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Abstract

In this paper we present a simple static super-hedging strategy for the
payoff of an arithmetic Asian option in terms of a portfolio of European
options. Moreover, it is shown that the obtained hedge is optimal in some
sense. The strategy is based on stop-loss transforms and is applicable
under general stock price models. We focus on some popular Lévy models.
Numerical illustrations of the hegding performance are given for various
Lévy models calibrated to market data of the S&P 500.
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1 Introduction

Pricing of (arithmetic) Asian options is even in the Black-Scholes world not
straightforward. In general no explicit analytical expression for the average is
available. So one has to use Monte Carlo simulation techniques to obtain numer-
ical estimates of the price (see [9, 10, 23]), or one can follow a partial differential
equation approach (cf. [18, 41]) (respectively a partial integro-differential equa-
tion approach in more general market models (cf. [42])). Both approaches are
rather time consuming and the related hedging problem is even more difficult.
Approximations of the distribution of the average that sometimes lead to closed-
form expressions have also been studied (see e.g. [24, 39, 43]), but in general it is
difficult to assess the approximation error and for hedging purposes this method
is often not satisfying. For an approach based on Fast Fourier Transforms, see
[7, 17].
An alternative route is to try to derive upper and lower bounds for the option
price. This can nicely be done by the use of comonotonic theory as described
in [19, 20, 38, 40]. We will follow this path and derive a static (super-)hedge
for fixed-strike Asian call options based on a buy-and-hold strategy consisting
of European call options maturing with and before the Asian option.
This is particularly useful since European call options are typically available
on the market and quite liquidly traded. Moreover, only when the contract
is struck, one has to take a position in these calls and no dynamic trading is
needed.
Static hedging has several advantages over dynamic hedging. For instance, it is
less sensitive to the assumption of zero transaction costs (both commissions and
the cost of paying individuals to monitor the positions). Furthermore, dynamic
hedging tends to fail when liquidity dries up or when the market makes large
moves, but especially in these situations effective hedging is needed (see e.g.
[12, 15, 16]).

As is illustrated in Section 4, the hedging error of our simple super-hedging
strategy is very small if the option is in the money. For options at and out of
the money this strategy can be quite conservative, but it is still much cheaper
than the trivial super-hedge of the Asian option by a European option with
identical strike and maturity (in case the dividend yield q is smaller than the
continuously compound interest rate r). The procedure we develop is applicable
for general stock price models. In this paper we focus on models where the asset
price is described as the exponential of a general Lévy process. The special case
of the NIG-Lévy process was considered in [1] and the case of the VG-process
was covered in [2], where it was also observed that Asian option prices in these
more realistic models differ significantly from the corresponding Black-Scholes
prices. We will work out the theory in general, and in particular we will focus
on the hedging problem.

In recent years it has been realized that the dynamics of stocks are much better
described by a Lévy model than the classical Black-Scholes model. In a Lévy

2



model the Brownian motion is replaced by a more general Lévy process, tak-
ing into account the typical non-normality of asset returns. The stock price is
modelled as the exponential of the Lévy process. Classical examples of Lévy
processes used in this context are the VG-process, the NIG-process and the
Meixner-process. For more examples and applications of Lévy processes in fi-
nance see [5, 13, 14, 21, 29, 36].
Lévy market models are, except in the Brownian and the unrealistic Poissonian
case, incomplete. There are many candidates of equivalent martingale measures
for risk-neutral valuation of derivative securities. Our approach is based on the
risk-neutral densities of the distribution of the asset price and thus works for
all equivalent martingale measures that lead to tractable numerical estimates of
these density functions.

The paper is structured as follows. In Section 2 we describe how to obtain
upper bounds for the price of an Asian option under a general market model
using comonotonicity techniques. Next, we illustrate how to super-hedge Asian
options using European call options in a buy-and-hold strategy. Section 3 de-
scribes the Lévy market model for asset prices and works out the theory in more
detail for some popular examples such as the VG, the NIG and the Meixner
case. Finally, in Section 4 we give numerical illustrations of the hedging strat-
egy by calibrating all the models discussed in Section 3 to market data, namely
a set of vanilla options on the S&P 500, and comparing the respective Monte
Carlo prices, the comonotonic-upper-bound price (and the resulting static hedg-
ing strategy), with other (trivial) static super-hedges, including the well-known
super-hedge by the European call with same strike and maturity, in case q ≤ r.

2 A Static Hedging Strategy for Arithmetic Av-
erage Options

Throughout the text we will work under an arbitrage-free frictionless market
model which consists of a riskless bond (bank account) and one financial risky
asset, a stock or an index. The market dictates that there is a fixed interest
rate r ≥ 0, and that the bond price process behaves (deterministicly) as B =
{Bt = exp(rt), t ≥ 0}. The stock price process follows a stochastic process and
is denoted by S = {St, t ≥ 0}. We assume that the stock pays a continuous
compound dividend yield at a rate q per annum. We will always work with the
natural filtration F = FS = {Ft, 0 ≤ t ≤ T} of S. Later on, we will choose an
exponential of a Lévy process for the stock price process, but first we develop
the theory for a general model.
Suppose that in an arbitrary arbitrage-free incomplete market model we have
selected an equivalent martingale measure Q, then the price of a European-style
arithmetic average call option with strike price K, maturity T and n averaging
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days 0 ≤ t1 < . . . < tn ≤ T at time t is given by

AAt = exp(−r(T − t))EQ

[(∑n
k=1 Stk

n
−K

)+ ∣∣∣Ft

]
,

=
exp(−r(T − t))

n
EQ




(
n∑

k=1

Stk
− nK

)+ ∣∣∣Ft




where St is the asset price at time t, r is the risk-free interest rate and (x−K)+

means max(x−K, 0).

The main difficulty in evaluating this expression is that in general the distribu-
tion of the average

∑n
k=1 Stk

/n, which is a sum of dependent random variables,
is not available. Here we focus on upper bounds based on a portfolio of Eu-
ropean options. For that purpose, let us assume for simplicity that we are at
time t = 0 and that the averaging has not yet started. First note, that for any
K1, . . . , Kn ≥ 0 with K =

∑n
k=1 Kk, we have a.s.

(
n∑

k=1

Stk
− nK

)+

=
(
(St1 −nK1) + · · ·+ (Stn −nKn)

)+

≤
n∑

k=1

(Stk
− nKk)+ .

Hence

AA0(K, T ) =
exp(−rT )

n
EQ




(
n∑

k=1

Stk
− nK

)+ ∣∣∣F0




≤ exp(−rT )
n

n∑

k=1

EQ

[
(Stk

− nKk)+
∣∣∣F0

]

=
exp(−rT )

n

n∑

k=1

exp(rtk)EC0(κk, tk), (1)

where EC0(κk, tk) denotes the price of a European call option at time 0 with
strike κk = nKk and maturity tk.

In terms of hedging this means that we have the following static super-hedging
strategy: for each k, buy exp(−r(T −tk))/n European call options at time t = 0
with strike κk and maturity tk and hold these until their expiry. Then put their
payoff on the bank account.

Since relation (1) holds for all combinations of κk ≥ 0 that satisfy
∑n

k=1 κk =
nK, we have a variety of portfolios of n European options whose payoff dom-
inates the Asian option. For instance, the simplest choice is κk = K (k =
1, . . . , n). If q ≤ r, we have EC0(K, t) ≤ EC0(K,T ) for every K ≥ 0 and
0 ≤ t ≤ T , and thus this trivial choice shows that the Asian option price is
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dominated by the price of a European option with the same strike and matu-
rity, i.e.

AA0(K,T ) ≤ EC0(K, T ).

However, for our super-hedging purposes, we naturally look for that combination
of κk’s which minimizes the right-hand side of (1). As shown in Dhaene et al.
[20], this optimal combination can be determined by using stop-loss transforms
and the theory of comonotonic risks. In the following, we will briefly summarize
these techniques and adapt them to our setting of general market models:
Let F (x) be a distribution function of a non-negative random variable X, then
(in accordance with actuarial practice) its stop-loss transform ΦF (m) is defined
by

ΦF (m) =
∫ +∞

m

(x−m)dF (x) = E[(X −m)+], m ≥ 0.

A convex ordering of distribution functions F (x) and G(x) (or equivalently of
the corresponding random variables) on the non-negative real line can be defined
in the following way: F (x) is said to precede G(x) in convex order (F ≤cx G),
if the corresponding means of the distribution functions (random variables) are
equal and

ΦF (m) ≤ ΦG(m) for all m ≥ 0.

If we write

An =
n∑

k=1

Stk

and F t
An

(x) = PQ(An ≤ x|Ft) for the distribution function under Q of An given
the information Ft, then we have

AAt =
exp(−r(T − t))

n
ΦF t

An
(nK). (2)

In this way the problem of pricing an arithmetic average option is transformed
to calculating the stop-loss transform of a sum of dependent risks. Concretely,
we will look at bounds for stop-loss transforms based on comonotonic risks:
A positive random vector (X1, . . . , Xn) with marginal distribution functions
F1(x1), . . . , Fn(xn) is called comonotone, if for the joint distribution function
FX1,...,Xn(x1, . . . , xn) = min{F1(x1), . . . , Fn(xn)} holds for every x1, . . . , xn ≥
0. It immediately follows that the distribution of a comonotone random vector
(X1, . . . , Xn) with given marginal distributions F1(x1), . . . , Fn(xn) is uniquely
determined.
In [38], it was shown that an upper bound for the stop-loss transform of the sum
of arbitrary dependent positive random variables

∑n
k=1 Xk with marginal distri-

butions F1(x1), . . . , Fn(xn) is given by the stop-loss transform of the sum Sc =∑n
k=1 Yk, where (Y1, . . . , Yk) is the comonotone random vector with marginal

distributions F1(x1), . . . , Fn(xn), i.e.
n∑

k=1

Xk ≤cx
n∑

k=1

Yk.
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Let FSc(x) denote the distribution function of
∑n

k=1 Yk, then we have the fol-
lowing relation for its inverse

F−1
Sc (x) =

n∑

k=1

F−1
Xk

(x), x ≥ 0. (3)

From Theorem 6 in [38] it follows that the stop-loss transform of a sum of
comonotonic random variables can be obtained as a sum of the stop-loss trans-
forms of the marginals evaluated at specified points, namely

ΦFSc (m) =
n∑

k=1

ΦFXk

(
F−1

Xk
(FSc(m))

)
, m ≥ 0, (4)

given that the marginal distribution functions involved are strictly increasing
(which will always be the case in our applications). At the same time, we have

ΦFSc (m) = E
(( n∑

k=1

Yk −m
)+)

≤
n∑

k=1

E
(
(Yk −mk)+

)
=

n∑

k=1

ΦFXk
(mk) (5)

whenever
∑n

k=1 mk = m. Thus the stop-loss transform of the comonotonic sum
given by (4) at the same time represents the lowest possible bound in terms of
a sum of stop-loss transforms of the marginal distributions.

We will now apply this result to our setting of an arithmetic Asian option. Let
F (xk; tk) (k = 1, . . . , n) denote the conditional distribution of Stk

under the
risk-neutral measure Q (given the information available at time t = 0), i.e. for
xk, tk > 0,

F (xk; tk) = PQ (Stk
≤ xk|F0) . (6)

Combining (1), (2), (4) and (5), we thus have found the optimal combination
of strike prices κk, namely

κk = F−1 (FSc(n K); tk) , k = 1, . . . , n. (7)

In that way, we have obtained the optimal static super-hedge in terms of Euro-
pean call options with maturity dates equal to the averaging dates.

For the practical determination of the strike prices κk, the distribution function
of the comonotone sum FSc(x) as given by (3) has to be calculated and evaluated
at nK (note that the involved marginal distribution functions are strictly in-
creasing and continuous). In case the risk-neutral density (or an approximation
of it) is available, this can be done numerically in a straight-forward way (cf.
Section 4). The κk’s are then obtained by evaluating the inverse distribution
function of F (x; tk).
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3 The Lévy Market Model

Suppose φ(u) is the characteristic function of a distribution. If for every positive
integer n, φ(u) is also the nth power of a characteristic function, we say that
the distribution is infinitely divisible.
One can define for every such infinitely divisible distribution a stochastic process,
X = {Xt, t ≥ 0}, called Lévy process, which starts at zero, has independent
and stationary increments and such that the distribution of an increment over
[s, s + t], s, t ≥ 0, i.e. Xt+s −Xs, has (φ(u))t as its characteristic function.
Every Lévy process has a càdlàg modification which is itself a Lévy process.
We always work with this càdlàg version of the process. So sample paths of
a Lévy process are a.e. continuous from the right and have limits from the
left. The cumulant characteristic function ψ(u) = log φ(u) is often called the
characteristic exponent (see e.g. [8]).
We assume our market to consist of one riskless asset (the bond) with price
process given by Bt = exp(rt) and one risky asset (the stock or index). The
risk-neutral model for the risky asset is given by

St = S0
exp((r − q)t)
E[exp(Xt)]

exp(Xt).

The factor exp((r − q)t)/E[exp(Xt)] puts us immediately in a risk-neutral set-
ting by a mean correcting argument. Note that the argument underlying the
above choice of a risk-neutral measure is in line with the classical risk-neutrally
mean-correcting technique used in the Black-Scholes setting. We would like to
stress, however, that our proposed hedging strategies are not restricted to this
particular choice of a risk-neutral density.

Note that in this case we have for (6)

F (xk; tk) = PQ (Stk
≤ xk|F0) (8)

= PQ

(
S0

exp((r − q)t)
E[exp(Xt)]

exp(Xtk
) ≤ xk|F0

)
(9)

= PQ

(
Xtk

≤ log(xk/S0) + ψ(−i)− (r − q)t
∣∣∣F0

)
(10)

In the next section, we describe three popular Lévy processes, which are often
used in the modelling of financial assets: the VG process, the NIG process and
the Meixner process.
To obtain the price EC(K, T ) of a European call option with strike K and time
to maturity T under these models, one can use the Carr and Madan formula
[11], which is formulated in terms of the characteristic function of the underlying
Lévy process: Let α be a positive constant such that the αth moment of the
stock price exists (typically a value of α = 0.75 will do fine). Then

EC(K, T ) =
exp(−α log(K))

π

∫ +∞

0

exp(−iv log(K))%(v)dv, (11)

7



where

%(v) =
exp(−rT )E[exp(i(v − (α + 1)i) log(ST ))]

α2 + α− v2 + i(2α + 1)v
(12)

=
exp(−rT )φ(v − (α + 1)i)
α2 + α− v2 + i(2α + 1)v

. (13)

The Fast Fourier Transform can be used to invert the generalized Fourier trans-
form of the call price. Using the above formula one can typically calculate the
complete option surface over all strikes and maturities in a fraction of a second.

3.1 Concrete Examples

3.1.1 The Variance Gamma Process

The VG(C, G,M) law has a characteristic function of the form

φV G(u;C,G, M) =
(

GM

GM + (M −G)iu + u2

)C

,

and its density function is given by

fVG(x; C,G, M)(x) =
(G M)C

√
π Γ(C)

exp
(

(G−M)x
2

)

×
( |x|

G + M

)C−1/2

KC−1/2

(
(G + M) |x|/2

)
(14)

where Kν(x) denotes the modified Bessel function of the third kind with index
ν, Γ(x) denotes the gamma function and C, G, M > 0. This distribution is in-
finitely divisible and has the following convolution property: φV G(u; C,G, M) =
(φV G(u; C/n, G,M))n. Thus one can define the VG-process X(V G) = {X(V G)

t ,
t ≥ 0} as the process which starts at zero, has independent and stationary incre-
ments and where the increment X

(V G)
s+t −X

(V G)
s over the time interval [s, t + s]

follows a VG(Ct,G, M) law.
Note that sometimes another parameterization of the VG distribution is used
(see e.g. [36]).
The class of Variance Gamma distributions as a model for stock returns was
introduced by [27] in the late 1980s (where the symmetric case G = M was
considered, see also [26] and [28]). In [25], the general case with skewness is
treated.

3.1.2 The Normal Inverse Gaussian Process

The Normal Inverse Gaussian (NIG) distribution with parameters α > 0, |β| <
α and δ > 0, has a characteristic function given by:

φNIG(u;α, β, δ) = exp
(
−δ

(√
α2 − (β + iu)2 −

√
α2 − β2

))
.

8



Again, one can clearly see that this is an infinitely divisible characteristic func-
tion with φNIG(u; α, β, δ) = (φNIG(u; α, β, δ/n))n. Hence we can define the
NIG-process X(NIG) = {X(NIG)

t , t ≥ 0}, with X
(NIG)
0 = 0, stationary and inde-

pendent NIG distributed increments: To be precise, X
(NIG)
t has a NIG(α, β, tδ)

law. The density of the NIG(α, β, δ) distribution is given by

fNIG(x; α, β, δ) =
αδ

π
exp

(
δ
√

α2 − β2 + βx
) K1(α

√
δ2 + x2)√

δ2 + x2
.

The NIG distribution was introduced by [3]. See also [4], [30] and [31].

3.1.3 The Meixner Process

The density of the Meixner distribution is given by

fMeixner(x; α, β, δ) =
(2 cos(β/2))2δ

2απΓ(2d)
exp

(
bx

a

) ∣∣∣∣Γ
(

δ +
ix
α

)∣∣∣∣
2

,

where α > 0,−π < β < π, δ > 0.
The characteristic function of the Meixner(α, β, δ) distribution is given by

φMeixner(u;α, β, δ) =

(
cos(β/2)

cosh αu−iβ
2

)2δ

.

The Meixner(α, β, δ) distribution is infinitely divisible: φMeixner(u; α, β, δ) =
(φMeixner(u; α, β, δ/n))n. It thus generates a Lévy process which we call the
Meixner process. More precisely, a Meixner process X(Meixner) = {X(Meixner)

t ,

t ≥ 0} is a stochastic process which starts at zero, i.e. X
(Meixner)
0 = 0, has in-

dependent and stationary increments, and where the distribution of X
(Meixner)
t

is given by the Meixner distribution Meixner(α, β, δt).
The Meixner process was introduced in [32] (see also [33]) and later on it was
suggested to serve for fitting stock returns in [22]. This application in finance
was worked out in [34] and [35].

4 Numerical Results

We will now illustrate the performance of the static hedge-portfolio for the
market models discussed in Section 3.1 applied to a liquid market. Concretely,
we will calibrate our model parameters to the set of vanilla options on the S&P
500 as given in [36, Appendix C]. The yearly risk-free interest rate and the
dividend rate are given by r = 0.019 and q = 0.012, respectively. The result of
the calibration in the least squared sense, i.e. with the minimal value of

lse =
∑

options

(Market price−Model price)2,
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Model Parameters
VG
C G M
1.3574 5.8704 14.2699
NIG
α β δ
6.1882 -3.8941 0.1622
Meixner
α β δ
0.3977 -1.4940 0.3462

Table 1: Lévy models (mean correcting): parameter estimation

is given in Table 1.
We investigate an arithmetic Asian call option with a maturity of 1 year and
averaging every month (i.e. 12 averaging days). In order to set up our hedge
portfolio, we thus have to determine the inverse distribution function of the asset
price at these 12 days (cf. (6)). This is done by discretizing the real line in an
appropriate range and numerically building up the distribution function from
the density function. The inverse is then found by a bisection method from the
corresponding table and linear interpolation between grid points is employed.
It turns out that using 40000 points in the grid is sufficient (in the sense that
a further increase does not change the significant digits of the results). Next,
the inverse of the distribution of the comonotone sum is built up according to
(3) and then itself inverted in the above way. Finally, the strike prices κk of the
European options are obtained by evaluating the inverse distribution functions
of the marginals according to (7). For the models discussed in Section 3.1, this
numerical procedure to obtain the strike prices for our hedging strategy is both
accurate and very quick (it takes less than a minute on a normal PC to deter-
mine the entire hedge portfolio).

In Tables 2 and 3 the strike prices as a percentage of the spot price are listed
for the above example and the various models calibrated to the S&P 500 (all
numbers are rounded to their last digit). Note that the optimal strike prices
hardly differ among the various models considered.

The price of the hedging strategy is then easily determined using the Euro-
pean call option pricing formula (11) of Carr and Madan and (1). Tables 4-6
compare the Monte-Carlo simulated price of the Asian option AAMC and the
comonotonic superhedge price AAc, with the prices of two trivial super-hedging
strategies, namely the trivial super-hedge using the European option price EC
with identical strike and maturity (note q ≤ r) and the super-hedge (1) with all
κi = K with price AAtr.
For the Monte-Carlo price, we used 1000000 simulated paths. The VG process
was simulated as a difference of 2 Gamma processes (cf. [36, Section 8.4.2]),
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NIG paths were obtained as described in [36, Section 8.4.5] and Meixner paths
were obtained by a compound poisson approximation as described in [36, Sec-
tion 8.2.1].

From Tables 4-6 we observe that the more in the money the Asian option is, the
less is the difference between the option price and the comonotonic hedge. For an
option with moneyness of 80% the difference is typically around 1.5%, whereas
the classical hedge with the European call leads to a difference of almost 10%.
For options out of the money, the difference increases, but is then substantially
smaller than the differences for the other two trivial hedges. In view of the
easy and cheap way in which this hedge can be implemented in practice, this
comonotonic approach seems to be competitive also in these cases.

5 Conclusion

Pricing of exotic derivatives is in general on rather weak foundations. As was
recently realized (see e.g. [37]), calibration of a variety of market models may
lead to widely differing prices of exotic options, which underlines the fact that
obtaining concrete super-hedging strategies is of utmost importance. We have
shown that staticly hedging an Asian option in terms of a portfolio of European
options is a simple and quick alternative to existing tools. Moreover, opposed
to most of the existing techniques, this approach is applicable in general market
models whenever the risk-neutral density of the asset price distribution or an
approximation of it is available. Since the proposed hedging strategy is static,
it is much less sensitive to the assumption of zero transaction costs and to the
hedging performance in the presence of large market movements; no dynamic
rebalancing is required. These advantages may sometimes compensate the gap
of the hedging price and the option price even for OTM Asian options.
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100K/S0 tk κk (VG model) κk (NIG model) κk (Meixner model)
80 0.083 92.82 94.87 95.14

0.167 89.23 90.66 90.65
0.250 86.39 87.23 87.03
0.333 83.59 84.34 84.07
0.417 81.42 81.84 81.57
0.500 79.54 79.62 79.41
0.583 77.87 77.64 77.51
0.667 76.37 75.83 75.80
0.750 75.00 74.18 74.24
0.833 73.74 72.65 72.82
0.917 72.56 71.23 71.50
1.000 71.46 69.90 70.27

90 0.083 98.36 98.23 98.50
0.167 96.56 96.40 96.71
0.250 94.86 94.67 94.90
0.333 92.88 93.06 93.19
0.417 91.30 91.56 91.59
0.500 89.91 90.17 90.12
0.583 88.64 88.86 88.75
0.667 87.49 87.62 87.48
0.750 86.43 86.46 86.29
0.833 85.43 85.36 85.18
0.917 84.50 84.31 84.13
1.000 83.62 83.31 83.14

100 0.083 100.84 100.33 100.38
0.167 101.33 100.48 100.57
0.250 101.49 100.51 100.63
0.333 101.11 100.47 100.59
0.417 100.75 100.38 100.48
0.500 100.36 100.25 100.32
0.583 99.96 100.09 100.12
0.667 99.57 99.91 99.90
0.750 99.19 99.72 99.65
0.833 98.82 99.51 99.39
0.917 98.46 99.29 99.13
1.000 98.11 99.06 98.85

Table 2: Strike prices for the hedge portfolio (S&P 500) (Part 1)
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100K/S0 tk κk (VG model) κk (NIG model) κk (Meixner model)
110 0.083 101.87 102.35 102.24

0.167 103.61 104.21 104.09
0.250 105.24 105.83 105.72
0.333 106.93 107.28 107.19
0.417 108.42 108.62 108.56
0.500 109.81 109.86 109.84
0.583 111.12 111.03 111.04
0.667 112.36 112.14 112.18
0.750 113.53 113.20 113.27
0.833 114.65 114.20 114.31
0.917 115.72 115.17 115.30
1.000 116.74 116.10 116.26

120 0.083 106.63 106.05 105.86
0.167 109.81 109.68 109.55
0.250 112.52 112.61 112.54
0.333 115.20 115.18 115.16
0.417 117.54 117.53 117.54
0.500 119.71 119.73 119.75
0.583 121.76 121.80 121.84
0.667 123.72 123.78 123.84
0.750 125.60 125.69 125.75
0.833 127.42 127.54 127.61
0.917 129.19 129.33 129.40
1.000 130.91 131.07 131.15

Table 3: Strike prices for the hedge portfolio (S&P 500) (Part 2)

100K/S0 AAMC AAc AAtr EC
80 20.5233 20.7895 20.9331 22.0739
90 11.7384 12.1649 12.3462 14.2015
100 4.5979 5.0555 5.0764 7.7732
110 0.9585 1.2261 1.5090 3.3712
120 0.2108 0.3364 0.4824 1.2554

Table 4: VG option prices as percentage of the spot (S&P 500)

100K/S0 AAMC AAc AAtr EC
80 20.6067 20.9335 21.0906 22.3345
90 11.7500 12.2184 12.3885 14.3309
100 4.4899 5.0184 5.0223 7.7433
110 0.9208 1.2477 1.5039 3.3441
120 0.1865 0.3149 0.4660 1.2381

Table 5: NIG option prices as percentage of the spot (S&P 500)
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100K/S0 AAMC AAc AAtr EC
80 20.7128 20.8870 21.0459 22.2530
90 11.8590 12.2050 12.3861 14.3029
100 4.5133 5.0147 5.0204 7.7499
110 0.8768 1.2471 1.5085 3.3476
120 0.1961 0.3382 0.4862 1.2601

Table 6: Meixner option prices as percentage of the spot (S&P 500)
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