Credit Derivatives

Summary

e Introduction to exotic credit derivative struc-
tures: rationale and basic examples

e The Li /Gaussian Copula model
e Importance Sampling

e Likelihood Ratio/Pathwise methods for com-
puting Greeks

e Hedging of nth default swaps



Market Overview
e Total Market Notional: $2.3 trillion (up 50% from 2002).

e Single name CDS dominant : 73 %; sign of a market becoming
more mainstream focusing on standardised, liquid contracts.
Portfolio products 22 %:; symbiotic with single name CDS
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Market Overview

e Base of CD users: principally banks; insurance companies and
hedge funds have increased market share significantly in

last two years.
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Credit Default Swaps: Mechanics

Default Swap Spread
(premium leg)

Contingent payment following a credit event
(protection leq)

e Basically an insurance play; CDS is used to transfer credit risk
on the reference asset from the protection buyer to the seller

e Protection buyer shorts the credit risk



a. Default occurs R

Principal plus

Protection Buyer accrued interest

Protection Seller
Spreads Recovery
Rate
b.Default does not occur
Protection Buyer Sp Sp Sp
Tl T2 T3 T

Protection Seller ls1 l52 l53 v v

Spreads



First to Default Baskets

120bp paid on $10m
until FTD or 5 yr deal
maturity whichever is first

Contingent payment
of par minus recovery on
FTD on $10m face value




Basket Default Swaps

e Basket default swaps are similar to CDS; trigger now is the
nth credit event in a specified basket of reference entities.

e Typically baskets are 5 - 10 entities. e.qg., first to default
- first asset in basket to default triggers a payment to the
protection buyer — usually physical delivery of the defaulted
asset in return for par amount in cash.

e Applications:

— Investors can use default baskets as a means of leveraging:
they get a higher vield without increasing their notional at
risk.

— Credit investors can use default baskets to hedge a blow up
in a portfolio of credits more cheaply than buying protection
on individual credits.

— Default baskets allow investors to trade default correlation.



Some Observations

Sum of all nth default to swaps on a basket equals the sum of all the
individual credit default swaps on the names

Modelling can only move value between the individual nth to default
swaps

Fundamental driver of price is correlation

How do we correlate defaults? This problem is not yet fully resolved.



Some Definitions

« Consider some security A. We define the default time,
T,, as the time from today until A defaults.

e We assume the defaults to occur as a Poisson process

e The intensity of this process, h(t), is called the hazard
rate.



The Li Model

Defaults are assumed to occur for individual assets according to a
Poisson process with a deterministic intensity called the hazard
rate.

Recovery rates are deterministic.

This means that default times are exponentially distributed.

Li: Correlate these default times using a Gaussian copula
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The Pricing Algorithm: SetUp

Given a correlation matrix C we compute A such that

aaAl = ¢

Let E(7, h) denote the cumulative exponential distribution
function in t given a fixed h:

E(rh) =P(t < 1) =1 — exp(— /OT h(t)dt).

E~1(u,h) denotes its inverse for fixed h.



The Pricing Algorithm

« Draw a vector of independent normals, z

« Generate a set of correlated Gaussian deviates:
w = Az.

« Map to uniforms:

u; = N(w;)

« Map to default times:
7 = B~ (u;, h)

eCompute the cash flow in this scenario; discount back.

F(r1,...,7n) = P(Dn(71, ..., TN)) [Vprot+(1—rn) H(T—Dp (71, ..., 7N))].



Critique of the Gaussian Copula Model

The Copula methodology and in particular the Gaussian copula ap-
proach has become something of an industry standard for pricing
correlation sensitive products. FtD basket prices are quoted in terms
of the Gaussian correlation cf. Black Scholes implied vol.

Copula models will yield proces that are automatically consistent
with the prices and the term structures of the vanilla hedging in-
struments — the CDS.

We can demonstrate an equivalence between the Gaussian cop-
ula approach and multivariate extensions of the Merton firm value
(CreditMetrics,KMV) approaches.

Relatively straightforward; can easily alter multivariate dependence
structure; given numerical improvements above can price and hedge
in a trading environment.



Critique of the Gaussian Copula Model

e Copula models although a relatively sophisticated approach to the
pricing of default correlation products are probably not the final
solution; just a good first step.

e [ here are issues both in terms of the products and the modelling
approach used:

— We have only the credit default swaps to hedge two sources of
uncertainity: stochastic spread movements and default events.
There is therefore a lack of payoff replicability even in principle.

— The Li model does not incorporate spreads volatility.

— The Li model is not time homogeneous: prices of forward starting
baskets differ from their prices today.

— As set up copula models do not allow for default contagion.



Implementation Issues

For a short team deal, many Monte Carlo paths result in a zero
or constant pay-off.

Example:

Basket of 5 names.

Each 1% chance of default a year. Defaulting
independently for simplicity.

One year deal.

First to default swap, only 5% of paths are interesting.
5th to default swap, 1e-10 of paths are interesting.



Importance Sampling for 1st to default

Intuitively: want to sample more thoroughly in the regions where
defaults occur.

We want at least one default per path.
We want each asset to have equal probability of default.

We want first defaults reasonably distributed across time.
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Designing the importance density when /=1

« Make the /th asset default before T with probability:
1
(n+1)—1

oWhy? After / non defaults want all the remaining credits to
have an equal chance of default

e Pick a uniform u. If:

u; < 1o, map u; to a region where asset / defaults.
n — 1

w; > 1 map u; a region where asset / doesn’t default.

n+1-—1




Designing the importance density when /=1

1 Conditional Engineered Probabilities of defaults
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Designing the importance density
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First to Default occurs:
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We need to scale the contributions of these paths

First asset defaults: weight by np;

Doesn’t default: weight by 11_ £l

Suppose that we have dealt with the first (j-1) assets. The
unmassaged default probability now depends on Z:

W] < If and only if Z aZ]ZZ + a
1<J

However, as A is lower triangular we have

Tj— > ijj
1<J

Pj = 0.
JJ
And repeat as before.



Greeks
o The sensitivities to credit spreads are as important as price. It
is customary to “delta hedge” them.

e They can be computed naively by bumping credit spreads.
However, this results in very slow convergence.

e The reason is that when finite differencing on a path by path
basis, it is the paths where a default goes from being after
maturity to before it that result in the most change.

e A small number of paths giving a large amount of value causes
a large variance.

Value CDS =
/P(Dn(Tl, oy INDI(Q=rn) H(T—Dyp (11, ..., 7n)U(11,...,7N)]dT .. . dTN.

 When we differentiate the payoff w.r.t the hazard rates we get a 6
function.



Improving the Greeks

Importance sampling removes much of the problem - implicit
likelihood ratio.

Standard techniques are the likelihood ratio method and the
pathwise method. (Broadie-Glasserman).

Application of likelihood ratio method is straightforward.
Compute log of density and differentiate.

Pathwise method involves differentation of the pay-off. The
pay-off involves step functions so derivative contains delta
distributions.

Delta distributions can be integrated out analytically so
pathwise method can be applied.



The Likelihood Ratio Method

Value of an option:
v =EF(S)] = [ F($)u(s,0)ds
We can write the sensitivity w.r.t ©:
oV o
— = | F(S)—uy(S5,0)dS
o= | F(8)2-u(S,0)

No longer integrating against our Monte Carlo density! However, we
can reintroduce it:

v 8y(S,0) 1
5_/}?(5) s0 oy (S0 ds

— /F(S)% 09 1 (S, 0)(S, ) dS



The Likelihood Ratio Method for nth Default Swaps

eValue of the CDS:

/ P(Dp)(1—rpn)H(T—Dp) (1, ..., 75)dry ... dry.

eDifferentiate w.r.t. /th hazard rate :

oV T OY(7T1,...,TN)
= P(Dn)(1—rpn)H(1T-D dry...dTtn.
o = Jo POQ=r) HT—Da) =500y - dry

eApplying Broadie/Glasserman’s trick:

8V T alo ’o o o ,
ov _ / P(DW)(1—r)H(T—D)20IP L TN) rN)dTy ... dTN
Oh; 0 oh;



The Likelihood Ratio Method for nth Default Swaps

eThe calculation is straightforward for Gaussian copula
and flat hazard rates:

dlogy(ry,...,™)
Oh;

on; Ou; | 1
I —Ty

= —(p~'=1)yn;
where p is the correlation matrix and

= @7 () gzz =V 27re%¢_1(“i)2
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The Pathwise Method

Rewrite integral so dependence on parameter is in the pay-off

and not in the density i.e. We are now differentiating the payoff!

eSuppose we have

a digital option:

f(St) = H(Sr — K)

eDifferentiate and

we get a o function
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The Pathwise Method for nth Default Swaps

- We differentiate the discounted pay-off w.r.t A; (ignore the
spreads for the moment):

F(r1,...,78) = P(DN(71,. .., TN) [(1=rn) H(T'—=Dn (71, . .., 7N))]

OF _ OF 0
dh;  O7;Oh;
where if the jth asset is the nth to default

OF P

or = o (T =71 — )]

— P(Tj)[é(Tj —T)(1—rn) + H(Tj —T) %(1 — Tn)|t=7'j]

And zero otherwise.



The Pathwise Method for nth Default Swaps

The important terms are the second and third terms.

They correspond to:

a. default time of jth asset crosses final maturity of
the product.

b. Upon bumping the it/ hazard rate we alter which
asset is the nth to default

Both result in @ jump in value and hence a
Delta function in the derivative.



The Pathwise Method for nth Default Swaps
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« When differentiated these jumps in the payoff give rise to
delta functions !



The Pathwise Method for nth Default Swaps

The delta functions make a bumped Monte Carlo converge
very slowly. However, we can integrate these analytically
to obtain

OE 1
Oh,;

—P(T) /¢(T1, oy Tj—1, Ty Tjp1, -y TN)AT - o dTj_1dTj 41 - . . dTn.

As before we simply reintroduce it, the second term is now

(I¢(7-17 SRR 7Tj—17T7 Ti415--- 7TN))
Vp—1(T15- s Tj—1, Tj415- -+ > TN)
¢n_1(T1, . . 77-j—1a7-j-|—17 .« . ,TN)dTl .. .de_]_de+1 .. .d’Tn,

wherel =1 if ’ is the nth default time and zero otherwise.



Delta contributions from recovery rates

Two possible contributions: after sorting jth bond becomes
(n-1th or nth default.

'n—1 ™ 'n4-1
-@ o
Tn—1 Tn
Contribution 1
'n—1 ‘ l Tn 'n+1
Oam

Tn—1 T+ 5Tn—1

Contribution 2

'n—1 ™n

T

" S(rpo1 — T = n) — (1 = rn_1))P(D)]

‘ l 'n4-1

Tn + 0Th
6(rn — TH[((L —7rpq1) — (L —rn)) P(T)]
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Does delta-hedging make sense?

e Li model -- deterministic intensities
o Typically products are delta-hedged
e Compute sensitivity to hazard rate
e Hedge that sensitivity with individual CDS

e Instantaneously insensitive to credit spread moves

e Qutside the model hedging



The Investigation Methodology

e Price and parameter hedge (possibly with different frequen-
cies) the nth to default basket. We will use the Gaussian
copula model.

e Introduce spread volatility: simulate the real world evolution
of spreads. We will discuss some of the issues, but basically
by means of

1. Pure drift
2. Pure diffusion
3. Pure Jumps

e Analyse the terminal variability of the returns.



Hedging Algorithm

Parameter Hedging

e T wo sources of price variation that we must hedge against:

— Stochastic variation in spreads
— Default events




Parameter Hedging cont.




Algorithm
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e Plots of the values of the hedges, the hedgee and the residual
cash through the course of a hedging simulation, (constant spreads
through time). Product is first to default on a homogeneous bas-
ket of 5 names. The discontinuity in the 1 year point in the bank

account balance is due to receiving an upfront spread.




Hedging Simulations: Modelling Spreads.




Hedging Simulations: Modelling Spreads.

Actual Prob. of default Parametric form
Market quoted spread  tax, illiquidity, information



Sample Paths.
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e Sample evolutions of spreads for diffusive, mean reverting and jumpy
random walks. These sorts of evolutions are ‘“typical”’ of the spread
movements produced by our hedging simulator.



Results:P/L as a result of Drift in Spreads.
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e A comparison between the variability in income as a result of spreads
drifting up to a mean of 0.08 over a period of two years. We have
shown two different hedging frequencies here: one with a rehedge
every 3 weeks or so and the other extreme, hedging once every year.



P/L as a result of Drift in Spreads.

e Empirical spreads do drift systematically upwards/downwards
over a period of time. Spreads have blown out to 12% for
a number of significant firms post World Com/Sep. 11.

e Comparing hedging at a reasonable frequency with hedging
infrequently (every year !) certainly leads to a reduction in
the variance of the P/L in the no defaults case.

e Variability in P/L for the single default case is driven by the
time of default.



P/L assuming 1 default.
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e Assuming that the spreads of the assets alive in the basket do not alter on
default of an asset in the basket, we have plotted the P/L as a function
of time of default.

e Different lines — different spread volatilities. Clear that the P/L is prin-
cipally a function of time of default.



Results:P /L as a result of Spread Volatility.

e Li's copula model does not explicitly incorporate the spread
vol. Can the pricing and the hedging strategy, as dic-
tated by the copula model adequately hedge volatile spread
movements 7 Analysed P/L assuming that the spreads are
weakly mean reverting, with no jumps; we increase the log-
normal volatility of the spreads to see the effects on the
variance of the hedged portfolio.



Results:P/L as a result of Spread Volatility.
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e A plot of the density of the profit/loss generated by our hedging strategy,
for a first to default basket. The spreads in this case were taken to be
weakly mean reverting, with no jumps and a lognormal volatility of 60%.



Results:P/L as a result of Spread Volatility.
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e Density plot of the P/L generated by our hedging strategy, for a first
to default basket. Consider only the cases where there are no defaults.
Spreads are taken to be weakly mean reverting, with no jumps with log-
normal volatilities of 10%,20%,40% and 60%.



