 ES60 ES180 LR AR5 SV1 SV2

MSE 0.289 0.269 0.181 0.194 0.239 0.181 0.183 0.182 0.181 0.207 0.178 0.215 0.248
MAD 0.430 0.404 0.334 0.347 0.383 0.334 0.338 0.336 0.335 0.360 0.334 0.365 0.382
MPE �0.011 �0.038 �0.013 �0.014 �0.017 �0.013 �0.010 �0.010 �0.011 �0.025 �0.018 �0.031 �0.017
MAPE �0.118 �0.114 �0.092 �0.096 �0.106 �0.092 �0.093 �0.092 �0.092 �0.100 �0.093 �0.102 �0.106

RANK
MSE

13 12 2 7 10 3 6 5 4 8 1 9 11

RANK
MAD

13 12 1 7 11 2 6 5 4 8 3 9 10

U 0.930 0.624 0.672 0.825 0.624 0.633 0.628 0.627 0.715 0.615 0.742 0.857
DM 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MDM 0.023 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RT
c1 �1.985 �0.856 �0.403 �0.400 �0.943 �0.524 �0.673 �0.501 �0.477 �0.410 �0.160 1.127 �1.532
p(c1¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.065 0.000 0.000
c2 0.476 0.761 0.894 0.894 0.751 0.862 0.824 0.870 0.876 0.883 0.953 1.280 0.594
p(c2¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
p(c2¼ 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.040 0.000 0.000

See Table 3.
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Table 5. Forecast summary statistics for log range of S&P 500

RW HM MA20 MA60 MA180 ES ES20 ES60 ES180 LR AR5 SV1 SV2

MSE 0.287 0.268 0.174 0.189 0.205 0.170 0.178 0.173 0.171 0.214 0.175 0.226 0.195
MAD 0.432 0.413 0.330 0.345 0.359 0.325 0.334 0.330 0.327 0.370 0.332 0.380 0.339
MPE �0.008 �0.019 �0.009 �0.009 �0.010 �0.009 �0.007 �0.009 �0.008 �0.014 �0.012 �0.017 �0.010
MAPE �0.099 �0.097 �0.076 �0.080 �0.084 �0.075 �0.077 �0.076 �0.076 �0.086 �0.077 �0.088 �0.078

RANK MSE 13 12 4 7 9 1 6 3 2 10 5 11 8
RANK MAD 13 12 4 8 9 1 6 3 2 10 5 11 7

U 0.932 0.607 0.658 0.713 0.593 0.619 0.603 0.595 0.744 0.609 0.787 0.679

DM 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MDM 0.019 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RT
c1 �2.233 �1.222 �0.419 �0.395 �0.382 �0.409 �0.685 �0.480 �0.372 �0.073 0.117 0.093 �0.805
P(c1¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.549 0.207 0.506 0.000
c2 0.499 0.722 0.906 0.912 0.915 0.908 0.847 0.892 0.917 0.981 1.024 1.016 0.818
P(c2¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
P(c2¼ 1) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.483 0.247 0.615 0.000

See Table 3.
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Table 6. Forecast summary statistics for log range of US 10 year Treasury note

RW HM MA20 MA60 MA180 ES ES20 ES60 ES180 LR AR5 SV1 SV2

MSE 0.345 0.233 0.201 0.210 0.219 0.200 0.209 0.203 0.201 0.218 0.198 0.220 0.218
MAD 0.465 0.386 0.356 0.365 0.372 0.356 0.363 0.359 0.357 0.373 0.355 0.375 0.368
MPE �0.006 �0.011 �0.007 �0.008 �0.010 �0.007 �0.006 �0.005 �0.006 �0.010 �0.009 �0.010 �0.010
MAPE �0.089 �0.074 �0.068 �0.070 �0.072 �0.068 �0.070 �0.069 �0.069 �0.072 �0.068 �0.072 �0.071

RANK MSE 13 12 4 7 10 2 6 5 3 8 1 11 9
RANK MAD 13 12 2 7 9 3 6 5 4 10 1 11 8

U 0.675 0.583 0.608 0.634 0.580 0.604 0.587 0.581 0.631 0.574 0.637 0.632
DM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
MDM 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

RT
c1 �3.920 �2.226 �1.193 �1.095 �0.836 �1.145 �1.772 �1.312 �1.048 �0.405 �0.074 1.206 �1.873
P(c1¼ 0) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.191 0.708 0.005 0.000
c2 0.261 0.579 0.775 0.793 0.841 0.784 0.667 0.754 0.803 0.922 0.985 1.224 0.645
P(c2¼ 0) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
P(c2¼ 1) 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.178 0.680 0.006 0.000

See Table 3.
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The unconditional coverage hypothesis can be
used to test if the fraction of violations (�) from a
particular risk model is significantly different from
the theoretical fraction p. The likelihood of an
independent and identically distributed Bernoulli
hit sequence is

Lð�Þ ¼ �T
t¼1ð1� �Þ1�Itþ1�Itþ1 ¼ ð1� �ÞT0�T1

The variables T0 and T1 are the number of zeros and
ones in the hit sequence. � is estimated from (T1/T ).
Under the null hypothesis, �¼ p and under the
alternative hypothesis, �¼ (T1/T ). The unconditional
coverage hypothesis can be tested using a likelihood
ratio test.

LRuc ¼ �2 ln½LðpÞ=Lð�̂�Þ� � 	2
1

Theoretically, VaR violations should be indepen-
dent of each other. In actual practice VaR violations
often show clustering. This is especially the case if the
VaR was estimated from historical averages. A test
for independence can be based on the assumption
that a hit sequence that is dependent across time
can be described by a Markov transition probability
matrix.

�1 ¼
1� �01 �01

1� �11 �11

� �
�11 is the probability of tomorrow being a violation
conditional on today being a violation. �01 is the
probability of tomorrow being a violation condi-
tional on today being a non-violation. Empirically,
�11 and �01 can be estimated from

�̂�01 ¼
T01

T00 þ T01

�̂�11 ¼
T11

T10 þ T11

Probabilities sum to one and therefore

�̂�00 ¼ 1� �̂�01

�̂�10 ¼ 1� �̂�11

The independence hypothesis (�01¼�11) can be
tested using a likelihood ratio test.

LRind ¼ �2 ln½Lð�̂�Þ=Lð�̂�1Þ� � 	2
1

A joint test of conditional coverage (LRcc) can be
calculated by summing the test for unconditional cov-
erage with the test for independence (Christoffersen,
2003).

For the Canadian dollar volatility series, uncondi-
tional coverage is rejected at the 5% level for each
model except the ED model (Table 7, first panel). The
hypothesis of independence in the hit sequence is

rejected at the 5% level for the RW, MA20, ES,
ES20, ES60 and ED models. Conditional coverage
is rejected at the 5% level of significance by all of
the models.

For the crude oil volatility series, unconditional
coverage is rejected at the 5% level for each model
except the ED model (Table 7, second panel). The
hypothesis of independence in the hit sequence is
rejected at the 5% level for the HM, MA20, MA60,
ES, and ED models. Conditional coverage is rejected
at the 5% level of significance by all of the models.

For the S&P 500 volatility series, unconditional
coverage is rejected at the 5% level for each model
(Table 7, third panel). The hypothesis of indepen-
dence in the hit sequence is rejected at the 5% level
for the RW, HM, MA60, MA180, and ED models.
Conditional coverage is rejected at the 5% level of
significance by all of the models.

For the US Treasury note volatility series, uncon-
ditional coverage is rejected at the 5% level for
each model except the ED (Table 7, fourth panel).
The hypothesis of independence in the hit sequence
is not rejected at the 5% level by any model.
Conditional coverage is rejected at the 5% level of
significance by all of the models.

VaR calculated from the stochastic volatility
models does not reject independence in each of the
four financial series studied but does reject condi-
tional and unconditional coverage in all of the series
studied. In general, most of the models studied do
not reject independence but do reject conditional
and unconditional coverage and all of the parametric
models reject conditional coverage. Like Brooks
and Persand (2002) these results show how difficult
it is to design a good parametric value at risk model.

VaR calculated from the stochastic volatility
models does not reject independence in each of
the four financial series studied and VaR calculated
from the empirical density function does not reject
unconditional coverage in three out of the four
financial series studied. This suggests that it might
be useful to combine the VaR from a stochastic
volatility model with a VaR from the empirical
density function. In this way a new VaR measure
is constructed that satisfies both unconditional
coverage and independence (and in doing so will
most likely satisfy conditional coverage).

VII. Conclusions

This paper compares the forecasting performance
of the range-based stochastic volatility model with a
number of other well-known forecasting models.
The information contained in the high and low of
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Table 7. Value at Risk summary statistics

RW HM MA20 MA60 MA180 ES ES20 ES60 ES180 LR AR5 SV1 SV2 ED

cd
LRuc 714.405 814.184 511.388 534.668 634.913 519.113 503.698 519.113 511.388 748.681 622.616 770.339 748.681 2.666
LRind 4.700 0.785 5.281 3.368 2.522 3.942 5.638 6.031 3.316 0.928 1.564 0.000 0.928 5.003
LRcc 719.105 814.969 516.669 538.036 637.435 523.056 509.336 525.144 514.704 749.609 624.180 770.339 749.609 7.670
p-LRuc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.102
p-LRind 0.030 0.376 0.022 0.066 0.112 0.047 0.018 0.014 0.069 0.335 0.211 0.990 0.335 0.025
p-LRcc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.006

cl
LRuc 469.016 680.554 454.037 450.315 522.586 413.623 424.530 399.218 395.641 557.931 457.768 565.878 557.931 0.836
LRind 2.637 9.385 4.600 5.913 3.799 4.213 1.301 3.764 1.337 0.138 0.294 1.129 0.138 10.296
LRcc 471.653 689.939 458.637 456.228 526.384 417.835 425.830 402.982 396.978 558.069 458.062 567.007 558.069 11.131
p-LRuc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.361
p-LRind 0.104 0.002 0.032 0.015 0.051 0.040 0.254 0.052 0.247 0.710 0.588 0.288 0.710 0.001
p-LRcc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

sp
LRuc 354.353 399.975 205.143 268.559 256.052 213.853 216.784 210.936 213.853 303.929 252.956 337.273 303.929 5.652
LRind 4.193 7.376 0.017 6.666 5.925 0.053 0.021 0.046 0.032 0.075 0.235 0.330 0.075 7.334
LRcc 358.546 407.350 205.159 275.224 261.977 213.906 216.805 210.982 213.886 304.004 253.191 337.603 304.004 12.986
p-LRuc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.017
p-LRind 0.041 0.007 0.898 0.010 0.015 0.818 0.885 0.831 0.858 0.784 0.628 0.566 0.784 0.007
p-LRcc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ty
LRuc 373.088 254.046 208.997 244.806 266.537 217.773 223.690 206.098 203.213 244.806 217.773 238.709 244.806 3.844
LRind 3.331 3.350 0.056 0.044 0.467 2.607 1.491 0.327 1.000 0.030 0.018 0.078 0.030 0.148
LRcc 376.418 257.395 209.053 244.850 267.004 220.380 225.181 206.425 204.214 244.836 217.791 238.787 244.836 3.992
p-LRuc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.050
p-LRind 0.068 0.067 0.812 0.834 0.494 0.106 0.222 0.567 0.317 0.863 0.893 0.780 0.863 0.701
p-LRcc 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.046

Probability values are shown for likelihood ratio (LR) tests of unconditional coverage (uc), independence (ind) and conditional coverage (cc).
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a security’s price is very often used by momentum
traders to help them evaluate trading possibilities.
The price range is a natural estimate to the true but
unobserved volatility. Until recently, however, most
academic research on volatility forecasting has used
squared daily returns as a proxy for daily volatility.
Each forecasting model is applied to a daily financial
futures price data set that includes the S&P 500, ten
year US government bond series, crude oil prices, and
the foreign currency exchange rate between the
Canadian and US dollar.

Overall the out of sample forecast summary statis-
tics show that for each financial series, moving aver-
age, exponential smoothing and AR5 models to be
better at forecasting the log range than the stochastic
volatility model. This is useful information because
these models are considerably easier to estimate than
stochastic volatility models. The difference between
MAD for the best fitting model and the best fitting
SV model varies between 3.7% (Treasury note) and
9.3% (oil). Consequently, for three out of four series,
the difference in MAD between the best fitting model
and the SV model is not that great (less than 5%).

Value at risk measures are evaluated using uncon-
ditional coverage, independence and conditional cov-
erage. Value at risk calculated from the stochastic
volatility model does not reject independence in
each of the four financial series studied but does
reject conditional and unconditional coverage in all
of the series studied. All of the parametric models
reject conditional coverage. These results show how
difficult it is to design a good parametric value at risk
model.
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