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Abstract
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the model of Merton (1974) is applied. This paper applies the maximum likelihood principle
to the estimation of structural credit spread models. The maximum likelihood estimator for
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deterministic and stochastic interest rates. Monte Carlo studies are conducted to examine the
performance of the maximum likelihood method in finite samples specifically for the structural
models of Merton (1974) and Longstaff and Schwartz (1995).
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1 Introduction

In Merton (1974), a pricing model for corporate liabilities was developed using an option valuation
approach. In his setting, the unobserved asset value of the firm is governed by a geometric Brownian
motion. Subsequently, many variants of this model have been proposed in the literature. Merton’s
and its extended models are typically referred to as structural credit spread (or risky bond) models.
Examples abound; Longstaff and Schwartz (1995), Madan and Unal (1998) and Collin-Dufresne
and Goldstein (2001). This paper develops a maximum likelihood estimation method for this class
of models.

As pointed out in Jarrow and Turnbull (2000) among others, there are several limitations
associated with the implementation of structural credit spread models. First, the asset value is
an unobserved quantity. This in turn creates problems with the estimation of the various required
parameters such as the drift and volatility of the asset value process and the correlation among
different asset value processes. Other limitations are related to default threshold and stochastic
interest rates because the parameter values specific to these features are also unobserved.

In the academic literature, two approaches have been proposed for dealing with the estimation
problem when the underlying asset value is unobserved. The first approach, which we will refer to
as the implicit estimation method, uses some observed quantities and the corresponding restrictions
derived from the theoretical model to extract point estimates for the model parameter(s) and the
unobserved asset value. Take the univariate case of Merton’s (1974) model as an example. The
implicit estimation method relies on two equations: one relating the equity value to the asset value
and the other relating the equity volatility to the asset volatility. The two-equation system can then
be solved for the two unknown variables: the asset value and volatility. The implicit estimation
method has been adopted by Ronn and Verma (1984) to implement the deposit insurance pricing
model of Merton (1978) and by Jones, Mason and Rosenfeld (1984) to conduct an empirical study
of Merton’s (1974) risky bond pricing model. A three-equation extension of the implicit estimation
method was used in Duan, Moreau and Sealey (1995) to implement their deposit insurance model
with stochastic interest rate where the third equation relates the equity duration to the asset
duration.

The second estimation approach was proposed by Duan (1994, 2000). In these papers, a likeli-
hood function based on the observed equity values is derived by employing the transformed data
principle in conjunction with the equity pricing equation. With the likelihood function in place,
maximum likelihood estimation and statistical inference become straightforward. The maximum
likelihood method was applied to Merton’s (1978) deposit insurance pricing model in Duan (1994),
Duan and Yu (1994), and Laeven (2002). Later, Duan and Simonato (2002) extended the method
to deposit insurance pricing under stochastic interest rate. For credit risk, the estimation method
has been applied to a strategic corporate bond pricing model by Ericsson and Reneby (2001).

Theoretically, the maximum likelihood estimation method has several advantages relative to
the implicit estimation method. First, the maximum likelihood method provides an estimate of
the drift of the unobserved asset value process under the physical probability measure. This can
in turn be used to obtain an estimate of the default probability of the firm. Such an estimate
is not available within the context of the implicit estimation method since the theoretical equity
pricing equation typically does not contain the drift of the asset value process under the physical
probability measure. The second advantage is associated with the asymptotic properties of the
maximum likelihood estimator such as consistency and asymptotic normality, which in turn allows
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for statistical inference to assess the quality of parameter estimates and/or perform testing on the
hypotheses of interest. In contrast, consistency is unattainable with the implicit estimation method
because it erroneously forces a stochastic variable to be a constant (see Duan (1994)). Consequently,
no reliable statistical inference using the implicit estimation method can be expected.

To our knowledge, the maximum likelihood estimation method, except for Ericsson and Reneby
(2001), has not been applied to the credit spread models. Particularly, it has not been applied in
the portfolio context of credit risk assessment or to the credit risk models with stochastic interest
rates. In the credit risk context, the first important problem is the estimation of correlations among
different firms. Indeed, for credit risk it is essential to correctly assess correlations because standard
credit risk management methods such as CreditMetrics and KMV are highly sensitive to the corre-
lation coefficients of asset returns (see Crouhy and Mark (1998)). The second problem is related to
the unobserved financial distress level at which default is triggered. This issue is inherently critical
to the models of Longstaff and Schwartz (1995) and Collin-Dufresne and Goldstein (2001).

This paper adopts the transformed data method of Duan (1994) to come up with a practical
maximum likelihood estimation procedure for the structural credit spread model with or without
stochastic interest rates. Specifically, we develop a method for the constant interest rate credit
spread model of Merton (1974) in a portfolio context, i.e., more than one asset. Moreover, we
cast the so-called KMV method (as described in Crouhy et al. (2000)), a popular commercial
implementation of Merton’s structural credit spread model, in relation to the maximum likelihood
method and study its performance. We then consider the Longstaff and Schwartz (1995) model
which incorporates financial distress. Before proceeding to the full model, we analyze a reduced
version of the Longstaff and Schwartz (1995) model by setting the interest rate to a constant.
This reduced Longstaff and Schwartz model can also be viewed as a modified Merton’s model for
it specifically allows for default triggering based on financial distress. Finally, we tackle the full
version of the Longstaff and Schwartz (1995) model.

The Longstaff and Schwartz (1995) model has a peculiar property that complicates the estima-
tion problem. Under some parameter values, a risky bond price can increase faster than the asset
value of the firm. In other words, one dollar increase in the firm’s asset value causes more than one
dollar increase in the risky bond value. Conceptually, this implies that injecting equity capital into
the firm could actually cause the total equity value to drop. From the estimation point of view,
the relationship between the asset and equity values is not always a one-to-one transformation,
a critical assumption underlying the approach of Duan (1994). In this paper, we have devised a
solution to this estimation problem created by the Longstaff and Schwartz (1995) model.

For both versions of the Longstaff and Schwartz (1995) model, we factor in survivorship, because
the typical data is available for survived firms and assessing credit spreads for firms that have
survived is really the purpose of credit spread models. These maximum likelihood estimation
procedure is implemented empirically on actual data and its finite sample performance is analyzed
using a Monte Carlo study.

2 Merton’s credit spread model

In the Merton (1974) framework, firms have a very simple capital structure. It is assumed that the
ith firm is financed by equity with a market value Si,t at time t and a zero-coupon debt instrument
with a face value of Fi maturing at time Ti. Let Vi,t be the asset value of the firm and Di,t (σVi)
its risky zero-coupon bond value at time t. Let us consider m firms. Naturally, the following

3



accounting identity holds for every time point and for every firm:

Vi,t = Si,t + Di,t (σVi) , for any t ≥ 0 and i = 1, ...,m. (1)

It is further assumed that the asset values follow geometric Brownian motions; that is, on the
filtered probability space (Ω,F , {Ft : t ≥ 0} , P ), we have

dVi,t = µiVi,tdt + σViVi,t dWi,t, i ∈ {1, ...,m} (2)

where µi and σVi are, respectively, the drift and diffusion coefficients under the physical probability
measure P and the m dimensional Brownian motion W = {(W1,t, ...Wm,t) : t ≥ 0} is such that

CovP [Wi,t,Wj,t] = ρijt for any t ≥ 0. (3)

The default-free interest rate r is assumed to be a constant. The default of the ith firm occurs at
time Ti if the asset value Vi,Ti is below the face value Fi of the debt. Using these assumptions,
formulas for the bond value, and default probability can be obtained. These formulas are provided
in Appendix A. The credit spread formula follows immediately from the formula for Di,t (σVi).
Because the default-free interest rate is a constant, the credit spread can be written as

Ci,t(σVi) = − ln [Di,t (σVi) /Fi]
Ti − t

− r. (4)

To implement this model empirically, one runs into the difficulty of getting the required input
variables. Specifically, for the ith firm, the asset value Vi,t, its drift µi and its diffusion coefficient
σVi are unknown. The correlation coefficient between any two asset values is also unknown. In the
next sub-section, we derive the likelihood function which serves as the basis for maximum likelihood
estimation.

2.1 The likelihood function

The specific idea for constructing the likelihood function is taken from Duan (1994, 2000) which
treats the observed time series of equity prices as a sample of transformed data with the equity
pricing equation defining the transformation. Loosely speaking, the resulting likelihood function
becomes the likelihood function of the implied asset values multiplied by the Jacobian of the
transformation evaluated at the implied asset values.

In general, one observes a time series of equity values for the ith firm corresponding to a known
face value of debt over a sample period with a time step of length h. Denote the time series sample
up to time t by {si,0, si,h, si,2h, ..., si,Nh} with t = Nh and i ∈ {1, ...,m}. The observation period
is assumed to be the same for all firms to facilitate the estimation of the correlation coefficients.
Let θ denote the vector containing the parameters associated with the m-dimensional geometric
Brownian motion process; that is,

θ = [µ1, ..., µm, σV1 , ..., σVm , ρ12, ..., ρ1m, ρ23, ..., ρ2m, ...]. (5)

The function defining the critical transformation is the equity pricing equation which is Si,t =
Vi,t − Di,t (σVi). It can be easily shown that Si,t is an invertible function of Vi,t for any σVi . We
denote it by Si,t = gi (Vi,t; t, T, σVi).
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Theorem 1 The log-likelihood function corresponding to the stock price sample is

L (s0, sh, s2h, ..., sNh; θ)

= −mN

2
ln (2π)− N

2
ln |detΣ| − 1

2

N∑
k=1

w∗′
khΣ−1w∗

kh −
N∑

k=1

m∑
i=1

ln v∗i,kh

−
N∑

k=1

m∑
i=1

lnΦ
(
d
(
v∗i,kh, kh, σVi

))
(6)

where v∗i,kh = g−1
i (si,kh; kh, T, σVi) is the asset value implied by the equity value, Φ(·) is the standard

normal distribution function, d(·, ·, ·) is defined in equation (21) of Appendix A, w∗
kh is an m-

dimensional column vector defined as

w∗
kh =

(
ln v∗i,kh − ln v∗i,(k−1)h −

(
µi −

1
2
σ2

Vi

)
h

)
m×1

and

Σ =(σViσV jρijh)i,j=1,...,m =

 σ2
V1

· · · σV1σV mρ1m
...

. . .
...

σV1σV mρ1m · · · σ2
Vm

h.

The proof for the theorem can be found in Appendix B. The first four terms on the right hand
side of equation (6) constitute the log-likelihood function if the asset values were observed. The
last term in equation (6) corresponds to the Jacobian that accounts for the transformation from the
observed equity values to the implied asset values. It is important to note that v∗kh depends on the
parameters of the model. If it were not,

∑N
k=1

∑m
i=1 ln v∗i,kh could be dropped from the likelihood

function. This would be the case if the asset value could be directly observed.
With the likelihood function in place, one can conduct the maximum likelihood estimation and

statistical inference.

2.2 The estimation procedure

Although directly optimizing the log-likelihood function given in Theorem 1 appears to be a
straightforward way of approaching the estimation problem, it is actually not practical when many
firms are in the data sample. The number of parameters that need to be estimated jointly increases
rapidly and becomes unmanageable. We therefore adopt the following multi-step estimation pro-
cedure knowing that the true optimum may not be obtained this way:

• Step 1: Estimate the Merton (1974) model for each firm separately. For firm i, estimates
µ̂i and σ̂Vi are obtained using the log-likelihood function in (6) by imposing m = 1. The
Monte Carlo study (see Section 2.3) indicates that the following standard asymptotic results
are applicable to the typical application sample size.
Statement: The parameter estimates (µ̂i, σ̂Vi) are asymptotically normally distributed around
the true parameter values with the covariance matrix being approximated by F̂−1

i where

F̂i =

 − 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂µ2

i
− 1

N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂µi∂σVi

− 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂µi∂σVi

− 1
N

∂2L(s0,...,sNh;µ̂i,σ̂Vi)
∂2σVi

 .
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• Step 2: Compute the implied firm value by

V̂i,t ≡ Vi,t(σ̂Vi) = g−1
i (Si,t; t, σ̂Vi) . (7)

Because Vi,t(σ̂Vi) is a continuously differentiable function of σ̂Vi , the distribution for the firm’s
asset value can be approximated by a normal distribution (see Lo (1986) or Rao (1973), page
385). Let ∇̂Vi =

(
∂Vi,t(σ̂Vi

)

∂µi
,

∂Vi,t(σ̂Vi
)

∂σVi

)
, then1

Vi,t(σ̂Vi)− Vi,t ∼ N
{

0, ∇̂ViF̂
−1
i ∇̂′

Vi

}
. (8)

For the credit spread, recall equation (4). Its point estimate can be computed by

Ci,t(σ̂Vi) = −
ln
(

V̂i,t(σ̂Vi
)−Si,t

Fi

)
Ti − t

− r (9)

and its distribution can be approximated by

Ci,t(σ̂Vi)− Ci,t(σVi) ∼ N
{

0, ∇̂CiF̂
−1
i ∇̂′

Ci

}
(10)

where2 ∇̂Ci =
(

∂Ci,t(σ̂Vi
)

∂µi
,

∂Ci,t(σ̂Vi
)

∂σVi

)
. The default probability is a function of both µi and σVi

and its expression is given in Appendix A. The point estimate can thus be expressed as

Pi,t(µ̂i, σ̂Vi) = Φ
(
xi,t(µ̂i, σ̂Vi , V̂i,t)

)
(11)

where Φ is the standard normal distribution function and

xi,t(µ̂i, σ̂Vi , V̂i,t) =
ln (Fi)− ln (Vi,t(σ̂Vi))−

(
µ̂i − 1

2 σ̂2
Vi

)
(Ti − t)

σ̂Vi

√
Ti − t

.

Similarly, the distribution for the default probability estimate can be approximated by

Pi,t(µ̂i, σ̂Vi)− Pi,t(µi, σVi) ∼ N
{

0, ∇̂PiF̂
−1
i ∇̂′

Pi

}
(12)

1Note that the equity pricing formula does not depend on µi. Thus,
∂Vi,t(σ̂Vi

)

∂µi
= 0. Moreover,

∂Vi,t(σ̂Vi)

∂σVi

=
1

V̂i (t)
√

T − tφ
(
d

(
V̂i,t, t, σ̂Vi

))
where φ(·) denotes the standard normal density function.

2Again, the first component of ∇̂Ci is zero. The second one is

∂Ci,t(σ̂Vi)

∂σVi

= − 1

Ti − t

1

Vi,t(σVi)− Si,t

∂Vi,t(σ̂Vi)

∂σVi

,

where
∂Vi,t(σ̂Vi

)

∂σVi
is given in an earlier footnote.
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where3 ∇̂Pi =
(

∂Pi,t(µ̂i,σ̂Vi
)

∂µi
,

∂Pi,t(µ̂i,σ̂Vi
)

∂σVi

)
.

• Step 3: Take the sample correlation coefficient between ln
(
V̂i,kh/V̂i,(k−1)h

)
and ln

(
V̂j,kh/V̂j,(k−1)h

)
as the estimate for ρij . The estimated correlation coefficient is expected to distribute nor-
mally around its true value with a variance taken from the corresponding diagonal entry of
F̂−1

ij where F̂ij = − 1
N

∂2L(•)
∂θij(k)∂θij(l)

∣∣∣
θij=θ̂ij

. θij =
[
µi, µj , σVi , σVj , ρij

]
, θij(k) is the kth element

of θij , θ̂ij is the estimate for θij and L(·) is the joint log-likelihood function of the data sample
for the ith and jth firms. Note that the first four entries of θ̂ij are taken from the individual
estimations for the ith and jth firms in Step 1 whereas the correlation coefficient estimate is
obtained in this step. For any quantity that is a function of θij , the variance of its distribution
can be obtained using the whole matrix F̂−1

ij in a way similar to those in Step 2. If one is
interested in any quantity that is a function of the parameters for more than two firms, the
dimension of F̂ij can expanded to accommodate the new requirement.

The three-step estimation procedure can be computed fairly quickly; for example, on a standard
desktop computer, the completion for two firms usually takes approximately 10 seconds. Parameter
estimation for a large portfolio of firms is thus feasible with the three-step estimation procedure.
The numerical optimization routine used here is the quadratic hill–climbing algorithm of Goldfeld,
Quandt and Trotter (1966) with a convergence criterion based on the absolute values of the changes
in parameter values and functional values between successive iterations. We consider convergence
achieved when both of these changes are smaller than 1e-5. The three-step estimation procedure
uses several simplifications. We need to ascertain its performance by a Monte Carlo study. Such a
study is carried out in the next sub-section.

2.3 A Monte Carlo study

In order to assess the quality of the maximum likelihood procedure, we examine how well the
normal distribution suggested by the theory approximates the actual distribution for a reasonable
sample size. In other words, we verify whether the parameter estimates for a sample size N is
well approximated by the distribution given in the preceding subsection. Similarly, we check the
distributions for the asset value Vi,t(θ̂N ), credit spread Ci,t(θ̂N ) and default probability Pi,t(θ̂N ).

We consider the case of two firms and simulate the data on a daily basis as follows:

1. Let Vi,kh for i = {1, 2} and k = {1, ..., N} denote the simulated asset values in accordance

3

∂Pi,t(µ̂i, σ̂Vi)

∂µi
= −φ

(
xi,t(µ̂i, σ̂Vi , V̂i,t)

)
×
√

Ti − t

σ̂Vi

∂Pi,t(µ̂i, σ̂Vi)

∂σVi

= φ
(
xi,t(µ̂i, σ̂Vi , V̂i,t)

)  ln (Vi,t(σ̂Vi))− ln (Fi) +
(
µ̂i + 1

2
σ̂2

Vi

)
(Ti − t)

σ̂2
Vi

√
Ti − t

−

∂Vi,t(σ̂Vi
)

∂σVi

σ̂Vi

√
Ti − tVi,t(σ̂Vi)


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with

V1,(k+1)h = V1,kh exp
(

µ1h−
1
2
σ2

V1
h + σV1

√
hε1,k

)
(13)

V2,(k+1)h = V2,kh exp
(

µ2h−
1
2
σ2

V2
h + σV2

√
hε2,k

)
(14)

where
{
(ε1,k, ε2,k)

′ : k ∈ {1, ..., N}
}

is a sequence of independent and identically distributed
vectors of standard normal random variables with a correlation coefficient of ρ12. To be
consistent with daily data, we set h = 1/250. The specific parameter values used in the
simulation are given in the table.

2. Use these simulated time series and the equity pricing equation in Appendix B to compute
the corresponding series of simulated equity prices.

For each simulated data set, we conduct maximum likelihood estimation and compute the point
estimates and their associated variances based on the equity prices. We repeat the simulation run
5000 times to obtain the Monte Carlo estimates for the relevant quantities. Four different cases are
examined. Each case is for a combination of high or low debt-to-asset-value ratio (Fi/Vi,0) with
high or low noise-to-signal ratio (σVi/µi). To conserve space, we have only reported the high-high
case in Table 1. In all these experiments, T = 3, t = 2, r = 0.05, h = 1/250, ρij = 0.5 and N = 500.
For a given simulation, the values of Vi,t and Pi,t(µi, σVi) depend on the specific sample path taken
by Vi,t, we thus examine the statistics for the difference between the estimate and the true value.

Table 1 reports the simulation results for the high-high case with Fi/Vi,0 = 0.9 and σVi/µi = 3
for both firms. The results reveal that, for all parameters and the inferred variables, except for the
default probabilities, the maximum likelihood estimators are unbiased. The coverage rates4 indicate
that the normal distribution is a very good approximation of the small sample distribution. In this
table, we have also reported the results using the implicit estimation method. The description of
this method is given in Appendix C. It is clear from this table that the implicit estimation produces
poor estimates. The estimates for volatility are significantly biased downward. For asset value, they
are biased upward substantially. For the inference on biases, the standard deviations reported in
the tables should be divided by a factor of

√
n to reflect the fact that n simulation runs are used to

produce the means. The performance of the implicit estimation method is related to the noise-to-
signal ratio of the firm. For high noise-to-signal firms, the biases are very pronounced whereas for
low noise-to-signal firms, the estimates (not reported here) may be regarded as acceptable. Also
worth noting is that the implicit estimation method cannot yield an estimate for the drift coefficient
and consequently it cannot provide an estimate for the default probability. On the efficiency side,
the maximum likelihood estimators always show a smaller standard deviation when compared to the
implicit estimators. For all parameter estimates and inferred variables, except for the correlation
coefficient, the standard deviations of the implicit estimators are approximately 10 times larger than
their maximum likelihood counterparts. The correlation estimate based on the implicit estimation
method is very good in terms of bias and standard deviation. This indicates that, in the context
of Merton’s (1974) model, the correlation between the stock price return is a very good estimate
of the true correlation between the asset returns. This is perhaps not too surprising because the

4A coverage rate is the percentage of the parameter estimates for which the true parameter value is contained in
the α confidence interval implied by the asymptotic distribution
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quadratic variation process between ln Si and ln Sj is a function of the correlation between the
two Wiener processes driving the asset value processes. Normalizing this expression by the sample
standard deviation of the stock returns thus gives an estimate that is close to the true correlation.

To our knowledge, the KMV method (as described in Crouhy et al. (2000)), a popular commer-
cial implementation of Merton’s model, uses an iterative scheme to estimate the parameters. The
method assumes a set of parameter values and inverts the observed equity values to yield a sample
of implied asset values. These implied asset values are then used in the likelihood function as if
they were the observed values to obtain the updated parameter values. The process is repeated
until convergence is obtained. This estimation method can be understood better by referring to the
log-likelihood function in Theorem 1. This iterative scheme essentially ignores the last term in the
log-likelihood function. Interestingly, this term constitutes the Jacobian of the transformation from
the equity value to the asset value, a critical component of the maximum likelihood method for the
transformed data. We will refer to this iterative scheme as the incomplete likelihood method. The
bottom panel of Table 1 reports the results for the incomplete likelihood method. It is clear from
Table 1 that ignoring the Jacobian has serious consequences. The parameter estimates are signif-
icantly biased downward whereas the estimates for asset values are biased upward. The coverage
ratios are quite off as well. The incomplete likelihood method’s performance is also related to the
noise-to-signal ratio (not reported in the paper to conserve space). Qualitatively, it behaves like
the implicit estimation method for the relevant variables.

The maximum likelihood estimate of the default probability is biased. On average, it overesti-
mates the true default probability by approximately 4%. This bias is mainly due to the imprecision
in the expected asset return estimate, which enters into the default probability formula. The cover-
age rates are also different from the predicted normal distribution. A further analysis reveals that
this departure can be explained by the fact that the default probability involves the normal dis-
tribution function evaluated at xi,t(µ̂i, σ̂Vi , V̂i,t). This operation is highly non-linear. Even though
xi,t(µ̂i, σ̂Vi , V̂i,t) exhibits the property predicted by the theory (see Table 1), the non-linear trans-
formation distorts the default probability. This observation points to a solution as well. A suitable
confidence interval for the default probability can actually be obtained. Specifically, the 1−α con-
fidence interval for the default probability Pi,t(µ̂i, σ̂Vi) = Φ

(
xi,t(µ̂i, σ̂Vi , V̂i,t)

)
can be constructed

as: [
Φ
(
b
(
µ̂i, σ̂Vi , V̂i,t

))
; Φ
(
b
(
µ̂i, σ̂Vi , V̂i,t

))]
where b (•) and b (•) are the lower and upper bounds of the 1−α confidence interval for xi,t(µ̂i, σ̂Vi , V̂i,t).
The result can be easily verified as follows:

1− α

= P
[
b
(
µ̂i, σ̂Vi , V̂i,t

)
≤ xi,t(µ̂i, σ̂Vi , V̂i,t) ≤ b

(
µ̂i, σ̂Vi , V̂i,t

)]
= P

[
Φ
(
b
(
µ̂i, σ̂Vi , V̂i,t

))
≤ Φ

(
xi,t(µ̂i, σ̂Vi , V̂i,t)

)
≤ Φ

(
b
(
µ̂i, σ̂Vi , V̂i,t

))]
Table 2 presents the results of this correction in terms of the coverage rates. As shown in this
table, the corrected confidence intervals do yield the coverage rates consistent with the theoretical
prediction.
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2.4 Empirical analysis

In this section, we implement Merton’s (1974) model using real data. Although this model assumes
a zero-coupon debt, most corporations have much more complex liability structures. Liabilities
with different properties such as maturity, seniority and coupon rate must be aggregated into one
quantity to implement the model. Obviously, there is no clear-cut solution to these problems. One
possible approach to determining debt maturity is to find a “theoretical” zero-coupon bond that
has the same duration as the aggregated debt. But doing so fundamentally changes the pattern
of cash flows. Another way of addressing the issue is to argue that the annual report on profits
and losses is perceived by equity holders as the maturity date of their option, which then leads to
a pseudo debt maturity of one year. At the time of the public reporting of the annual profits and
losses, debt holders may decide to take control of the firm in case of insolvency. On the other hand,
if the firm is solvent, the equity value equals the difference between the asset value and the face
value of debts.

Determining the amount of debt for the model is also not an obvious matter. The simplest
approach would be to set the face value of debt equal to the total amount of short- and long-
term liabilities. However, as argued in Crouhy, et al. (2000) where some details regarding the
implementation of the KMV method are reported, the probability of the asset value falling below
the total face value of liabilities may not be an accurate measure of the actual default probability.
As reported in an empirical study by KMV, firms default when the asset value reaches a level
somewhere between the face value of total liabilities and the face value of the short-term debt.
Moreover, there are unknown undrawn commitments (lines of credit) which can be used in case of
financial distress. These considerations lead to an ad-hoc approach adopted by KMV to set the
face value of debt equal to 1/2 of the long-term debt plus the full amount of the short-term debt.

In this paper, we opt for simplicity and assume that the maturity of debt equals one year and the
face value of debt equals to 1/2 of the long-term debt plus the full amount of the short-term debt.
Two companies from the Canadian retailing sector are examined for years 1999-2001: Hudson’s Bay
Company and Sears Canada Inc. Their stock prices are taken from DataStream and the information
regarding the long- and short-term debts is extracted from the Financial Post Historical Reports.
The short-term debt is defined as the “Current Liabilities” reported yearly in the consolidated
balance sheet. The long-term debt is the account “Long-term Debt, net” which represents the
long-term debt net of long-term debt maturing during the current year. The short-term interest
rate is set to 5% for all years.

The results from the maximum likelihood estimation are reported in Table 3. The daily stock
returns for two years preceding to the day of estimation are used to obtain the estimates for each
year. For both firms, the estimates for the drift of the asset value process are rather imprecise and
statistically insignificant from zero. The estimates for volatility and asset value are, on the other
hand, estimated fairly accurately and are clearly statistically significant from zero.

The estimates for the credit spreads are also estimated with precision. The estimated spreads
are small when compared with the typical spreads that are observed for firms in this industry
and credit class. The default probabilities are estimated to be small but with a large standard
error. This is to be expected since the estimated drift, which shows a large variance, enters this
quantity. While the default probability of Hudson’s Bay is positive and around 2%, the default
probability of Sears is virtually zero. The corrected confidence intervals that can be computed
around these probabilities are still tight enough to provide interesting information. For example,
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the 95% confidence interval for Hudson’s Bay at the beginning of 2001 is [0.0004, 0.2936] while the
one for Sears is [3.1× 10−7, 0.012].

The estimated correlation coefficients between the asset value return also show small standard
errors. As in the Monte Carlo study, these estimated coefficients are very close to correlation
coefficients for the stock returns.

3 Longstaff and Schwartz’s credit spread model

As in Merton (1974), the Longstaff and Schwartz (1995) credit spread model assumes a geometric
Brownian motion for the firm’s asset value. To simplify the notation, we only consider one firm.
Specifically, the firm’s asset value dynamic is

dVt = µVtdt + σV Vt dWV,t. (15)

The default-free instantaneous interest rate is assumed to be stochastic and governed by an Ornstein-
Uhlenbeck process:

drt = κ(α− rt)dt + σrdWr,t (16)

where rt is the instantaneous spot interest rate at time t, κ is the mean reverting speed, α is the long
run average and σr is the interest rate volatility. The two Brownian motions - WV,t and Wr,t - are
assumed to have the correlation coefficient ρ. In addition, default is triggered whenever the firm’s
asset value falls below some exogenously specified threshold level K to reflect financial distress.5.
At default, the debt’s recovery rate is assumed to be 1− w.

The default-free and risky zero-coupon bond pricing formulas, denoted respectively by B(rt, t, T )
and D(Vt, rt, t, T ), are given in Appendix D. The default probability is also given in this appendix.
Because the specific assumption on how default is triggered, a risky coupon bond can be viewed as
a simple portfolio of zero-coupon risky bonds in the same way as for the default-free coupon bond.
The credit spread formula requires a different definition for coupon bonds, however. When both
default-free and risky bonds are of zero-coupon, the definition is the same as the one in equation
4. For coupon bonds, credit spread should be redefined as the difference in the continuously
compounded yields between the risky and default-free bonds.

Similar to Merton’s (1974) model, several required inputs to the formulas are unknown. Specifi-
cally, one needs the value for rt, Vt, K, w and the parameters governing the asset value and interest
rate dynamics. In the next subsection, we develop the likelihood function for the data sample
consists of default-free bond yields and equity values of the firm.

In constructing the likelihood function, it is important to take into account survivorship. As-
sessing credit spreads is an exercise of attaching a premium to debt instruments of a firm that has
survived. Survivorship is not the relevant issue in the case of Merton’s (1974) model because in that
model, the zero-coupon debt only becomes due at some future time point. In other words, there
will be no possibility of default prior to that time point.6 This is not the same as the bond pricing
model with financial distress, because under the financial distress model the firm can default prior
to the debt maturity.

5In Collin-Dufresne and Goldstein (2001), the triggering threshold level is allowed to change dynamically according
to dKt = λ(ln Vt − v −Kt)dt

6Precisely speaking, this result is related to the way that we have implemented Merton’s model. If the data sample
contains points of refinancing, survivorship adjustment will be needed.
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3.1 The Likelihood function

As before, there is a time series {s0, sh, ..., sNh} for the equity values of the firm up to time t = Nh.
Since interest rates are stochastic, we also need to use a time series of zero-coupon bond prices
with $1 face value, denoted by {b0, bh, ..., bNh}. The bonds may have different maturities. Denote
the parameter set by

θ =(µ, σV , κ, α, σr, λ, ρ, K,w)

Note that λ is the risk premium parameter not in the system defined by equations (15) and (16).
This additional parameter arises from the term structure theory.

The unknown interest rate is tied to a default-free bond price by the bond pricing formula
(29) in Appendix D. This bond pricing formula defines a one-to-one transformation for any set of
interest rate parameters. Specifically,

rt =
ln bt − βT−t

αT−t
.

Similar to the earlier treatment of Merton’s (1974) model, we relates the equity price to the unob-
served asset value of the firm: St = g (Vt; t, θ,rt) = Vt − D(Vt, rt, t, T ). Although this function is
typically increasing in Vt, it is not always the case. First note that g (Vt; t, θ,rt) is only defined for
Vt ≥ K. Under some situations, g (Vt; t, θ,rt) is first decreasing and then increasing. As a result,
we cannot be certain that this function is always invertible, a condition for the transformed data
method of Duan (1994). But we can be certain that there are at most two asset values corre-
sponding to one equity value. Non-invertibility happens when the debt has a low recovery rate
in financial distress. This non-invertibility is a peculiarity of the Longstaff and Schwartz (1995)
model. It implies that in some situation, equity capital injection will cause the total equity value
to drop because an amount greater than the injected equity capital has been shifted to benefit
the bond holders. Addressing non-invertibility becomes particularly important for data samples of
firms close to financial distress. The solution turns out to be rather straightforward in principle. We
simply add up all likelihood values that correspond to different combinations of possible solutions.
Suppose that there are three data points that have two asset values for each equity value. There
are eight possible combinations with each yielding a sample likelihood value. We simply add them
up and then apply the logarithmic transformation to obtain the log-likelihood function.

To better understand the estimation issue with survivorship, we use the following diagram to
describe the estimation task:

0 h ... (N − 1) h Nh︸ ︷︷ ︸
Sample period

T︸ ︷︷ ︸
Future period

At time Nh, the firm has not defaulted. We need to have a likelihood function for the observations
in the sample period, conditional on no default during the sample period. We address this problem
by providing two separate results. First we develop a result by assuming constant interest rate.
This restriction amounts to modifying Merton’s (1974) model by incorporating financial distress.
We consider this restricted case of the Longstaff and Schwartz (1995) model so as to isolate the
effect of survivorship. We present the likelihood function for the full model later.
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Theorem 2 Assume constant interest rate (i.e., σr = 0). The log-likelihood function based on a
sample of observed equity values with no default in the sample period is,

L (s0, sh, ..., sNh;µ, σV ) = ln
∑

(v∗0 ,v∗h,...,v∗Nh)∈Ψ(σV )

exp [l (v∗0, v
∗
h, ..., v∗Nh;µ, σV )] (17)

where

l (v∗0, v
∗
h, ..., v∗Nh;µ, σV )

= −
N∑

n=1

ln v∗nh −
N

2
ln (2π)− N

2
ln
(
σ2

V h
)
− 1

2σ2
V h

N∑
n=1

(
ln

v∗nh

v∗(n−1)h

−
(

µ−
σ2

V

2

)
h

)2

+
N∑

n=1

ln

(
1− exp

(
− 2

σ2
V h

ln
v∗(n−1)h

K
ln

v∗nh

K

))

− ln

Φ


(
µ− σ2

V
2

)
Nh− ln K

v0√
NhσV

− exp
2

σ2
V

(
µ−σ2

V
2

)
ln K

v0 Φ


(
µ− σ2

V
2

)
Nh + ln K

v0√
NhσV



−
N∑

n=1

ln

1− 2Fw

v∗nh

exp−r(T−t)


1√

T−tσV
φ
(

1√
T−tσV

(
ln K

v∗nh
−
(
r − σ2

V
2

)
(T − t)

))
+ 1

σ2
V

(
r − σ2

V
2

)
exp

2

σ2
V

(
r−σ2

V
2

)
ln K

v∗
nh

×Φ
(

1√
T−tσV

(
ln K

v∗nh
+
(
r − σ2

V
2

)
(T − t)

))

 ,

and Ψ(σV ) is a set of (v∗0, v
∗
h, ..., v∗Nh) with v∗nh > K being a solution to g(v∗nh;nh, T, σV ) = snh. If

Ψ(σV ) is empty, then L (s0, sh, ..., sNh;µ, σV ) = −∞.

Note that Ψ(σV ) is a finite set with at most 2N+1 elements because each equity value can at
most correspond to two asset values and there are N +1 data points in the sample. Usually, Ψ(σV )
does not contain many elements. The set Ψ(σV ) depends on σV but not µ because the pricing
relationship is independent of µ. It is important to note that Ψ(σV ) can be empty because at an
arbitrary value of σV , one may not be able to find a solution to g(v∗nh;nh, TσV ) = snh that is
greater than K. Around the true parameter value, however, a solution always exists if the model is
correctly specified. Note that the last term on the right-hand side of l (v∗0, v

∗
h, ..., v∗Nh;µ, σV ) is the

Jacobian associated with the transformation from the observed equity values to the implied asset
values. The proof is given in Appendix E.

Now we turn to the full version of the Longstaff and Schwartz (1995) model and provide the
log-likelihood function. For a technical reason, we cannot solve the exact log-likelihood function,
which involves the joint distribution of the firm value and the interest rate, conditional on no
default. The strong solution to the interest rate process over one data period is

r(n+1)h = α + (rnh − α) exp (−κh) + σr

∫ (n+1)h

nh
e−κ[(n+1)h−u]dWr,u,

which does not permit the asset price innovation to be expressed as a linear function of interest
rate innovation. Instead, we will use the following Euler approximation to construct the likelihood
function:

r(n+1)h
∼= rnh + κ(α− rnh)h + σr

(
Wr,(n+1)h −Wr,nh

)
.
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We introduce the following intermediate result which will be used later in constructing the
log-likelihood function.

Lemma 3 Conditional on no default in the sample period, the log-likelihood function based on the
asset values and the interest rates, is, for any v0, ..., vNh > K,

G (v0, r0, vh, rh, ..., vNh, rNh; θ)

∼= −
N∑

n=1

ln vnh −N lnσr −N lnσV −N lnh− N

2
ln (2π)− 1

2

N∑
n=1

φ2
n−1,n

+
N∑

n=1

ln


ρ

1−ρ2 φn−1,n

[
Φ
(
λ−n−1,n

)
+ exp (θn−1) Φ

(
λ+

n−1,n

)]
+ 1√

1−ρ2
φ
(
λ−n−1,n

) [
1− exp

(
− 2

σ2
V h

ln vnh
K ln v(n−1)h

K

)]
+ ρ

1−ρ2 φn−1,n

[
Φ
(
λ−n−1,n

)
+ exp (θn−1) Φ

(
λ+

n−1,n

)]


− ln

 Φ
(

1√
NhσV

((
µ− σ2

V
2

)
Nh− ln K

v0

))
− exp

(
2

σ2
V

(
µ− σ2

V
2

)
ln K

v0

)
Φ
(

1√
NhσV

(
ln K

v0
+
(
µ− σ2

V
2

)
Nh
))  .

where

φn−1,n =
ln v(n−1)h

vnh
+
(
µ− σ2

V
2

)
h

σV

√
h

ρ√
1− ρ2

+

(
rnh − r(n−1)h

)
− κ(α− r(n−1)h)h

σr

√
h

√
1

1− ρ2
,

λ+
n−1,n = η+ −

ln vnh
K

σV

√
h

=
− ln vnh

K − ln v(n−1)h

K +
(
µ− σ2

V
2

)
h

σV

√
h

,

λ−n−1,n = η− +
ln vnh

K

σV

√
h

=
ln vnh

K − ln v(n−1)h

K −
(
µ− σ2

V
2

)
h

σV

√
h

,

and θn−1 = − 2
σ2

V

(
µ−

σ2
V

2

)
ln

v(n−1)h

K
.

The proof of this lemma is in Appendix F. Again, the real estimation problem is for the situation
in which the asset values and interest rates are not observable. We need to replace the asset values
and the interest rates by their implied values v∗nh and r∗nh. But we must take into account the
Jacobian for the transformation. The log-likelihood function based on the observed data is given
in the following theorem.

Theorem 4 The log-likelihood function based on a sample of observed equity values (with no default
in the sample period) and default-free bond prices is

L (s0, b0, ..., sNh, bNh; θ) = ln
∑

(v∗0 ,v∗h,...,v∗Nh)∈Ψ(θ)

exp [l (v∗0, r
∗
0, ..., v

∗
Nh, r∗Nh; θ)] (18)

where

l (v∗0, r
∗
0, ..., v

∗
Nh, r∗Nh; θ)

= G (v∗0, r
∗
0, ..., v

∗
Nh, r∗Nh; θ)−

N∑
n=0

ln
∣∣∣∣αtnh−nhbnh

(
1 + wbnh

∂

∂v
QT

nh (v∗nh, r∗nh, nh, T )
)∣∣∣∣ , (19)
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r∗nh =
ln bnh−βTnh−nh

αTnh−nh
(Tnh − nh is the maturity for the default-free bond price bnh) and v∗nh > k

being a solution to the equity valuation equation g (v∗nh; r∗nh, nh, θ) = snh. QT
t (Vt, rt, t, T ) and αT−t

are defined in Appendix D and G (v∗0, r
∗
0, ..., v

∗
Nh, r∗Nh; θ) is given in Lemma 3. Ψ(θ) is a set of

(v∗0, v
∗
h, ..., v∗Nh). If Ψ(θ) is empty, then L (s0, b0, ..., sNh, bNh; θ) = −∞.

This theorem is proved in Appendix G.

3.2 The estimation procedure

Although directly optimizing the log-likelihood function given in Theorem 4 appears to be a sensible
way of approaching the estimation problem, it is actually not a good approach in practice. First,
the likelihood function is defined for the data set comprising one specific equity value series and
the common bond price series. If there are more than one firm, there will be more than one
set of parameter values governing the common interest rate dynamic. One can, of course, think
of expanding the log-likelihood function to include all firms in the sample to conduct the joint
estimation. It is not practical, however, when there are many firms in the sample. The second
problem is the difference in the time horizons for bond pricing and equity valuation. The Vasicek
(1977) bond pricing model reflects the mean reversion in interest rates. The tendency for interest
rates to return to their average is meant to be a long-run phenomenon. It is therefore reasonable
to expect that the mean-reversion parameter can only be pinned down using a relatively long
interest rate data series. The bond valuation model, on the other hand, depends on the firm’s asset
volatility parameter. Since the variation of the asset value under the diffusion specification is large,
the volatility parameter can usually be estimated with precision using a relatively short time series.
To allow for, say, year-to-year changes in the asset volatility, the use of an equity value time series
shorter than the interest rate series may be desirable.

We thus devise a two-step estimation procedure. The first step estimates, through maximizing
the likelihood function, the Vasicek (1977) bond pricing model parameters using interest rate data
only. The likelihood function for this model is given in Duan (1994). The second step estimates
the asset value parameters with the likelihood function in Theorem 4 by fixing the interest rate
parameters at the values obtained from the first step. This two-step procedure ensures the interest
rate parameter estimates are the same for all firms in the sample. Moreover, it allows us to use a
longer time series of interest rates to pin down the mean-reversion parameter for the interest rate
dynamic. Since the parameters governing the asset value dynamic do not enter the bond pricing
model, this two-step procedure continues to yield consistent parameter estimates. However, the
estimation of the standard errors of the asset value parameters will be affected. Using the bond
pricing parameter estimates as if they were the true parameter values does not account for the
additional sampling errors brought about by the their estimation errors in the first step. To account
for these sampling errors, the standard errors of the asset value parameters will be taken from the
usual information matrix FN = − 1

N
∂2L(•)
∂θi∂θj

, where θ̂n is set to the parameter values obtained in
the first and second step of the two-step estimation procedure. The statistical properties of our
two-step procedure will be studied later using a Monte Carlo analysis.
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3.3 A Monte Carlo study

In order to assess the quality of the maximum likelihood method, we examine how well the normal
distribution suggested by the theory approximates the actual distribution for a reasonable sample
size. In other words, we check to see whether the parameter estimates for a sample size N is
well approximated by the distribution given in the preceding subsection. Similarly, we check the
distributions for the asset value Vt(θ̂N ), credit spread Ct(θ̂N ) and default probability Pt(θ̂N ).

We consider the case of a single firm and simulate the data on a frequency of 50 points per day
and sample one every 50 points to mimic the situation of analyzing daily data. Let h = 1/250.
Specifically,

• Let rkh/50 and Vkh/50 for k = {1, ..., 50N} denote the simulated values of the instantaneous
interest rates and asset values. Using the transition density functions corresponding to equa-
tions (15) and (16). Specifically, r(kh) and V (kh) are simulated according to the dynamics:

r(k+1)h/50 = α +
(
rkh/50 − α

)
e−κ(h/50) +

√
σ2

r

2κ
(1− e−2κ(h/50))εr,k,

V(k+1)h = Vkh exp
(

µ(h/50)− 1
2
σ2

V (h/50) + σV

√
h/50εV,k

)
where

{
(εr,k, εV,k)

′ : k ∈ {1, ..., 50N}
}

is a sequence of independent and identically distributed
vectors of standard normal random variables with a correlation coefficient of ρ. The specific
parameter values used in the simulation are given in the tables.

• Use these simulated time series and the equity pricing equation to compute the corresponding
series of simulated equity prices.

To be completed later.

3.4 Empirical analysis

In this section, we implement the Longstaff and Schwartz (1995) models using real data. In this
model, unknown triggering level for financial distress and recovery rate are introduced to the model.
In a way, it has simplified the default consideration. Nevertheless, one still have to determine the
debt size and maturity by aggregating debts of different maturities.

To be completed later.

4 Conclusion

To be completed later.
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A Formulas for debt and default probability in Merton’s (1974)
model

In Merton (1974), Di,Ti (σVi) = min {Vi,Ti , Fi}. For valuation, it is well-known that we can use the
risk-neutral asset price dynamic to evaluate the discounted expected payout, where the risk-neutral
dynamic has the risk-free rate as the drift term but the same diffusion term. Consequently, the
bond value at time t is

Di,t (σVi) = Fie
−r(Ti−t)

(
Vi,t

Fie−r(Ti−t)
Φ (−d(Vi,t, σVi)) + Φ

(
d(Vi,t, σVi)− σVi

√
Ti − t

))
(20)

where Φ (•) is the standard normal distribution function and

d(Vi,t, t, σVi) =
ln (Vi,t)− ln (Fi) +

(
r + 1

2σ2
Vi

)
(Ti − t)

σVi

√
Ti − t

. (21)

Furthermore, Merton’s model implies the following default probability under measure P at time t:

Pi,t(µi, σVi) = Probt [Vi (Ti) < Fi] = Φ

(
ln (Fi)− ln (Vi,t)−

(
µi − 1

2σ2
Vi

)
(Ti − t)

σVi

√
Ti − t

)
. (22)

where Probt [•] denotes for the conditional probability taken at time t under the measure P . The
joint probability of default for several firms can be expressed using the multivariate normal cu-
mulative distribution function N0,ρ : Rm → [0, 1] with with mean 0m×1 and covariance matrix
ρ ≡ (ρij)i,j∈{1,...,m} and relying on the following quantity:

Probt [V1,Ti < α1, ..., Vm,Ti < αm] = N0,ρ (β1, ..., βm) (23)

where

βi =
ln (αi)− ln (Vi,t)−

(
µi − 1

2σ2
Vi

)
(Ti − t)

σVi

√
Ti − t

.

This gives rise to the joint default probability of the firms i1, . . . , ik where k ≤ m by setting

αi = Fi for any i ∈ {i1, ..., ik} and αi →∞ for all i /∈ {i1, ..., ik}

in equation (23).

B The likelihood function for Merton’s (1974) model

In this section we derive the likelihood function for the multivariate version of Merton’s (1974)
model. As stated in the text, θ denote the vector containing all parameters associated with the
m-dimensional geometric Brownian motion process. Assume for a moment that we are able to
observe v0, vh, v2h, ..., vNh with

vkh =

 v1,kh
...

vm,kh

 .
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By the property of the geometrical Brownian motion, the joint density function is

fV0,Vh,V2h,...,VNh
(v0,vh,v2h, ...,vNh; θ) =

N∏
k=1

fVkh|V(k−1)h

(
vkh

∣∣v(k−1)h ; θ
)

where fVkh|V(k−1)h

(
vkh

∣∣v(k−1)h

)
denotes the conditional density function of vkh given v(k−1)h.

Since the conditional distribution of vkh given v(k−1)h is lognormal, we obtain the log-likelihood
function

L (v0,vh,v2h, ...,vNh; θ)
= ln fV0,Vh,V2h,...,VNh

(v0,vh,v2h, ...,vNh; θ)

=
N∑

k=1

ln fVkh|V(k−1)h

(
vkh

∣∣v(k−1)h ; θ
)

= −mN

2
ln (2π)− N

2
ln (|detΣ|)− 1

2

N∑
k=1

w
′
khΣ−1wkh −

N∑
k=1

m∑
i=1

ln vi,kh (24)

where Σ ≡
(
hσViσVjρij

)
i,j∈{1,...,m}, |detΣ| is the determinant of Σ and wkh is the column vector

wkh ≡
(

ln vi,kh − ln vi,(k−1)h −
(

µi −
1
2
σVi

)
h

)
m×1

.

We of course do not observe v0, vh, v2h, ..., vNh. Instead, we have a time series of the equity
values s0, sh, s2h, ..., sNh where

skh =

 s1,kh
...

sm,kh


The equity pricing equation is

Si,t = Vi,tΦ (d (Vi,t, t, σVi))− Fie
−r(Ti−t)Φ

(
d (Vi,t, t, σVi)− σVi

√
Ti − t

)
(25)

where

d (Vi,t, t, σVi) =
ln (Vi,t)− ln (Fi) +

(
r + 1

2σ2
Vi

)
(Ti − t)

σVi

√
Ti − t

(26)

and Φ (•) is the cumulative standard normal distribution function. It defines the transformation
between Si,t and Vi,t. We denote it by Si,t = gi (Vi,t; t, σVi). For any 0 ≤ t < Ti, this function
is invertible in the sense that for any fixed t and σVi , Vi,t = g−1

i (Si,t; t, σVi). In fact, ∆i (t) ≡
∂gi(Vi,t;t,σVi

)

∂Vi
= Φ(d (Vi,t, t, σVi)) is strictly positive, implying that gi is a strictly increasing function

of Vi,t. Defining v∗kh as the implied asset prices at time kh obtained from the observed equity prices
and a given set of parameters (σV1 , ..., σVm), that is

v∗kh =

 v∗1,kh
...

v∗m,kh

 =

 g−1
1 (s1,kh; kh, σV1)

...
g−1
m (sm,kh; kh, σVm)

 .
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We can express the log-likelihood function for the sample of equity values as

ln fS0,Sh,S2h,...,SNh
(s0, sh, s2h, ..., sNh; θ) = ln fV0,Vh,V2h,...,VNh

(v∗0,v
∗
h, ...,v∗Nh; θ) + ln |detJ |

where the Jacobian J of the transformation is a block diagonal matrix J = (Jnh)n∈{1,...,N} and the
sub-matrix Jkh is the m×m matrix

Jkh =
(

∂v∗i,kh

∂sj,kh

)
i,j∈{1,...,m}

.

One can show
∂v∗i,kh

∂sj,kh
=

{
1

Φ(d(v∗i,kh,,kh,σVi))
if i = j

0 otherwise
. (27)

Therefore

ln |detJ | = ln
N∏

k=1

m∏
i=1

1

Φ
(
v∗i,kh

) = −
N∑

k=1

m∑
i=1

lnΦ
(
d
(
v∗i,kh, kh, σVi

))
.

Thus, the log-likelihood function based on the sample of observed equity values is

L (s0, sh, s2h, ..., sNh; θ)

= −mN

2
ln (2π)− N

2
ln (|Σ|)− 1

2

N∑
k=1kh

w∗′
khΣ−1w∗

kh −
N∑

k=1

m∑
i=1

ln v∗i,kh

−
N∑

k=1

m∑
i=1

lnΦ
(
d
(
v∗i,kh, kh, σVi

))
where w∗

kh is an m-dimensional column vector defined as

w∗
kh =

(
ln v∗i,kh − ln v∗i,(k−1)h −

(
µi −

1
2
σVi

)
h

)
m×1

.

C The implicit estimation method

Following Jones, et al (1984) and Ronn and Verma (1984), an equation relating the diffusion
coefficient of the stock price process to that of the asset value process can be obtained because
stock price is a function of the asset value. Formally, Si,t = gi(Vi,t; t, σVi). Applying Itô’s lemma
gives rise to

d lnSi,t =

(
µiVi,t∆i (t) + θi (t) + 1

2σ2
Vi

V 2
i (t) Γi (t)

Si,t
−

σ2
Vi

V 2
i (t) ∆2

i (t)
2S2

i (t)

)
dt

+
σViVi,t∆i (t)

Si,t
dWi,t. (28)
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where

∆i (t) ≡ ∂gi(Vi,t; t, σVi)
∂v

= Φ(d (Vi,t, σVi)),

Γi (t) ≡ ∂2gi(Vi,t; t, σVi)
∂v2

=
φ(d (Vi,t, σVi))

σViVi,t (Ti − t)1/2
,

θi (t) ≡ ∂gi(Vi,t; t, σVi)
∂t

and φ and Φ denotes respectively the density function and the cumulative function of a standard
normal random variable. The diffusion coefficient of the stock return process can thus be written
as:

σSi (t) =
σViVi,t∆i (t)

Si,t
.

This coefficient is time dependent and stochastic. Although it is inconsistent with the model, the
implicit estimation method assumes that the sample standard deviation of stock returns sampled
over a time period prior to time t is a good estimate of σSi,t . This relationship in conjunction with
Si,t = gi(Vi,t; t, σVi) can be used to solve for two unknowns - Vi,t and σVi - using the observed value
for Si,t and the estimate for σSi,t .

In the multi-firm context, the covariance between two stock returns is σSi (t) σSj (t) ρij because

d 〈lnSi, lnSj〉t =
σViVi,t∆i (t)

Si,t

σVjVj (t) ∆j (t)
Sj (t)

d 〈Wi,Wj〉t

=
σViVi,t∆i (t)

Si,t

σVjVj (t) ∆j (t)
Sj (t)

ρij dt

= σSi (t) σSj (t) ρij dt.

Using the sample covariance yields an estimate for ρij . Note that this estimation procedure is again
inconsistent with the model because the quadratic variation process between lnSi and lnSj is also
time dependent and stochastic.

D Formulas for debt and default probability in the Longstaff and
Schwartz (1995) model

As given in Vasicek (1977), the time t value B(rt, t, T ) of a zero-coupon bond that pays F dollars
at time T is

B(rt, t, T ) = F expαT−trt+βT−t , (29)

αT−t = κ−1
(
exp−κ(T−t)−1

)
,

βT−t =
σ2

r

4κ3

(
1− e−2κ(T−t)

)
+

1
κ

(
α− λ

κ
− σ2

r

κ2

)(
1− e−κ(T−t)

)
−
(

α− λ

κ
− σ2

r

κ2

)
(T − t) .

The risky zero-coupon bond is assumed to pay, at time T, F dollars if the default has not occur
and F (1−w) otherwise. Default is triggered when the asset value Vt for the first time crosses below
a threshold level K. The crossing time is denoted by τ . The time-t value of this risky bond is

D(Vt, rt, t, T )1{τ>t} = 1{τ>t}B(rt, t, T )
(
1− wQT

t [τ ≤ T ]
)

(30)
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where QT
t [τ ≤ T ] is the conditional probability, under the forward measure QT

t using the zero-
coupon default-free bond as the numeraire 7, that the default occurs after time t but before or
at time T . The formula for QT

t [τ ≤ T ] given in Longstaff and Schwartz’s (1995) Proposition 1 is
actually incorrect. This has been noted in Muller (2000) and Collin-Dufresne and Goldstein (2001).
We refer readers to these two papers for two different ways of computing QT

t [τ ≤ T ].
The default probability under the physical probability measure, as compared to that under

measure QT
t , is much simpler. It equals

1− P

[
inf

t≤s≤T
Vs > K

]
= 1− P

[
inf

t≤s≤T
Vt exp

((
µ−

σ2
V

2

)
(s− t) + σV (WV,s −WV,t)

)
> K

]
= 1− P

[
inf

t≤s≤T

((
µ−

σ2
V

2

)
(s− t) + σV (WV,s −WV,t)

)
> lnK − lnVt

]

= Φ

 ln K
Vt
−
(
µ− σ2

V
2

)
(T − t)

√
T − tσV

+ exp
(

2
σ2

V

(
µ−

σ2
V

2

)
ln

K

Vt

)
Φ

 ln K
Vt

+
(
µ− σ2

V
2

)
(T − t)

√
T − tσV

 .

E The likelihood function for the constant interest rate version of
the Longstaff and Schwartz (1995) model

We first assume that it is possible to observe the firm values. Let Unh = inf(n−1)h≤t≤nh lnVt. Note
that the event of “no default during the time interval [0, Nh]” can be expressed as

Unh > lnK for any n ∈ {1, 2, ..., N} .

The log-likelihood function conditional on no default during the sample period is

ln fV0,...,VNh|inf0≤t≤Nh Vt>K (v0, vh..., vNh) = ln
fV0,...,VNh,inf0≤t≤Nh ln Vt>ln K (v0, ..., vNh)

P [inf0≤t≤Nh lnVt > lnK]
(31)

where fV0,...,VNh|inf0≤t≤Nh ln Vt>ln K is the joint density function of the firm values V0, ..., VNh and no
default in the sample period.

The joint density function of the firm values V0, ..., VNh and the infimums U0, ..., UNh is

fV0,Uh,Vh...,UNh,VNh
(v0, uh, vh..., uNh, vNh) =

N∏
n=1

fUnh,Vnh|V(n−1)h (unh,vnh|v(n−1)h )

7Under this measure, asset prices relative to B (rt, t, T ) are martingales with respect to QT
t . See Madan and Unal

(1999).
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because V is Markovian. Therefore, the joint density function is

fV0,...,VNh,inf0≤t≤Nh ln Vt>ln K (v0, ..., vNh)

=
∫ ∞

ln K
...

∫ ∞

ln K
fV0,Uh,Vh...,UNh,VNh

(v0, uh, vh..., uNh, vNh) duh...duNh

=
∫ ∞

ln K
...

∫ ∞

ln K

N∏
n=1

fUnh,Vnh|V(n−1)h

(
unh, vnh

∣∣v(n−1)h

)
duh...duNh

=
N∏

n=1

∫ ∞

ln K
fUnh,Vnh|V(n−1)h

(
unh, vnh

∣∣v(n−1)h

)
dunh.

The next step is to compute fUnh,Vnh|V(n−1)h
. It is based on the the joint law of the arithmetic

Brownian motion and its infimum. Let Xnh = ln Vnh. Then

fUnh,Vnh|V(n−1)h

(
unh, vnh

∣∣v(n−1)h

)
=

1
vnh

fUnh,Xnh|X(n−1)h

(
unh, ln vnh

∣∣ln v(n−1)h

)
and

fV0,...,VNh,inf0≤t≤Nh ln Vt>ln K (v0, ..., vNh)

=
N∏

n=1

1
vnh

∫ ∞

ln K
fUnh,Xnh|X(n−1)h

(
unh, ln vnh

∣∣ln v(n−1)h

)
dunh

=


∏N

n=1

 1
vnh

1√
2π

1
σV

√
h

exp
(
− 1

2σ2
V h

(
ln vnh

v(n−1)h
−
(
µ− σ2

V
2

)
h
)2
)

×
(
1− exp

(
− 2

σ2
V h

ln v(n−1)h

K ln vnh
K

))
 v0, ..., vNh > K

0 otherwise.

(32)

The denominator of equation (31) can be derived as

P
[

inf
0≤t≤Nh

lnVt > lnK

]
= Φ

(
1√

NhσV

((
µ−

σ2
V

2

)
Nh− ln

K

v0

))
− exp

(
2

σ2
V

(
µ−

σ2
V

2

)
ln

K

v0

)
Φ
(

1√
NhσV

((
µ−

σ2
V

2

)
Nh + ln

K

v0

))
provided that v0 > K.

Since we only observe equity values, it is necessary to express the likelihood function in terms of
equity values. we need to establish the relation that links together the asset and the equity values.
On the set τ > t, the time-t value of the risky zero-coupon bond is

Dt (Vt, r, T )
= exp−r(T−t) F (1− wQ [τ ≤ T |τ > t ])

= exp−r(T−t) F

1− w

 Φ
(

1√
T−tσV

(
ln K

Vt
−
(
r − σ2

V
2

)
(T − t)

))
+exp

(
2

σ2
V

(
r − σ2

V
2

)
ln K

Vt

)
Φ
(

1√
T−tσV

(
ln K

Vt
+
(
r − σ2

V
2

)
(T − t)

)) 
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where Q is the risk-neutral measure, F is the face value of the debt, T is the maturity of the debt,
1− w is the recovery rate at default. Therefore, using the relation (1), the equity value is

St

= Vt −Dt (Vt, r, T )

= Vt − exp−r(T−t) F

1− w


Φ
(

1√
T−tσV

(
ln K

Vt
−
(
r − σ2

V
2

)
(T − t)

))
+exp

(
2

σ2
V

(
r − σ2

V
2

)
ln K

Vt

)
×Φ

(
1√

T−tσV

(
ln K

Vt
+
(
r − σ2

V
2

)
(T − t)

))



= g (Vt; t, T, σV ) .

Although function g is not a one-to-one mapping from Vt to St, we can consider the inverse
function locally around a solution. Let v∗nh be a solution. The relevant logarithm of the Jacobian
becomes

−
N∑

n=1

ln
∣∣∣∣∂g (v∗nh;nh, T, σV )

∂V

∣∣∣∣
= −

N∑
n=1

ln

∣∣∣∣∣∣∣∣∣∣
1− 2Fw

v∗nh

exp−r(T−t)


1√

T−tσV
φ
(

1√
T−tσV

(
ln K

v∗nh
−
(
r − σ2

V
2

)
(T − t)

))
+ 1

σ2
V

(
r − σ2

V
2

)
exp

2

σ2
V

(
r−σ2

V
2

)
ln K

v∗
nh

×Φ
(

1√
T−tσV

(
ln K

v∗nh
+
(
r − σ2

V
2

)
(T − t)

))

∣∣∣∣∣∣∣∣∣∣
.

Putting all together gives rise to the result.

F The proof for Lemma 3

The conditional likelihood function, conditional on no default in the sample period, is

fV0,r0,...,VNh,rNh|inf0≤t≤Nh ln Vt>ln K (v0, r0, vh, rh, ..., vNh, rNh)

=
fV0,r0,...,VNh,rNh,inf0≤t≤Nh ln Vt>ln K (v0, r0, vh, rh, ..., vNh, rNh)

P [inf0≤t≤Nh lnVt > lnK]
(33)

where fV0,r0,...,VNh,rNh,inf0≤t≤Nh ln Vt>ln K is the joint density function of the firm values V0, ..., VNh,
the interest rates r0, ..., rNh and no default in the sample period.

The joint density function of the firm values Vnh, the rates rnh and the infimums U (nh) =
inf(n−1)h≤t≤nh lnVt is

fV0,r0,U0,Vh,rh,...,UNh,VNh,rNh
(v0, r0, uh, vh, rh, ..., uNh, vNh, rNh)

=
N∏

n=1

fUnh,Vnh,rnh|v(n−1)h,r(n−1)h
(unh, vnh, rnh)
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because the bivariate stochastic process (V, r) is Markovian. Therefore, the joint density function
of the VNh and the absence of default is

fV0,r0,...,VNh,rNh,inf0≤t≤Nh ln Vt>ln K (v0, r0, ..., vNh, rNh)

=
N∏

n=1

1
vnh

∫ ∞

ln K
fU(nh),VNh,rNh|v(n−1)h,r(n−1)h

(unh, ln vnh, rnh) dunh (34)

To complete the proof, we need the conditional density function fUnh,VNh,rNh|v(n−1)h,r(n−1)h
. This

can be obtained by first computing the conditional distribution function (Lemma 5). To complete
the proof, it suffices to evaluate the definite integral in equation 34. These last two steps are
straightforward but tedious. The details are available upon request.

Lemma 5 Let P(n−1)h [•] denotes the distribution conditional on (v(n−1)h, r(n−1)h). Assume ρ 6= 0.
If v(n−1)h > K and x > lnK, then

P(n−1)h [U (nh) > lnK, X (nh) ≤ x and rNh ≤ r]

∼= Φ (φ1 (r, x))
[
Φ
(

η− +
x− lnK

σV

√
h

)
+ exp (θ) Φ

(
η+ − x− lnK

σV

√
h

)]
−sign(ρ)× Φ (φ2 (r))

[
Φ
(
η−
)

+ exp (θ) Φ
(
η+
)]

+
∫ φ2(r)

φ1(r,x)

[
Φ

(
η− +

√
1− ρ2

ρ
(φ2 (r)− z)

)
+ exp (θ) Φ

(
η+ −

√
1− ρ2

ρ
(φ2 (r)− z)

)]
φ (z) dz

and P(n−1)h [U (nh) > lnK, X (nh) ≤ x and rNh ≤ r] = 0 otherwise, where Φ (•) and φ (•) are the

distribution and density function of a standard normal random variable,

θ = − 2
σ2

V

(
µ−

σ2
V

2

)
ln

v(n−1)h

K
,

η+ =
− ln v(n−1)h

K +
(
µ− σ2

V
2

)
h

σV

√
h

,

η− =
− ln v(n−1)h

K −
(
µ− σ2

V
2

)
h

σV

√
h

φ1 (r, x) =
ln v(n−1)h − x +

(
µ− σ2

V
2

)
h

σV

√
h

ρ√
1− ρ2

+

(
r − r(n−1)h

)
− κ(α− r(n−1)h)h

σr

√
h

√
1

1− ρ2
,

φ2 (r) = φ1 (r, x) +
x− lnK

σV

√
h

ρ√
1− ρ2

.
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Proof of Lemma 5. Assume that ρ > 0. The case ρ < 0 can be proved in a similar manner.

P(n−1)h [U (nh) > lnK, X (nh) ≤ x and rNh ≤ r]

∼= P(n−1)h


ln v(n−1)h + inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> lnK,

ln v(n−1)h +
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h)) ≤ x

and r(n−1)h + κ(α− r(n−1)h)h + σrρ (WV (nh)−WV ((n− 1) h))
+σr

√
1− ρ2 (W ∗

V (nh)−W ∗
V ((n− 1) h)) ≤ r



= P(n−1)h



inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h
,(

µ− σ2
V
2

)
h + σV (WV (nh)−WV ((n− 1) h)) ≤ x− ln v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h))

≤
(
µ− σ2

V
2

)
h + σV

σrρ

(
r − r(n−1)h − κ(α− r(n−1)h)h

)
−σV

√
1−ρ2

ρ (W ∗
V (nh)−W ∗

V ((n− 1) h))



=
∫ ∞

−∞
P(n−1)h



inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h
,(

µ− σ2
V
2

)
h + σV (WV (nh)−WV ((n− 1) h)) ≤ x− ln v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h))

≤
(
µ− σ2

V
2

)
h + σV

σrρ

(
r − r(n−1)h − κ(α− r(n−1)h)h

)
− σV

√
1−ρ2

ρ

√
hz


φ (z) dz

=
∫ ∞

−∞
P(n−1)h



inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h))

≤ min

 x− ln v(n−1)h ,
(
µ− σ2

V
2

)
h

+ σV
σrρ

(
r − r(n−1)h − κ(α− r(n−1)h)h

)
− σV

√
1−ρ2

ρ

√
hz




φ (z) dz.

Note that

x− ln v(n−1)h ≤
(

µ−
σ2

V

2

)
h +

σV

σrρ

(
r − r(n−1)h − κ(α− r(n−1)h)h

)
− σV

√
1− ρ2

ρ

√
hz

⇔ z ≤ 1√
1− ρ2

(
ρ

σV

√
h

((
µ−

σ2
V

2

)
h− x + ln v(n−1)h

)
+

1
σr

√
h

(
r − r(n−1)h − κ(α− r(n−1)h)h

))
︸ ︷︷ ︸

=φ1(r,x)
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Hence

P(n−1)h [Unh > lnK, Xnh ≤ x and rnh ≤ r]

∼=
∫ φ1(r,x)

−∞
P(n−1)h

 inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h)) ≤ x− ln v(n−1)h

φ (z) dz

+
∫ +∞

φ1(r,x)
P(n−1)h


inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h))

≤
(
µ− σ2

V
2

)
h + σV

σrρ

(
r − r(n−1)h − κ(α− r(n−1)h)h

)
− σV

√
1−ρ2

ρ

√
hz

φ (z) dz

= Φ (φ1 (r, x))P(n−1)h

 inf(n−1)h≤t≤nh

((
µ− σ2

V
2

)
t + σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h)) ≤ x− ln v(n−1)h



+
∫ +∞

φ1(r,x)
P(n−1)h


inf(n−1)h≤t≤nh

( (
µ− σ2

V
2

)
t

+σV (WV (t)−WV ((n− 1) h))

)
> ln K

v(n−1)h

and
(
µ− σ2

V
2

)
h + σV (WV (nh)−WV ((n− 1) h))

≤
(
µ− σ2

V
2

)
h + σV

σrρ

(
r − r(n−1)h − κ(α− r(n−1)h)h

)
− σV

√
1−ρ2

ρ

√
hz

φ (z) dz

We apply the identity

P

[
inf

0≤s≤t
(σWs + αs) ≥ y and σWt + αt ≤ x

]
=

{
Φ
(

x−αt
σ
√

t

)
− Φ

(
y−αt

σ
√

t

)
− exp

(
2αy

σ2

)
Φ
(

y+tα

σ
√

t

)
+ exp

(
2αy

σ2

)
Φ
(

2y−x+tα

σ
√

t

)
if y ≤ min (x, 0)

0 otherwise,

to both terms of the last expression.
For the first term, the condition y ≤ min (x, 0) becomes exp (x) ≥ K and v(n−1)h ≥ K. For the

second term, the condition y ≤ min (x, 0) becomes

z ≤ 1√
1− ρ2

(
ρ

σV

√
h

((
µ−

σ2
V

2

)
h− ln

K

v(n−1)h

)
+

1
σr

√
h

(
r − r(n−1)h − κ(α− r(n−1)h)h

))
︸ ︷︷ ︸

=φ2(r)

and v(n−1)h ≥ K, which implies that the integral only goes from φ1 (r, x) to φ2 (r). Note that

φ2 (r) = φ1 (r, x) +
ρ√

1− ρ2

x− lnK

σV

√
h︸ ︷︷ ︸

≥0

.
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If exp (x) ≥ k and v(n−1)h ≥ K, then

P(n−1)h [Unh > lnK, Xnh ≤ x and rnh ≤ r]

∼= Φ (φ1 (r, x))


Φ

x−ln v(n−1)h−
(

µ−σ2
V
2

)
h

σV

√
h

− Φ (η−)

− exp (θ) Φ (η+) + exp (θ) Φ

2 ln K
v(n−1)h

−x+ln v(n−1)h+

(
µ−σ2

V
2

)
h

σV

√
h




︸ ︷︷ ︸

Φ

(
η−+x−ln K

σV
√

h

)
−Φ(η−)−exp(θ)Φ(η+)+exp(θ)Φ

(
η+−x−ln K

σV
√

h

)

+
∫ φ2(r)

φ1(r,x)


Φ

(
σV
σrρ(r−r(n−1)h−κ(α−r(n−1)h)h)−σV

√
1−ρ2

ρ

√
hz

σV

√
h

)
− Φ (η−)− exp (θ) Φ (η+)

+ exp (θ) Φ

2 ln K
v(n−1)h

− σV
σrρ(r−r(n−1)h−κ(α−r(n−1)h)h)+σV

√
1−ρ2

ρ

√
hz

σV

√
h




︸ ︷︷ ︸

=Φ

(
η−+

√
1−ρ2

ρ
(φ2(r)−z)

)
−Φ(η−)−exp(θ)Φ(η+)+exp(θ)Φ

(
η+−

√
1−ρ2

ρ
(φ2(r)−z)

)

φ (z) dz

= Φ (φ1 (r, x))
[
Φ
(

η− +
x− lnK

σV

√
h

)
+ exp (θ) Φ

(
η+ − x− lnK

σV

√
h

)]
−Φ (φ2 (r))

[
Φ
(
η−
)

+ exp (θ) Φ
(
η+
)]

+
∫ φ2(r)

φ1(r,x)

[
Φ

(
η− +

√
1− ρ2

ρ
(φ2 (r)− z)

)
+ exp (θ) Φ

(
η+ −

√
1− ρ2

ρ
(φ2 (r)− z)

)]
φ (z) dz. �

G The likelihood function for the full version of the Longstaff and
Schwartz (1995) model

The instantaneous interest rate rt is unobserved. We relate it to the zero-coupon bond price
B(rt, t, T ) using equation (29). The second mapping is the equity pricing equation which links the
unobserved asset value to the observed equity value. Using equations (1) and (30) gives rise to

St = Vt −D(Vt, rt, t, T )
= Vt −B(rt, t, T ) + wB(rt, t, T )QT

t (Vt, rt, t, T )
= g (Vt; rt, t, T, θ)

where QT
t (Vt, rt, t, T ) is the conditional default probability under the forward measure QT

t .
Let Yt be the vector of observed variables at time t; that is, Yt = [B(rt, t, Tt), St]

′, Y =
[y′0,y

′
h, ...,y′Nh]′ denotes the sample of all observed variables; that is, y′nh = [bnh, snh]

′
. We want

to establish the mapping that links together the observed and unobserved variables at time t. For
interest rates, the relationship is straightforward from equation (29):

rt =
ln bt − βTt−t

αTt−t
.
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For the implied firm value, we find the solution to st = g (vt; rt, t, θ). Due to a peculiar feature of
the Longstaff and Schwartz (1995) model, the solution may not be unique but there will be at most
two. For each solution (v∗0, r

∗
0, v

∗
h, r∗h, ..., v∗Nh, r∗Nh), we can apply the transformed data method of

Duan (1994, Theorem 2.1) to yield the log-likelihood:

L(Y; θ) = G (v∗0, r
∗
0, v

∗
h, r∗h, ..., v∗Nh, r∗Nh; θ) + ln

(∣∣det
(
D−1

Y

)∣∣) ,

where DY is a matrix of partial derivatives computed from the transformation relating the unob-
servable variables to the observed and is evaluated at (v∗0, r

∗
0, v

∗
h, r∗h, ..., v∗Nh, r∗Nh). More precisely,

the matrix DY is a block diagonal matrix:

DY =


DY0 · · · · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · DYNh


with

DYt =

[
∂B(rt,t,Tt)

∂r
∂B(rt,t,Tt)

∂V
∂St
∂r

∂St
∂V

]
.

The individual elements in each of the N + 1 matrices are given by

∂B (rt, t, Tt)
∂r

= αTt−tB (rt, t, Tt) ,

∂B (rt, t, Tt)
∂V

= 0,

∂St

∂r
=

(
−αT−t + wαT−tQT

t (vt, rt, t, T ) + w
∂QT

t (vt, rt, t, T )
∂r

)
B(rt, t, T )

∂St

∂V
= 1 + wB(rt, t, T )

∂QT
t (vt, rt, t, T )

∂V
.

The determinant of DYt is found to be

det (DYt) = αtT−tB(rt, t, Tt)
(

1 + wB(rt, t, T )
∂

∂V
QT

t (vt, rt, t, T )
)

.

Since the determinant of the inverse of the block diagonal matrix DY is simply

det
(
D−1

Y

)
=

N∏
n=0

1
det (DYnh

)
,

The Jacobian term in the log-likelihood function thus becomes

ln
(∣∣det

(
D−1

Y

)∣∣) = −
N∑

n=0

ln |det (DYnh
)|

= −
N∑

n=0

ln
∣∣∣∣αTnh−nhbnh

(
1 + wbnh

∂

∂v
QT

nh (v∗nh, r∗nh, nh, T )
)∣∣∣∣ .

Summing over the likelihood functions for all possible combinations gives rise to the result.
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Table 2

Corrected confidence intervals
for the default probability

P̂1t0-P1t0 P̂2t0-P2t0

25 % cvr 0.260 0.259
50 % cvr 0.512 0.512
75 % cvr 0.747 0.759
95 % cvr 0.952 0.955

cvr is the coverage rate defined as the percentage of the 5000 parameter estimates for which
the true parameter value is contained in the α confidence interval implied by the asymptotic dis-
tribution; cvr is the coverage rate defined as the percentage of the 5000 parameter estimates for
which the true parameter value is contained in the α confidence interval implied by the asymptotic
distribution; V0,1 = 10000, V0,2 = 10000, F1 = 9000, F2 = 9000, T = 3.00, t0 = 2.00, r = 0.05 and
N = 500.
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Table 3

Maximum Likelihood Estimation (Merton’s model)
Hudson’s Bay Correlation

Year µ̂ σ̂ V̂t0 Ĉt0 P̂t0 ρ̂
$000’s

1999 0.011 0.204 2,851,034 2.075e-005 0.001 0.173
( 0.142) ( 0.002) ( 4) (2.969e-006) ( 0.002) ( 0.040)

2000 -0.007 0.233 3,046,716 9.955e-004 0.026 0.157
( 0.178) ( 0.002) ( 140) (7.912e-005) ( 0.047) ( 0.039)

2001 -0.040 0.226 2,488,371 6.637e-004 0.026 0.120
( 0.161) ( 0.002) ( 72) (5.095e-005) ( 0.043) ( 0.044)

Sears Canada
1999 0.193 0.190 3,317,074 1.729e-007 0.000

( 0.134) ( 0.004) ( 0) (8.080e-008) ( 0.000)
2000 0.261 0.206 5740209 1.987e-012 0.000

( 0.147) ( 0.005) ( 0) (0.000e+000) ( 0.000)
2001 0.113 0.235 4089644 2.226e-005 0.000

( 0.165) ( 0.004) ( 11) (6.240e-006) ( 0.000)

The maximum likelihood estimates at the begining of Year are computed using the previous
two years of daily time series data; r = is set to the yield to maturity of a representative one year
canadian government bond while the maturity of debt is set equal to 1.0 year at all point in time;
For each firm, the face value of debt is set equal to 0.5× long term debt plus short term debt
obtained from the yearly annual report.

33




