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Abstract

This paper examines the implications of multivariate stochastic volatility
on efficient portfolio choice. Out-of-sample forecasts and confidence bounds
are generated for the efficient frontier, optimal weights, and expected Sharpe
ratios, using stochastic time-varying covariance matrix estimates. Covariance
forecasts are generated using a multivariate stochastic volatility (SVOL) model
introduced by Philipov and Glickman (2002). This new model provides in-
creased flexibility, avoids common estimation constraints, and is feasible in un-
constrained form for higher dimensions. Model parameter estimates show time
variation both in the stochastic covariances and in the correlations implied from
them. Correlations and volatilities move synchronously through time suggest-
ing the effect of common market forces. Optimal weight estimates, however,
exhibit limited time variation which can be attributed to the synchronous be-
havior of volatilities and correlations. Confidence bounds on the stochastic
efficient frontiers derived from the multivariate SVOL forecasts appear better
behaved than previously derived analytical bounds. Portfolios based on SVOL
covariance estimates outperform portfolios using alternative covariance mod-
els. Out-of-sample portfolio results are compared using the new analysis tools
offered by the SVOL model.
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1 Introduction

Multivariate stochastic volatility models have emerged as a promising response to

the need in portfolio management for accurate time-varying covariance matrix esti-

mates. This paper examines the implications of time-varying stochastic covariances

for Markowitz portfolio efficiency. Optimal portfolio weights are obtained using

covariance forecasts generated by implementing a multivariate stochastic volatility

(SVOL) model developed by Philipov and Glickman (2002). In this model, covari-

ance matrices vary through time driven by Wishart processes. Model parameters are

estimated using Bayesian techniques. These estimation methods generate abundant

information used here to establish confidence regions for the mean-variance set, as

well as to improve and evaluate portoflio performance.

The literature on Markowitz portfolio optimization celebrates an over-forty-year

history. It has been readily embraced by academics as the theoretically sound ap-

proach to managing financial portfolios, but only slowly and cautiously adopted by

practitioners due to a number of reasons. First, mean-variance (MV) optimization

tends to maximize the effects of errors in the inputs (Michaud (1989)). Michaud

points out that the MV optimizer significantly overweights securities with large esti-

mated returns, negative correlations and small variances. Second, MV optimization

is highly sensitive to changes in the mean forecasts (Best and Grauer (1991), Chopra

and Ziemba (1993)), and, to a lesser but significant degree, to changes in covariances

(Chopra and Ziemba (1993), Pojarliev and Polasek (2001)). Furthemore, the relative

importance of mean or variance misspecifications depends on the investor’s risk toler-

ance. Third, MV optimization commonly uses point estimates of means and variances

as inputs and produces point estimates of optimal portfolio weights as output. Due

to the high sensitivity of the process these point estimates may be unreliable.
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Research on portfolio optimization has gone a long way to address these issues.

On a practical level, MV optimization has been ”tamed” by using constraints and

carefully selected benchmarks. Tracking error minimization within narrow bounds

of a benchmark is a widespread approach in institutional investing. In a critique of

this approach, Roll (1992) shows that managers pursuing tracking error optimization

will intentionally fail to produce MV efficient portfolios. Recent studies on the merits

of the tracking error optimization approach include Jorion (2002a), Jorion (2002b),

Rudolf, Wolter, and Zimmermann (1999), Ammann and Zimmermann (2001) etc.

Other ways to reduce MV sensitivity are using Bayes-Stein shrinkage estimators (Jo-

rion (1986)), reducing dimensionality through the application of factor models (Jorion

(1991), Jacquier and Marcus (2001)), or using a newly proposed resampled efficiency

approach (Michaud (1998), Fletcher and Hillier (2001)). Jagannathan and Ma (2002)

re-examine constrained optimization and relate no-short-sale constraints to shrinkages

and factor covariance estimators.

Another area of research has taken parameter uncertainty as given and has pro-

posed adjustments to the MV weights that incorporate estimation risk. For example,

Barry (1974) and Chen and Brown (1983) evaluate estimation risk in portfolio choice

using a Bayesian framework, while Balduzzi and Liu (2001) and Horst, de Roon,

and Werker (2002) take a classical utility-based approach in which parameter uncer-

tainty increases utility costs and translates into an adjusted risk aversion parameter

in the optimization setup. These approaches are concerned mostly with generating

improved estimates of the MV efficient set rather than examining the informational

content of the point estimates produced by the MV optimizer.

This paper claims closest association with the volume of research on the in-

formational content of MV optimization, which aims to provide significance inter-
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vals and sampling error estimates of optimal portfolio weights. For example, Jobson

and Korkie (1989) offer a review of multivariate significance tests of MV efficiency.

Britten-Jones (1999) proposes an exact procedure for testing hypotheses about op-

timal weights. Jobson (1991) constructs analytical confidence regions for the MV

efficient set and formulates an F -test to generate sample acceptance regions. Kan-

del and Stambaugh (1989) link tests of MV efficiency with asset pricing tests. These

analytical results, however, apply only to the case of unconstrained optimization. Un-

constrained optimization is almost never used by financial managers because it can

produce quite unrealistic short sale situations. In the case of constrained optimiza-

tion, researchers have employed Monte Carlo simulation methods or bootstrapping

techniques to infer the sample properties of optimal portfolio weights. The current

study makes a contribution to these sampling approaches by introducing conditioning

information and stochastic time variation in the covariance parameters.

This paper studies the sample properties of optimal weights with emphasis on

constructing confidence regions and testing hypotheses. The sample properties of

the optimal weights are related to asymptotic results derived by Jobson and Korkie

(1980, 1989) and Jobson (1991) as well as to simulation results based on distribu-

tional properties of the returns derived from the data sample. In the current study,

model forecasts from the PG SVOL model are used in a dynamic constrained MV op-

timization to obtain stochastic efficient frontiers. It uses unconditional mean return

estimates based on the data sample. Using fixed point estimates of mean returns with-

out conditioning information helps isolate the effect of stochastic covariances. These

covariance effects are especially valid for the global minimum variance portfolio whose

construction does not rely on mean estimates.

Multivariate models of time varying volatility have two notable drawbacks that
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have prevented them from enjoying the success of their univariate counterparts. First,

multivariate models are extremely unparsimonious. This problem grows exponentially

with model dimensionality. Second, multivariate models bring a significant increase in

the complexity of the estimation of their parameters which is in large part due to the

lack of parsimony. Hence multivariate models are either very tightly constrained or

are unmanageable due to the huge number of parameters. For the multivariate SVOL

model of Philipov and Glickman (2002), however, the new model formulation and the

Bayesian methodology implemented for estimating model parameters manage to avoid

common constraints placed solely for estimation purposes (e.g. diagonal covariance

parameters or constant correlation structure), making the model feasible for higher

dimensions (e.g. a 12 variate model with 740 time observations). In addition, the

model provides improved flexibility and a seamless link to univariate space: the PG

modeling framework extends naturally from scalar variances to matrix-covariances

without changing the general form of the model.

Traditional models of multivariate SVOL have been studied by Harvey, Ruiz,

and Shephard (1994), Mahieu and Schotman (1994), Jacquier, Polson, and Rossi

(1995), and Shephard (1996). These traditional models have arisen as extensions of

successful univariate models, specifying separate log-normal autoregressive processes

for the variances. The variance processes in these models are usually tied together

by a constant correlations structure, creating models of changing variances rather

than changing correlation. In this respect, even though traditional multivariate mod-

els allow common trends and cycles in volatility, they do not allow covariances to

evolve over time independently of variances. The model implemented in this paper

can provide greater flexibility in comparison to traditional multivariate SVOL mod-

els, as it offers an unrestricted representation of changing variances, covariances or

correlations.
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The next section lays out the formulation of the Philipov and Glickman (2002)

multivariate SVOL model. Section 3 provides an overview of the analytics of MV

optimization and of the efficient frontier confidence regions derived in Jobson (1991).

The methodology for estimating the multivariate SVOL model, obtaining the covari-

ance forecasts, and computing the MV efficient sets based on them, is described in

section 4, which is followed in sections 5 and 6 by description and analysis of the data

and the results.

2 The Covariance Model

To estimate the covariance matrix parameter in the MV optimization, we use a new

general model for multivariate stochastic volatilities developed by Philipov and Glick-

man (2002). This general multivariate model is naturally linked to univariate space

in which a special case of the model has a close connection with traditional SVOL

models. The general model describes the evolution through time of a collection of k

correlated normally distributed asset returns. The covariance structure of this port-

folio is also dynamic and is determined by a stochastic process based on the Wishart

distribution:

yt | Σt ∼ N(0,Σt)

Σ−1
t | ν,St−1 ∼ Wishartk(ν,St−1) (1)

where ν and St are the degrees of freedom and the scale parameter of the Wishart

distribution. The vector yt represents ”surprises” over the expected returns for the

period, which are represented by returns series pre-whitened via an AR(1) filter

(Jacquier, Polson, and Rossi (1994)). Such a formulation, avoiding the estimation
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of a mean parameter within the model and directing focus solely on volatility, is

prevalent in the literature on stochastic volatility (See, for example: Jacquier, Pol-

son, and Rossi (1999, 1994) Harvey, Ruiz, and Shephard (1994), Jiang and van der

Sluis (2000), Pitt and Shephard (1999)). It is believed that there is little interaction

between the estimation of the mean and the variance term, with the exception of

variance-in-the-mean terms in GARCH-M type models. The role of the mean param-

eter diminishes with increase in data frequency and is non-existent in the limiting

continuous time case.

With a time-invariant covariance structure, the above model offers a traditional

representation of the behavior of multivariate normal returns. However, we augment

this setup by allowing time variation in the scale parameter of the Wishart distri-

bution. Let A be a positive definite parameter matrix that can be decomposed as

A =
(

A
1
2

)(

A
1
2

)′

, and d be a scalar parameter. We define the scale parameter of the

Wishart distribution in period t as a function of the covariance matrix in that period:

St =
1

ν

(

A
1
2

)

(

Σ−1
t

)d
(

A
1
2

)′

(2)

The quadratic expression for St ensures that it is symmetric positive definite. Time-

variation of the covariances is determined by this quadratic expression which, using

the properties of the Wishart distribution (see Gelman et al, 1995), leads to the

following conditional expectation of Σ−1
t :

E(Σ−1
t ) = v St−1 =

(

A
1
2

)

(

Σ−1
t−1

)d
(

A
1
2

)′

(3)

We specify the model in terms of the inverse covariance matrix to facilitate deriv-

ing the conditional posterior distributions of the parameter estimates in the Gibbs

sampler. Covariance matrices themselves follow the inverse-Wishart distribution. We
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can use the properties of the inverse-Wishart distribution to obtain the conditional

expectation of the covariance matrix at time t:

E(Σt) = (v − k − 1)−1 S−1
t−1 =

ν

v − k − 1

(

A− 1
2

)

(Σt−1)
d
(

A− 1
2

)′

(4)

where the parameters ν, d, andA are defined above. The parametersA and d play an

important role in determining the dynamic behavior of the return covariance struc-

ture. We would like to study how, on a multivariate level, those two parameters

determine stylized types of dynamic volatility behavior well described for univari-

ate series. Stylized volatility characteristics include mean reversion, long memory,

asymmetric relation to return innovations, etc. (see Engle and Patton (2001)).

The parameter A can be interpreted as a measure of intertemporal sensitivity.

This matrix parameter reveals how each element of the current period covariance ma-

trix depends on elements of the previous period covariance matrix. It is the parameter

that could in a large part determine mean reversion characteristics on a multivariate

level. For example, without restrictions on this matrix parameter, each asset vari-

ance, σ2
ii, would depend on the previous period variance of this asset’s return, as well

as on its covariances with all other assets. Thus a change in the volatility of one

asset would affect other assets’ volatilities. The interpretation of the intertemporal

variance relationships would actually be in terms of the inverse A (see conditional

expectation (4)). The elements of A−1 would also reveal the relative importance of

variances and covariances. A higher magnitude of the diagonal elements ofA−1 would

indicate greater influence of past variances compared to past covariances/correlations.

We are not able to completely separate the different effects, but we would like to ex-

amine curious situations in which low past correlations may have stronger impact on

variances than high correlations.
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While the matrix parameter A carries information about the intertemporal

covariance relationships elementwise, the scalar parameter d speaks about the overall

strength of these relationships. This parameter would in a large degree account for

the presence of long memory or persistence, a phenomenon described for univariate

series as today’s return having a large effect on the forecast variance many periods

in the future (Engle and Patton (2001)). Abundant evidence of pronounced long

memory of volatility has been observed while investigating univariate SVOL models

(Jacquier, Polson, and Rossi (1994, 1999), Shephard (1996)).

The persistence parameter d is theoretically bound between 0 and 1 (see Philipov

and Glickman (2002)). A low d which is close to zero would indicate a weak overall

effect of current volatility on future values, i.e. shocks in returns are ”forgotten” fast

- within a few subsequent periods. Values close to 1 indicate high persistence. The

case of d = 0 implies constant volatility. In this case the conditional expectation of

the volatility in time t is equal to the same value:

E(Σt) = (v − k − 1)−1 S−1
t−1 =

ν

v − k − 1

(

A− 1
2

)

(Σt−1)
0
(

A− 1
2

)′

(5)

=
ν

v − k − 1

(

A−1
)

(6)

A case in which d ≥ 1 implies a non-stationary volatility structure. The special case

when d = 1 and A = I corresponds to a simple matrix-variate random walk on the

inverse covariance matrix. In this case we obtain a scale parameter for the Wishart

process, St, equal to:

St =
1

v
Σ−1

t

which leads to a conditional mean equal to the inverse covariance matrix at time t:

E(Σ−1
t ) = v St−1 = Σ−1

t−1
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As long as the parameter A is a symmetric positive definite matrix, the param-

eter d is bounded between 0 and 1, and the shape (degrees of freedom) parameter, ν,

of the Wishart distribution, is greater than the number of variables in the model, we

have a well defined autoregressive stochastic process for the covariance matrices.

3 Markowitz MV Optimization

This section reviews the estimation of efficient frontiers in absolute space following the

classical Markowitz setup (Markowitz (1959)). TheN×1 vector of optimal weightsw∗

for a portfolio ofN risky returns is the result from the quadratic optimization problem:

min
w

w′Ωw (7)

subject to

w′µ = E

w′ι = 1

where w are portfolio weights, Ω is the covariance matrix of asset returns, µ is vector

of means, and ι is a vector of ones. Merton (1972) introduced the familiar efficient

set constants:

a = µ′Ω−1µ, b = µ′Ω−1ι, and c = ι′Ω−1ι (8)

which define the equations of the set of MV efficient portfolios:

σ2
p =

a− 2bµp + cµ2
p

ac− b2
, µp ≥

b

c
, and σp > 0 (9)
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where µp and σp are the optimal portfolio mean and variance. The above set of

equations define the upper right half of the hyperbola associated with the efficient

frontier. The equation for the whole hyperbola can be written as (following Jobson

(1991)):

H =
σ2
p − 1

c

a− b2

c

− (µ2
p − b

c
)2 = 0 (10)

In computing the efficient frontier, we use sample estimates of the mean return vector

and covariance matrix which form the estimates (unadjusted for sample bias) of the

efficient set constants in eq. (8):

â = r̄′S−1r̄, b̂ = r̄′S−1ι, and ĉ = ι′S−1ι (11)

Using the assumption that returns are multivariate normal and adjusting for small

sample bias, Jobson (1991) derives the unbiased maximum likelihood estimates of the

efficient set constants (eq. 8):

ã = T
T−1

â, b̃ = T
T−1

b̂, and c̃ = T
T−1

ĉ (12)

where T is the number of time observations. Furthermore, Jobson (1991) reviews

the distributional properties of the three statistics in the above equation and estab-

lishes that they are asymptotically independent. These results are used to derive an

approximate unbiased estimate of the hyperbola (eq 10):

Ĥ =
(

σ2
p − T−1

ĉ(T−N)

)(

T−N−1
T

(â− b̂2

ĉ
)− N−1

T

)

−
(

µp − b̂
ĉ

)2

+
1+â−

b̂2

ĉ
ĉ(T−N)

= 0 (13)

Through simulation Jobson (1991) is able to conclude that Ĥ is normally distributed

in large samples with estimate of the variance (up to an approximation and based on
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the independence assumption of the three statistics (12)):

V̂H =
2(â−

b̂2

ĉ
)2

ĉ2(T−N)
+

4(µp−
b̂
ĉ
)4

T (â−
b̂2

ĉ
)

+ 2
T−N

(µp − b̂
ĉ
)4 +

4(µp−
b̂
ĉ
)2

ĉ(T−N)
+

4(µp−
b̂
ĉ
)2(â−

b̂2

ĉ
)

ĉ(T−N)
(14)

where N is the number of data series. Using (13) and (14) we obtain equations for

the lower and upper bounds of the confidence interval for the hyperbola:

L̂BH = Ĥ − zα/2

√

V̂H = 0 (15)

ÛBH = Ĥ + zα/2

√

V̂H = 0 (16)

Solving equations (10), (15), and (16) provides estimates of the optimal portfolio

variance, σ2
p, along with confidence regions, conditional on specified values for mean

portfolio return, µp.

It should be noted that the above analytical results apply to MV optimization

which places no constraints on the optimal weights. Solutions to problems with no

short sale constraints and asset group bounds on optimal weights are obtained through

numerical quadratic optimization methods.

4 The Methodology

4.1 Estimating the parameters of the covariance model

All multivariate stochastic volatility models share a common feature: intractability

due to a very high degree of parameterization. Many of the traditional models have

constraints such as diagonal covariance matrices and constant correlations to deal
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with the problem of estimating model parameters. Even with these constraints, the

literature does not present applications of unconstrained SVOL models of high dimen-

sionality (e.g. five- and higher-dimensional models). The parameters of PG SVOL

model are estimated without the need for imposing constraints using a straightforward

Bayesian setup where the joint posterior distribution of the parameters, conditional

on the observed data, is proportional to the product of the joint prior distribution

and the likelihood function.

This section formulates the likelihood function, specifies the joint prior distribu-

tion of the parameters, and derives the joint posterior distribution. We then develop

MCMC algorithms within this Bayesian framework for sampling from the joint pos-

terior distribution. Markov Chain Monte Carlo Simulation allows sampling from the

full posterior distribution of all parameters. A special case of MCMC simulation are

the Gibbs sampler and the Metropolis-Hastings algorithm which we use to estimate

model parameters. A review of these standard MCMC methods can be found in

Gelfand and Smith (1990) and in Gelman, Carlin, Stern, and Rubin (1995). For a

detailed discussion of the methodology for the multivariate stochastic volatility model

see Philipov and Glickman (2002).

4.1.1 Likelihood Function

The data, yt, represent k filtered stock returns for a single period t following a

multivariate-k normal distribution with a mean vector of zeros and a covariance ma-

trix Σt. The normal density function for the data is:

p(yt | Σt) =
1

(2π)
k
2 |Σt|

1
2

exp

(

−1

2
yt

′Σ−1
t yt)

)

(17)
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The inverse of the covariance matrix follows a Wishart distribution with parameters

ν and St−1, whose density function is:

p(Σ−1
t |St−1, ν) =

|St−1|−
ν
2

∣

∣Σ−1
t

∣

∣

ν−k−1
2

2
νk
2 π

k(k−1)
4

k
∏

j=1

Γ
(

ν+j−1
2

)

exp

(

−1

2
tr

[

(

S
− 1

2
t−1

)

Σ−1
t

(

S
− 1

2
t−1

)′
])

(18)

where St =
1
ν

(

A
1
2

)

(

Σ−1
t

)d
(

A
1
2

)′

. This quadratic expression emphasizes the posi-

tive definiteness of the covariance matrix Σt.

Based on the specified distributions for the data and the volatility, an extended

multivariate SVOL model (1) with k stock returns and T time periods has the fol-

lowing likelihood function:

L(Σ−1,A, ν, d | y) =
T
∏

t=1

Wishk(Σ
−1
t | ν,St−1)N(yt | 0,Σt) = (19)

=

∣

∣

1
ν
A
∣

∣

− ν
2

2
νk
2 π

k(k−1)
4

k
∏

j=1

Γ
(

ν+j−1
2

)

T
∏

t=1

{

∣

∣

∣

(

Σ−1
t−1

)d
∣

∣

∣

− ν
2 ∣
∣Σ−1

t

∣

∣

ν−k−1
2 ×

× exp
(

−ν
2
tr
[

A−1
(

Σ−1
t−1

)−d
Σ−1

t

])

|Σt|−
1
2 exp

(

−1

2
yt

′Σ−1
t yt

)}

The term Σ−1 without a time subscript represents the collection of all inverse covari-

ance matrices, Σ−1
t , for time periods t = 1, ..., T . It can be regarded as a 3-D array

of T elements of size k × k.
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4.1.2 Choice of Prior Distributions

The prior distribution is the product of independent densities. It is necessary to

specify a prior distribution for the parameter set (A, d, ν). The following densities

are suggested for the three parameters, as part of their joint prior distribution:

• The densities in the prior and the posterior for the parameter matrix A are

determined in terms of its inverse for greater convenience. Therefore, for A−1

a Wishart density is used with a k × k scale matrix Q0 which is a positive

definite symmetric matrix, and can be expressed: Q0 =
(

Q
1/2
0

)(

Q
1/2
0

)′

. The

value assigned to Q0 will depend on expectations about the data. We suggest

that A−1 is centered on the identity matrix (Q0 = I), which by equation (3) in

the extended multivariate model results in a mean of Σ−1
t equal to the previous

period’s covariance matrix,
(

Σ−1
t−1

)d
. We also suggest a degrees of freedom

parameter γ0 = k + 1.

• For d a diffused density such as p(d) ∝ 1 may be used.

• For ν a gamma diffused density is suggested. Since ν has to be greater than

k, the dimension of the covariance matrix, the gamma density is shifted by k.

Therefore, it would be appropriate to specify that (ν−k) has a gamma density.

The prior for the parameters of the model would be product of the densities specified

above:

p(A−1, d, ν) = Wish(γ0,Q0)× p(d)×Gam(ν − k) (20)
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4.1.3 Posterior Sampling - Gibbs Sampler

By Bayes theorem, the joint posterior distribution of the parameter set (Σ−1,A−1, d, ν),

conditional on the data, is proportional to the product of the prior (20) and the like-

lihood (20):

p(Σ−1 ,A, ν, d | y) ∝ p(A−1, d, ν)× L(Σ−1,A, ν, d | y) = (21)

= Wish(γ0,Q0)p(d)Gam(ν − k)
T
∏

t=1

Wish(Σ−1
t | ν,St−1)N(yt | 0,Σt) =

= Wish(γ0,Q0)p(d)Gam(ν − k)×

× cT
T
∏

t=1

∣

∣

∣

(

Σ−1
t−1

)d
∣

∣

∣

− ν
2 ∣
∣Σ−1

t

∣

∣

ν−k
2 exp

(

−ν
2
tr[S−1Σ−1

t ]
)

exp

(

−1

2
yt

′Σ−1
t yt

)

To estimate the parameters of the model, it is necessary to sample all parameters at

once from this posterior distribution. Direct sampling from it, however, is not feasible,

in which case MCMC methods, specifically, the Gibbs sampler and the Metropolis

algorithm, are used to draw each parameter. The Gibbs sampler iteratively draws, in

sequence, each of the parameters over a large number of iterations from their condi-

tional posterior distribution, which, under broad regularity conditions, is equivalent

to drawing from the joint posterior distribution.

The conditional posterior distribution Σ−1
t in each time period involves the

volatility parameters of only the previous, current, and next periods: Σ−1
t−1, Σ

−1
t ,

and Σ−1
t+1. For periods t = 1, 2, ..., T − 1 the conditional posterior distribution is

proportional to the product:

p(Σ−1
t | rest) ∝ Wish(Σ−1

t | ν,St−1)×N(0,Σt)×Wish(Σ−1
t+1 | ν,St) (22)

Sampling from this conditional distribution involves use the Metropolis algorithm.
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The last period covariance matrix, Σ−1
T , does not depend on the next period’s volatil-

ity, and is found to follow a knownWishart distribution from which it can be sampled

directly.

For the parameter A, using the conditional distribution of the inverse leads to a

convenient result for sampling. The conditional distribution for A−1 that is a product

of a Wishart prior and a Wishart likelihood, and is also a Wishart distribution,

allowing direct sampling.

The parameters d and ν are both scalars. They can be sampled by discretizing a

range of values and drawing from the discretized conditional posterior mass functions.

4.2 Computing the efficient frontiers under stochastic covari-

ances

To compute the efficient frontiers we draw J covariance forecasts from their posterior

distribution, where J is the size of the posterior sample:

Σ̂
(j)
T+1 ∼ inv-Wishart(ν,S

(j)
T ), j = 1, . . . , J (23)

An unconditional sample mean vector, µ, and the covariance forecast, Σ̂
(j)
T+1, are

the inputs for a constrained quadratic optimization problem (under no short sales

constraints):
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min
w

w(j)′Σ̂
(j)
T+1w

(j) j = 1, . . . , J (24)

subject to

w(j)′µ = E

w(j)′ι = 1

w(j) ≥ 0

Since we are using the same unconditional mean estimate, the differences in the sets

of weights, w(j), stem from the different covariance forecasts and show the marginal

covariance effects on the optimal portfolio composition.

4.3 Traditional Monte Carlo approach to MV optimization

Sampling error estimates can be derived using simulation experiments similar to the

one described in Jobson (1991) and Jobson and Korkie (1980). Since analytical

approaches are not applicable to cases of constrained MV optimization, Monte Carlo

simulation methods can be used to shed light on the informational content of optimal

portfolio weights.

In a Monte Carlo simulation experiment, the population mean vector, µ, and

covariance matrix, Σ, are computed for the set of assets in the MV optimization.

Under the assumption of multivariate normal returns, a large number J of samples

of size T are drawn from the distribution:

µ(j) ∼ Nk(µ,Σ) j = 1, . . . , J (25)
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and are used as inputs in the constrained optimization problem (24), producing J

sets of optimal weights. The sample moments of the simulated weights can be used

for diagnostics, hypotheses testing, and comparisons with analytical results.

5 Data

The data comprise value-weighted monthly return series of 5 industry portfolios from

the 200112 CRSP database. These 5 portfolios are composed of stocks traded on the

NYSE, AMEX, and NASDAQ. Each NYSE, AMEX, and NASDAQ stock is assigned

to an industry portfolio at the end of June of each year based on its four-digit SIC

code. The extracted and prepared data series can be conveniently downloaded from

prof. French’s web site (http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/).

The same set of data has been used by Jostova and Philipov (2002) in the analysis of a

time-varying stochastic beta CAPM model. Table 1 provides descriptive information

about the 5 return series while Figure (1) visualizes the return dynamics over the 20

year in-sample period from Jan. 1972 to Dec. 1991.

The number of portfolios involved in an MV optimization study is an important

issue. The selection in this study of a sample of 5 returns series was influenced by

several considerations. The current sample of 5 series is not a constraint of the SVOL

model used in this study, as it has been tested for larger datasets. A universe of 5

assest is modest by practical standards. Yet it is representative of a common practice

of institutional investors to optimize portfolios with respect to a small number of

large asset classes. The specific sample size in this study provides a balanced tradeoff

between the ability to facilitate the presentation of results and the practical range of

the proposed model applications.
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6 Results

Several sets of results are presented in this section. The initial estimates of the SVOL

model use a data sample from January 1972 to December 1992. The in-sample period

is shifted and the Gibbs sampler is re-run to obtain new estimates and forecasts for

the next period. The out-of-sample analysis consists of 120 monthly periods from

January 1992 to December 2001. This section begins with a summary of in-sample

results from estimating the parameters of the multivariate SVOL model. Then follow

results from employing out-of-sample SVOL forecasts in a MV optimization problem.

These are compared to analytical results in several studies by Jobson and Korkie,

as well as to traditional Monte Carlo analysis results. Finally, focus is shifted to

global minimum variance portfolios and the effect of stochastic volatility on MV

optimization. The questions that this analysis aims to answer are: could time-varying

stochastic covariances bring useful information in MV optimal weights estimation,

the estimation of optimal portfolio return forecasts and for expected Sharpe ratios;

would we be able to construct useful ex-ante bounds on future realized Sharpe ratios,

especially, in the case of constrained portfolio optimization in which analytical results

may not be derived?

6.1 Covariance Estimation Results

The in-sample SVOL covariance estimates display significant time-variability. Figure

2 illustrates the mean and 5 and 95 percent confidence bounds of standard deviations

of the five industries obtained from the Gibbs posterior sample of covariance matrices.

Figure 2 also shows the values of the ordinary sample standard deviations, represented

by straight horizontal lines. The standard deviations in Figure 2 are ordered by mag-
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nitude, from high to low, as follows: (1) Retail, (2) Finance, (3) Manufacturing, (4)

Other, and (5) Utilities. Note that even though the parameter estimates vary signif-

icantly through time, changing by more than 50% in certain periods, they preserve

their magnitude rank, evolving through time in parallel movements that reveal the

influence of common driving factors.

In-sample correlation estimates were backed out of the estimated SVOL co-

variance matrices. Figure 3 displays the 10 pair-wise mean correlations (first sec-

tion), and the five data series of returns (second section). The pair-wise correlations

can be ranked from high to low as follows: (1) Other-Manufacturing. (2) Retail-

Manufacturing, (3) Finance-Manufacturing, (4) Other-Finance, (5) Finance-Retail,

(6) Other-Retail, (7) Finance-Utilities, (8) Other-Utilities, (9) Utilities-Manufacturing,

and (10) Retail-Utilities. Lower values of pairwise correlations display significantly

higher time variability than high correlation estimates. We can also observe evidence

of the correlations-breakdown phenomenon documented in previous research (Longin

and Solnik (2001); Jacquier and Marcus (2001)). Longin and Solnik (2001), for exam-

ple, take extreme return outcomes and observe highly increased asset correlations in

such periods which diminish diversification benefits. In contrast to this extreme out-

come approach, the current time-varying volatility model preserves time continuity

and provides a new view-angle at correlations behavior in severe market movements.

It is also interesting to observe that the correlation pairs preserve their ranking over

the 240 in-sample periods, especially for lower correlations. This evidence supports

the proposition in Jacquier and Marcus (2001) that correlations are driven by com-

mon market forces. Such synchronous correlations behavior could also explain the

behavior of the optimal weights discussed later in the section.
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6.2 Covariance forecasts

For every period t, the Gibbs sampler provides a posterior sample of J covariance

matrices. Using a posterior sample size of J = 2000, we simulate a forecast covariance

matrix for each of the J Gibbs sampler draws of the last period covariance matrix

Σ
(j)
T , j = 1, . . . , J , according to the model:

Σ̂
(j)
T+1 ∼ inv-Wish(ν,S

(j)
T ) j = 1, . . . , J (26)

where

S
(j)
T = (A(j))

1
2 (Σ

−1 (j)
T )d(A(j))

1

2
(27)

Figure 4 shows sample draw sequences of standard deviation forecasts from the

predictive posterior distribution for a single period (January 1992). Also shown are

histograms of the draw sequences, which exhibits skewness similar to the univariate

case in which volatilities are usually described to follow a χ2 distribution. The white

horizontal line represents the predictive posterior mean forecast. The right-hand

tail of the predictive posterior density is extended allowing for large volatility values

of the forecasts. Such large values can push the bounds on the volatility forecasts

upward allowing for events that have been described as extremely low probability

(e.g. the concurrence of events that brought down LTCM, see Jorion (1999)) to be

considered reasonably probable. The average standard deviation forecasts for all 120

out-of-sample monthly periods from January 1992 to December 2001 are depicted in

Figure 5. We can observe that the forecasts preserve their ranking. Exceptions are

Manufacturing and Other, whose estimates are close to each other.

21



6.3 Optimal portfolio results

The optimal weights of the minimum variance portfolio under no-short-sale constraint

are computed using the draw sequence of SVOL forecasts for January 1992 (see Figure

4) as inputs in the MV optimizer. Retail and Finance have the lowest weights in the

minimum variance portfolio. These two return series have the highest unconditional

and conditional variances (see Table 1 and Figure 2). Their correlations with the

other series are in the mid-range. Utilities are the most heavily weighted. They have

the lowest unconditional volatility and among the lowest pair-wise correlations with

the rest of the industries.

The first section in Figure 6 shows the set of all efficient frontiers based on

the draw sequence of 2000 covariance forecasts for January 1992. The MV optimizer

computes all 2000 frontiers using the same unconditional mean return vector. The

solid line represents the mean efficient frontier based on mean standard deviation for

each level of return. The dashed lines are the 95th and the 5th percentile bounds.

The percentile bounds are computed separately for every level of return and do not

necessarily represent portfolios on the same frontier. This point is illustrated in the

second section of the graph. The two dashed lines contain minimum variance portfo-

lios which are in the 5th and 95th percentiles. However, other portfolios along these

frontiers are far from the two bounds. This graph provides evidence that the stochas-

tic frontiers are not parallel even though optimal portfolios are based on exactly the

same set of assets.

In Figure 7, the stochastic frontier bounds for January 1992 are compared to

the analytical confidence bounds derived in Jobson (1991). The analytical bounds

widen considerably with the increase in expected optimal portfolio returns. The 95th

percentile analytical bound is inverted and includes high probability outcomes of
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portfolios which dominate all others and contradict the efficient set framework. The

stochastic frontier bounds are well-behaved in all of the different period samples. For

this particular sample the stochastic bounds are ±1% around the mean measured in

monthly standard deviation values.

Figure 8 compares the stochastic frontier bounds with bounds obtained through

a traditional Monte Carlo simulation approach. This approach involves generating

2000 samples of data from a multivariate normal distribution using the ordinary

sample mean vector and covariance matrix as parameters. The covariance parameters

of the generated data sets are used as inputs in the MV optimizer. These are estimates

of the unconditional covariance matrix. The fixed mean vector used to obtain the

SVOL efficient frontiers was also used to produce the MC-simulated frontier results.

The unconditional bounds obtained through traditional MC simulation are tighter.

The large difference in the sizes of the two sets of bounds speaks of the effect of

time-variability of the SVOL forecasts.

Figure 9 shows the five sets of forecasted optimal weights for the minimum

variance portfolio over the out-of-sample period from January 1992 to December

2001. The mean weights do not exhibit notable time variation, despite the variation

in covariance forecasts. This lack of time variation can be explained by the fact the

although variances and correlations vary though time, they preserve their ranking

(see Figure 3). The percentile bounds on the weights, however, show significantly

greater variability for the assets with smaller weights. In addition, if we look at the

samples of optimal weights for a single period, we observe very high sensitivity of

the weights with respect to the covariance inputs, which is in line with the results

of Best and Grauer (1991) and Chopra and Ziemba (1993). Figure 12 plots the

point estimates of minimum-variance weights for the out-of-sample periods based
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on covariance forecasts from three alternative approaches: (1) the ordinary sample

covariance matrix based on a moving sample window (dot-dashed line), and (2) a

variant of Engle’s dynamic conditional correlation (DCC) model. The alternatively

computed sets of weights, especially Engle’s DCC model weights, exhibit markedly

different behavior. In general, these weights underweight more significantly Retail

and Fiance. DCC weights have significantly higher time-variation that can be largely

attributed to more independent movement of covariance forecasts.

Figure 10 displays a plot and a histogram of the sample of Sharpe ratio forecasts

for January 1992, along with 5 and 95 percent bounds. The low autocorrelation in

the obtained sequence of Sharpe ratio forecasts reveals a high degree of efficiency in

the estimates. Without loss of generality, the risk free rate is assumed zero. The

Sharpe ratios are based on the expected returns and standard deviations of the op-

timal minimum variance portfolios based on the SVOL forecasts for the period (see

Figure 6). The histogram shows a posterior distribution of the Sharpe ratios that is

symmetric and bell-shaped.

Figure 11 plots the mean ex-ante Sharpe ratios of the minimum variance port-

folio over the 120 out-of-sample periods from January 1992 to December 2001, along

with the 5th and 95th percentile. The percentile bounds can provide important infor-

mation on the uncertainty of the forecasts. The bounds are wider for higher expected

Sharpe ratios, conveying that higher performing portfolios should carry higher ad-

justments for uncertainty.
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6.4 Out-of-sample performance

The above results show abilities of the SVOL model to expand the informational

content of the MV optimizer. An optimization study like this, however, carries the

indispensable question: does the model improve portfolio performance? The perfor-

mance of stochastic covariances is benchmarked to three alternative approaches to

estimating covariance parameters: (1) forecasts based on the ordinary sample covari-

ance matrix of a moving sample window of monthly observations, (2) a variant of the

Dynamic Conditional Correlations model of Engle (2002), and (3) an index model for

time-varying covariances of the type proposed in Jacquier and Marcus (2001).

The dynamic conditional correlations (DCC) model was introduced by Engle

(2002) and classified by him as a new class of multivariate GARCH estimators which

can be best viewed as a generalization of the constant conditional correlation estima-

tor of Bollerslev (1990) . The model is formulated as:

Ht = DtRtDt Dt = diag(
√

hi,t) (28)

The model uses a covariance structure that combines time-varying variances and time-

varying correlations structure. Time-varying volatilities are modeled using univariate

GARCH(1,1) processes, while time-varying correlations are modeled using exponen-

tially smoothed standardized GARCH(1,1) residuals.

The index model decomposes the covariance matrix into systematic and idiosyn-

cratic components. The systematic component is a quadratic form product of factor

sensitivies and the factor volatility.

Σt = bσ
2
m,tb

′ +Ω (29)
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All time variation in this index model is driven by the scalar factor volatility. The

constant factor sensitivities and the idiosyncratic risk are estimated as parameters

of an OLS regression model using the full sample of high frequency data. The mar-

ket volatility is estimated using high frequency data of very recent periods (in this

study, the last 60 days). The covariance estimate then is adjusted to reflect monthly

volatilities.

The out-of-sample minimum variance weights for the three alternative approaches

are shown in Figure 12. With the exception of the moving average results, the weights

from the DCC and the factor models are significantly time-varying. In the case of the

DCC model, this time variation can be attributed to the fact that asset variances do

not preserve their rank, since they are modeled as separate GARCH(1,1) processes

producing independent forecasts. In the case of the factor model, variances preserve

rank. However, pronounced differences in betas and wide variation of market volatil-

ity set variance forecasts so much apart as to force the optimizer to load all weight

on one asset, ignoring the correlation structure. For example, the Utilities portfolio

has a beta of 0.6, much smaller than other sensitivities. The small beta appears to

lead to a volatility forecast much lower than the rest. We observe that almost in half

of the out-of-sample periods the Utilities portfolio has unit weight.

Figure 14 illustrates a particular way of representing out-of-sample Sharpe ratios

in the context of the forecasts produced by the SVOL model. For each month of the

second half of the out-of-sample period, Figure 14 displays out-of-sample Sharpe ratios

based on a moving window of the preceding 60 months. We observe that the SVOL

forecast with their 5% and 95% bounds are able to capture the realized out-of-sample

Sharpe ratios. Another interesting observation is the significant month-to-month

variation in those Sharpe ratios, not typical for moving average series. Such variation
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speaks of large swings in actual monthly returns.

The overall performance of minimum variance portfolios over the whole out-of-

sample period is reported in Table 2. This table compares realized Sharpe ratios for

the full out-of-sample period generated using the four alternative covariance mod-

els: (1) the ordinary sample covariance matrix based on a moving sample window,

(2) a variant of Engle’s dynamic conditional correlation (DCC) model, (3) an index

model, and (4) the multivariate SVOL model. The reported mean returns, standard

deviations and realized Sharpe ratios of actual returns cover the out-of-sample period

from January 1992 to December 2001. We notice that the SVOL model generates

the minimum variance portfolio with smallest standard deviation and highest out-of-

sample realized Sharpe ratio. Table 2 also reports the average of the 5% and 95%

ex-ante bounds on the monthly Sharpe ratio forecasts. The realized out-of-sample

Sharpe ratios fall within these bounds. In addition, Table 2 provides standard errors

for all performance statistics. These standard errors have been computed using GMM

and the delta method. In the estimation of sample means and variances, the GMM

methodology provides their covariance matrix as standard output. The delta method

is used to compute the standard error of the Sharpe ratio, which is a non-linear func-

tion of the two sample statistics. The delta method specifies that if we have a vector

of estimated parameters, θ̂, which are asymptotically normally distributed:

√

(T )(θ̂ − θ0) ∼ N(0,Vθ) (30)

then a function of θ follows a normal distibution with parameters:

√

(T )(f(θ̂)− f(θ0)) ∼ N(0,Vf ) (31)
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where

Vf =
∂f

∂θ

′

Vθ
∂f

∂θ
(32)

Using the above results, we obtain the Sharpe ratio’s standard error:

θ =





µ

σ2



 , f(θ) =
µ√
σ2
,

∂f

∂θ
=





1
σ

- µ
2σ3





SESR =
[

1
σ

- µ
2σ3

]

×





v2
µ vµ,σ2

vµ,σ2 v2
σ2



×





1
σ

- µ
2σ3





Table 2 also shows confidence intervals for the SVOL statistics. In each of the

months of the out-of-sample period, the optimization process generates 2000 sets of

optimal weights based on the SVOL forecasts. The actual investment strategy is the

mean vector of optimal weights. All other sets of weights are treated as potential

investment paths. By summarizing those potential investment strategies at the end

of the out-of-sample period, we obtain the 5% and 95% bounds to form the confidence

intervals for the statistics. These SVOL confidence intervals are tighter than the ones

obtained by the GMM and the delta method.

7 Conclusion

This paper presents an approach to examining the informational content of Markowitz

efficient portfolios using a general multivariate stochastic volatility model. The paper

focuses exclusively on the effect of stochastic covariances on MV optimization. Even

though the results in this paper were obtained using a very general specification of a

multivariate SVOL model, they provided useful insights into the behavior of volatili-
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ties and correlations, and the way this behavior can affect optimal portfolio weights.

For example, keeping expected means constant, a well observed time variation in

correlations and volatilities may not necessarily lead to markedly time-varying opti-

mal weights. A common factor driving volatilities and correlations can preserve their

ranking and reduce time-variation in optimal weights.

The multivariate SVOL model has a flexible formulation which allows easy im-

positions of constraints. One set of useful constraints can impose a factor structure

for the model. Such factor structure gives opportunities for providing richer con-

ditioning information in estimating the model parameters and for testing a wider

range of financial hypotheses. Second, a factor structure in the SVOL model will

incorporate conditioning information about expected returns, a piece which could

complement current analysis. Third, a factor structure allows easier estimation of

higher-dimensional models as it effectively reduces the dimensionality of the time-

varying stochastic component.
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Table 1

Descriptive Statistics of Industry Portfolios

The table defines the company composition in the five industry portfolios used in the study
and describes their returns. Each industry portfolio contains all companies listed on CRSP
whose four-digit SIC code falls in the corresponding broad industry group. We use the
monthly weighted average returns for each industry.

A. Company classification based on SIC four-digit company code.

Industry SIC code

1 Manufacturing 2000-3999
2 Utilities 4900-4999
3 Shops - Wholesale, Retail, and Some Services 5000-5999 and 7000-7999
4 Money, Finance 6000-6999
5 Other - Agriculture, Mines, Oil, Construction,
Transportation, Telecom, Health and Legal Services all others

B. Correlation Matrix of Monthly Returns

Manufacturing Utilities Retail Finance Other

Manufacturing 1.00
Utilities 0.68 1.00
Retail 0.89 0.63 1.00
Finance 0.88 0.77 0.87 1.00
Other 0.92 0.71 0.82 0.88 1.00

C. Descriptive Statistics of Monthly Return Series

Manufacturing Utilities Retail Finance Other

Mean 0.0107 0.0107 0.0113 0.0102 0.0104
Standard deviation 0.0500 0.0414 0.0627 0.0536 0.0485
S.E. of the mean 0.0032 0.0027 0.0040 0.0035 0.0031
Median 0.0095 0.0082 0.0125 0.0079 0.0133
Skewness -0.3586 0.2505 -0.3164 -0.0746 -0.4458
Kurtosis 5.6994 4.6777 5.6089 4.3248 5.1475
Minimum -0.2390 -0.1212 -0.2858 -0.2017 -0.2200
Maximum 0.1674 0.1896 0.2646 0.2051 0.1775
Range 0.4064 0.3108 0.5504 0.4068 0.3975
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Table 2

Out-of-sample Sharpe Ratios

The table compares the out-of-sample performance of the minimum variance portfolio con-

structed using four alternative covariance models: (1) the ordinary sample covariance matrix

based on a moving sample window, (2) a variant of Engle’s dynamic conditional correlation

(DCC) model, (3) an index model, and (4) the multivariate SVOL model. The reported

mean returns, standard deviations and realized Sharpe ratios of actual returns cover the

out-of-sample period from January 1992 to December 2001. Standard errors of all statistics

are reported in parentheses. These standard errors were derived using GMM and the delta

method. Also reported for the SVOL model are 5% and 95% ex-post bounds (in brackets)

using the 2000 sets of optimal weights through the 120 out-of-sample periods as potential

investment paths. The last two-rows present the averate of SVOL ex-ante bounds on the

Sharpe ratios.

Mean Return Standard Deviation Sharpe Ratio

Moving window
0.0072
(0.0031)

0.0342
(0.0022)

0.2102
(0.0934)

Single factor
0.0113
(0.0053)

0.0581
(0.0043)

0.1945
(0.0967)

Dynamic Correlations
0.0074
(0.0032)

0.0344
(0.0021)

0.2151
(0.0943)

SVOL
0.0077
(0.0030)

0.0329
(0.0021)

0.2337
(0.0945)

[0.0062 0.0089] [0.0321 0.0369] [0.1801 0.2734]
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Figure 1. Plots of the data series for the five industries, Manufacturing, Utilities,
Retail and Wholesale, Finance, and Other, over 240 monthly periods from January
1972 to December 1991.
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Figure 2. Posterior standard deviations from the SVOL model with the 5th and
95th percentile bounds. The straight horizontal line represents unconditional mean
estimate of the sample standard deviation.
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Figure 3. Plots of the 10 pair-wise correlations. The correlation matrices were
backed out from the SVOL covariance matrix estimates. The correlation estimates
are plotted against the five data series in the second section of the graph.
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Figure 4. Plots and histograms of the set of draws of one-step-ahead forecasts of
individual standard deviations for January 1992 based on the posterior sample of the
last period covariance matrix.
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Figure 5. Plot of the out-of-sample one-period-ahead standard deviation forecasts
for the period of January 1992 to December 2001. The standard deviation forecasts
preserve their rank and are ordered, from high to low: (1) Retail, (2) Finance, (3)
Other, (4) Manufacturing, and (5) Utilities.
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Figure 6. The first graph shows all frontiers based on the sample of SVOL covariance
forecasts for Jan 1992, along with the mean frontier and the 95th and 95th percentile
bounds.
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Figure 7. Plots of the stochastic frontiers bounds based on the multivariate SVOL
(also shown in figure 6) and the analytical results in Jobson (1991). The stochastic
frontier bounds are obtained through constrained MV optimization as in Figure 6,
while the analytical bounds are based on unconstrained optimization. The shape of
the analytical bounds appears to be data sensitive and in some cases the upper bound
may reach infeasible areas.
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Figure 8. Plots of the multivariate SVOL efficiency bounds and bounds obtained
via traditional Monte Carlo simulation. In the simulation exercise, 2000 samples
of returns were drawn from a multivariate normal distribution with mean vector and
covariance matrix equal to the unconditional data sample means and and covariances.
The set of MC-simulated bounds are based only on the covariance matrices from the
simulated samples (using the same unconditional mean of the original data). These
bounds are directly comparable to the SVOL efficiency bounds. The wider SVOL
bounds illustrate the effect of using conditioning information.
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Figure 9. Plots of the optimal weights of the minimum variance portfolios, estimated
using the SVOL model, in the out of sample period from January 1992 to December
2001.
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Figure 10. Histogram of the Sharpe ratios of the estimated minimum variance
optimal portfolios (the risk free rate is assumed zero) for January 1992. The light
color vertical lines are the mean expected Sharpe ratio and the 5th and the 95th
percentile.
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Figure 11. Plot of the expected Sharpe ratios for the posterior mean of the minimum
variance portfolio for the periods from January 1992 to December 2001, along with
the the 5th and 95th percentiles. The forecasts are based on expected optimal optimal
portfolio returns (using the ordinary sample mean as return forecast) and the expected
covariances (using the multivariate SVOL model forecasts).
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Figure 12. Plots of the global minimum variance portfolio weights for the out-of-
sample periods based on covariance forecasts from three alternative approaches: (1) an
index model (solid line), (2) the ordinary sample covariance matrix based on a moving
sample window (dashdot line), and (3) Engle’s dynamic conditional correlation model
(dashed line).
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Figure 13. Plots of the 5 and 95% bounds for the monthly Sharpe ratio forecasts
based on the SVOL model, also shown in Figure 9. Added to the plot were the point
estimates of out-of-sample realized Sharpe ratios based on the preceding 60 months
for the minimum variance portfolio constructed using the SVOL model covariance
forecasts.
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Figure 14. Point estimates of out-of-sample realized Sharpe ratios based on the
preceding 60 months. The four sets of realized Sharpe ratios based on (1) SVOL model
parameters (SVOL) (2) Engle’s dynamic conditional correlations model (DCC), (3)
unconditional sample parameters (Sample), and (4) an index model (Index).
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