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Summary. Asymmetry of a univariate continuous distribution is commonly described as
skewness. The well-known classical skewness coefficient is based on the first three moments
of the data set, and hence it is strongly affected by the presence of one or more outliers. In this
paper we propose several new measures of skewness which are more robust against outlying
values. Their properties are compared using both real and simulated data.

1 Introduction

Statistical models often assume symmetric distributions, and when the data are
asymmetric we try to apply a symmetrizing transformation first. The latter is not
always possible, however. Sometimes the asymmetry is an inherent factor. Asym-
metry is described by skewness. A symmetric distribution has zero skewness, an
asymmetric distribution with the largest tail to the right has positive skewness, and
a distribution with a longer left tail has negative skewness. To measure the skew-
ness of a univariate data set

�������
	����	�����������	����
sampled from a continuous

distribution one typically uses the classical skewness coefficient � � . It is defined as

� ������������� � �����!�
� �"�����!� ��#

�

where � � and � � denote the third and second empirical moments of the data. How-
ever, � � may be strongly affected by even a single outlier. Therefore, we will inves-
tigate several measures of skewness which are less sensitive to outlying values. We
introduce these measures and we discuss their properties in Section 2. In Section 3
we look at their performance at symmetric and asymmetric distributions. Their ro-
bustness towards outlying values is studied in Section 4. The limiting distribution of
these skewness measures is studied in Section 5. Finally, Section 6 contains some
conclusions and directions for further research.
$
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2 New Measures of Skewness

2.1 Definitions

We first investigate skewness measures based on certain quantiles of the data. This
is in analogy with the median which estimates the center of the data, and with the in-
terquartile range which estimates its scale in a robust way. Hinkley (1975) suggested
to use the following class of skewness measures

��� ����������	�
 ���� ����	�
 ������� �� ����������� (1)

where
��� ����������� �

is the
�

-th quantile of
���

. We will investigate two measures
that belong to this class. The quartile skewness corresponds with

� ���!� ���
in (1):

��� � ����	�
  !�"����	�
 �
�� ����	�
 �"����	�
 �!�
���	�
  !������	�
 �!�
and it is also known as the Bowley coefficient (Bowley, 1920; Moors et al., 1996).
Next, we will consider the octile skewness, which takes

� �#�!� �$���
in (1), yielding

% � � ����	�
 &! !������	�
 ���� ����	�
 ������	�
 � �!�����	�
 &! !�"����	�
 � �!� �

From these definitions it is clear that QS is less sensitive to outliers than OS. But on
the other hand, OS uses more information from the tails of the distribution and thus
will be more appropriate to detect asymmetry in the data. This will become apparent
in Sections 3 and 4.

By replacing some of the quantiles in (1) with actual data points, we get another
measure of skewness which we call medcouple. For all

	('�)� 	+*
let

, ����	-'��	+* � � ��	/. *!0 ����	�
 �
�� ����	�
 �"� 	/. ' 0 �	/. *!0 � 	/. ' 0
with

	/. ' 0 � 	/. *!0
the sorted arguments of

, �
. In the special case that

	1' � 	+* �#��	�
 �
,

we set , ����	-' �	+* ��� 23 4"5 � 687:9� 6 �;9�<� 68�:9
The medcouple is then defined as=?> �

med @BADC1EGFIH JKC1@�L , ����	-'��	+*�� �
Next, we also replace the median by an observation. Let

, �
be given by

, � ��	-' �	+* �	1M�� � ��	/. MN0 � 	/. *!0 �� ��	/. *!0 � 	/. ' 0 �	/. MN0 � 	/. ' 0
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where we assume
�
	G. ' 0 �	/. *!0 �	/. MN0 �

to be sorted in ascending order. In the special
case where

	/. ' 0 � 	/. MN0
we set

, � ��	-' �	+* �	1M�� ���
. We now define the medtriple as=�� �

med
'���*��(M , � ��	-'��	+*"�	1M�� �

Instead of taking the median over all couples or triples of data points, we can
also use a repeated median. In this way, we obtain two other estimators which are
computationally more complex. The repeated medcouple is defined as

�<=?> �
med

'
med @BADC1EGFIH JKC1@�L

or@�LNC1EGFIH JKC1@BA
, ����	-'��	+* �

and the repeated medtriple as

�<=�� �
med

'
med

*��� ' med
M	�
�� '� *�� , � ��	-'��	+* �	1M � �

The approach to define estimators based on pairs or triples of observations is not
new. In the location setting we have the Hodges-Lehmann estimator (Hodges and
Lehmann, 1963), given by

��� ���
med

'���* 	-' 5 	+*� �

As a robust measure of scale we mention the
� �

estimator (Rousseeuw and Croux,
1993) that is defined as the first quartile of the set of pairwise distances

�
	+*�� 	-'������ 6�D9����
and
	-'�� 	+* �"�

In simple regression the Theil-Sen estimator (Theil, 1950; Sen, 1968) and the re-
peated median line (Siegel, 1982) are based on all pairwise slopes through two data
points. Moreover, Rousseeuw and Hubert (1996) have constructed scale estimators
based on the vertical height of the triangle formed by three data points.

2.2 Mathematical and Statistical Properties

Let � denote any of the six skewness measures defined in Section 2.1, and
� �

a univariate sample from a continuous distribution. Then the following properties
hold:

Property 1. � is location and scale invariant, i.e.

� ���"��� 5 � ��� � �����!�
for any

� 7 �
and ���! � .

Property 2. If we invert a data set, its skewness is inverted as well:

� �I� ���!���?� � ����� � �
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Property 3. If
���

is symmetric around its median, then � ����� � ���
.

Properties 1 and 2 follow immediately from the definitions, and imply Prop-
erty 3. All of them express natural requirements of any skewness measure. It is also
straightforward to show that all new measures are bounded.

Property 4. � �����!� ��� �<� ���� �
Finally let us compare the robustness of the skewness measures towards con-

tamination. For this, we use the breakdown value ��� which roughly measures the
maximum proportion of outliers an estimator can resist without achieving its ex-
treme values (Rousseeuw and Leroy, 1987).

Table 1 lists the breakdown values of all the new estimators. We see that they all
have a positive breakdown value, ranging from 12.5% up to even 50%. The classical
skewness coefficient � � on the other hand is based on moments of the data set, and
thus it has zero breakdown value. To reduce space we do not include the proofs here.
The results for QS and OS are trivial. To obtain the breakdown values of MC, MT,
RMC and RMT one can use similar arguments as in Rousseeuw and Hubert (1996).
From these proofs it appears that breakdown occurs when all the outliers are placed
at the extreme side of the data set and when the distance between adjacent outliers
increases when we move from the innermost to the outermost one.

Note that we also could have considered other skewness measures from the
class (1). But here we see that, from the robustness point of view, we can only
compete with the other measures by choosing

�
around 25%.

Table 1. Breakdown value of the new skewness measures

estimator �	�
QS 25%
OS 12.5%
MC 25%
MT 20.6%
RMC 25%
RMT 50%

3 Performance at Non-contaminated Distributions

In this section we will compare the performance of � � and the six new estimators
on simulated data from a symmetric and from several skewed distributions. For this
we consider Tukey’s class of 
 -distributions (Hoaglin et al., 1985). When a random
variable � is gaussian distributed, then
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��� � ���
��� � � �



is said to follow a 
 -distribution � � with parameter 
 �  � . For 
 � �
we set� 		� � and thus we have zero skewness. For 
 �?�

we obtain the shifted lognormal
distribution. Negative resp. positive values of 
 yield left-tailed resp. right-tailed
distributions. Note that

�G�
�
has the same distribution as

���
�
so we can restrict

ourselves to 
� �
. In Figure 1 the density of the 
 -distribution is depicted for

several values of the parameter 
 .
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Fig. 1. Density of the � -distribution for �	����� � (full line), �	����� � (dotted line), and �	����� �
(dashed line).

First, we have generated 1000 samples of each
� � �B���

observations from � �
with 
 ranging from 0 to 2. The average estimated skewness obtained with QS, OS,
MC, MT, RMC and RMT versus the value of 
 is depicted in Figure 2. From this
figure the monotone relationship between the parameter of the population distribu-
tion and the estimated skewness is obvious. Moreover we see that MT, MC, and
RMT behave similarly, while QS and RMC give on average smaller and OS on av-
erage larger values for the skewness. This gap between the three groupes of curves
widens when 
 becomes larger.

Figure 3 shows the relationship between the parameter 
 and the average es-
timated classical skewness coefficient over 1000 samples of size

� � �B���
and� � �B�����

. Also here we observe a monotone relationship between 
 and � � . More-
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Fig. 2. Average of six skewness measures over 1000 samples of size � � � � � for several
values of � .

over it is interesting to see how both curves become more and more discrepant when
the skewness increases. This is due to the fact that samples of size 1000 are more
likely to contain very large values as 
 increases. Figure 3 thus shows how � � ex-
plodes in the presence of this kind of outliers. We will investigate this behaviour in
more detail in Section 4.

Let us now concentrate on the behaviour of the estimators at a symmetric distri-
bution. For this, we consider the simulation for 
 �?�

and
� � �B���

. In Table 2 we
have listed the average estimated skewness and the standard error of the different
estimators. We see that the average estimate is close to zero for all of them, and that
MT and RMT have the smallest variation. The classical skewness � � on the other
hand displays more variation. This is not surprising because of its greater range.
This behaviour appeared to be similar at the larger samples with

� �?�B�����
.

At right-tailed distributions we expect the estimated skewness to be positive.
Therefore we focus now on the previous simulations for distributions with 
 7 �

.
Tables 3 and 4 give the frequency of strictly positive values for all the skewness
measures for several values of 
 . We want this frequency to be close to 1. From the
two tables we conclude that the classical skewness � � , the medtriple MT and the
repeated medtriple RMT are the best estimators to detect small positive skewness.
The quartile skewness QS and the repeated medcouple RMC perform much worse
than the others.
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Fig. 3. Average of the classical skewness coefficient
���

over 1000 samples of size � � � � �
and � � � � � � for several values of � .

4 Performance Under Contamination

As mentioned before, the classical skewness � � can be highly influenced by a few
outliers. Let us first illustrate this on a real data set.

The speed of light data set (available at the Data and Story Library at http://
lib.stat.cmu.edu/DASL/) measures the time required for light to travel from
a laboratory to a mirror and back, over a total distance of 7400m. This data set con-
tains 66 observations. From the boxplot in Figure 4 it is clear that they are sampled
from a symmetric distribution. Moreover, there are two clear outliers. The skewness
estimates for this data set are given in Table 5. We see that � � is heavily influenced
by the outlying observations and that it suggests a left-tailed distribution. The QS
and OS are slightly positive, hence they are not attracted by the outliers and even
detect a very small right tail. The other estimators reflect very well the symmetry of
the regular data points.

Next, we have performed several simulations. As before, data sets of size
� ��B���

were drawn from a � � distribution with 
 varying between
�

and
�!� �

. For 
 ��!� �
the boxplots of the skewness estimates on 1000 random data sets are shown in

Figure 5. We see again that the distribution of � � has a long tail to the right, due to
samples containing points far in the tail of the distribution. For the other values of 

we obtained comparable results.
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Table 2. Average estimated skewness and standard error at the symmetric distribution ��� .

estimator ave st.error
� �

0.00089 0.0073
QS 0.00200 0.0040
OS 0.00111 0.0033
MC 0.00064 0.0033
MT 0.00081 0.0014
RMC 0.00168 0.0040
RMT 0.00006 0.0019

Table 3. Fraction of skewness estimates strictly positive for 1000 samples of � � � � � obser-
vations.

estimator � ����� � �	����� ���	����� � �	����� � � ����� ���	����� �
� �

0.879 0.991 0.999 1.000 1.000 1.000
QS 0.626 0.677 0.761 0.839 0.888 0.918
OS 0.718 0.845 0.946 0.979 0.997 0.998
MC 0.675 0.789 0.890 0.936 0.976 0.974
MT 0.840 0.973 0.999 1.000 1.000 1.000
RMC 0.625 0.680 0.759 0.846 0.895 0.922
RMT 0.738 0.894 0.969 0.994 0.999 0.999

Table 4. Fraction of skewness estimates strictly positive for 1000 samples of � � � � � �
observations.

estimator � ����� � � ����� ���	����� �
� �

1.000 1.000 1.000
QS 0.793 0.951 0.994
OS 0.957 0.999 1.000
MC 0.889 0.995 0.999
MT 1.000 1.000 1.000
RMC 0.795 0.950 0.994
RMT 1.000 1.000 1.000

Table 5. Skewness of the speed of light data.

� �
QS OS MC MT RMC RMT

-4.39 0.11 0.09 0 0 0 0
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Fig. 4. Boxplot of the speed of light data.
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Fig. 5. Boxplots of skewness estimates on 1000 random samples of � � � � � observations
drawn from � � �

� .

Then we have replaced 5% of the data (obtained with 
 � �!� �
) with outliers

spread out far in the right tail of the samples. The boxplots of the estimates on these
contaminated samples are shown in Figure 6. We see that the median value and
the dispersion of � � have increased considerably compared to the uncontaminated
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situation in Figure 5 (notice the different scales of the vertical axes). On the other
hand, the median value and the dispersion of the other estimators have changed very
little.
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Fig. 6. Boxplots of skewness estimates on 1000 random samples of � � � � � observations
drawn from � � �

� with 5% contamination.

To compare the sensitivity of the six new estimators QS, OS, MC, MT, RMC and
RMT in more detail, we have plotted in Figure 7 for each measure and for several
values of 
 the difference between the average estimated value at the contaminated
and at the original data sets. From this figure it is seen that with a contamination of���

RMC and QS are less influenced than MC, OS and RMT, while MT is the most
influenced by a small fraction of contamination. The differences between the mea-
sures remain quite stable when we vary the skewness parameter 
 of the underlying
distribution.

Next, we have repeated the simulation with 15% of contamination. The corre-
sponding sensitivity curves are shown in Figure 8. Compared to Figure 7 we see
that QS, RMC, RMT and MT behave approximately the same with respect to each
other. The medcouple MC shows somewhat more sensitivity and comes close to
RMT. But the largest change is due to the octile skewness OS which is clearly heav-
ily influenced by the outlying values. This is caused by its low breakdown value of
only 12.5%.
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Fig. 7. Difference between average skewness estimate at contaminated and at uncontaminated
data, for different values of � and 5% contamination.

Finally we were interested to see how the different skewness measures react
when contamination is added in the right tail of a symmetric distribution. For this
we have made boxplots of the estimated skewness measures on 1000 samples from
� 	 with 5% contamination (Figure 9). Here, we see that MC, RMC, QS and OS
are the most robust estimators, while MT and RMT very often estimate positive
skewness. As in Figure 6 the classical measure � � always yielded very large values
(with median 5.05) and was therefore omitted from this plot.

5 Limiting Distributions

To study the limiting distribution of the different estimators, we have made normal
QQ-plots of the estimated skewness based on samples of size

� � �B�����
from � 	

and � � (see Figure 10 to Figure 15). The QQ-plot of the RMT could not be made
due to its computational complexity.

In Moors et al. (1996) it is shown that � � , QS and similarly OS are asymptotically
normal distributed. Figure 10 shows that the rate of convergence of � � is very slow
at asymmetric distributions, whereas QS (Figure 11) and OS (Figure 12) converge
much faster. For the other estimators the limiting distribution is still unknown, but
Figures 13, 14 and 15 suggest that normality is indeed satisfied and that it is reached
at a faster rate than for � � .
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Fig. 8. Difference between average skewness estimate at contaminated and at uncontaminated
data, for different values of � and 15% contamination.

6 Conclusions

In this paper we have proposed several new measures of skewness that are not based
on moments of the data. Therefore they are not as vulnerable towards outliers as the
classical skewness � � .

When we compare the performance of these measures at uncontaminated sym-
metric and asymmetric distributions, our preference goes to MT, RMT and � � fol-
lowed by OS and MC. The QS and RMC measures on the other hand do not detect
asymmetry adequately.

At contaminated data, we see that � � , MT and RMT on average give no precise
estimates, and that MC outperforms OS.

The medcouple MC is thus the overall winner. With a naive algorithm MC can
be computed in O

��� � �
time. This is still reasonable compared to the O

��� � � compu-
tation of MT and RMT, but it is too slow for large data sets. Therefore we will focus
our further research on constructing a faster algorithm for MC. In the meantime, we
recommend to use the OS estimator as a faster alternative to MC.

Apart from these computational aspects, we will also study the influence func-
tion and limiting distribution of the medcouple.
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Fig. 9. Boxplots of skewness estimates on 1000 random samples of � � � � � observations
drawn from � � with 5% contamination.
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