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Portfolio Selection Using Bayesian Analysis and 
Gibbs Sampling 

Abstract 

This paper contributes to portfolio selection methodology using a Bayesian fore-

cast of the distribution of returns by stochastic approximation. New hierarchical 

priors on the mean vector and covariance matrix of returns are derived and im-

plemented. Comparison’s between this approach and other Bayesian methods are 

studied with simulations on 20 years of historical data on global stock indices. It 

is demonstrated that a fully hierarchical Bayes procedure produces results superior 

to typical Bayesian formulations. In addition, an expected utility formulation in-

creases performance significantly over methods that simply impute moment esti-

mates into the Markowitz mean-variance model. 



  3 

Portfolio theory is concerned with the allocation of an individual's wealth among 

various available assets. The basic Markowitz version of the portfolio selection 

problem is (Markowitz 1952): 

 
Maximize

subject to

   

     =  

w w w

w e

' '

'

µµµµ ΣΣΣΣ−
λ

2

1

 (1) 

where w =
′

w w wm1 2, , ,Kb g is a column vector of proportions representing a port-

folio of assets, ΣΣΣΣ and µµµµ are the covariance matrix and mean column vector of asset 

returns y =
′

y y ym1 2, , ,Kb g, λ is the investor’s risk-aversion parameter, and e is a 

column unit vector. For no short sales restrictions, an additional constraint, 

wi ≥ 0 , can be added. This portfolio selection approach is termed the Mean-

Variance (MV) method because it ranks portfolio weights by their mean-variance 

pairs. The set of optimal portfolios obtained as the level of risk aversion, λ, varies 

is termed the Markowitz efficient frontier.  

The Markowitz MV method can be view as maximizing expected utility. For 

example, if the investor’s current wealth is W0, his terminal wealth is: 

  W W= +1 0w y'b g .  (2) 

According to Von Neumann and Morgenstern axioms, the investor determines w 

by considering the expected value of a non-decreasing utility function of W. Using 

the exponential utility function,  

 U W W; expλ λb g==== −−−− −−−− , (3) 

and assuming y is distributed multivariate normal N(µµµµ,ΣΣΣΣ), the maximization of 

expected utility reduces to ranking MV portfolios using (µµµµ,ΣΣΣΣ;λ) in model (1).  
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Classical portfolio selection uses least-squares estimates of (µµµµ,ΣΣΣΣ) in model 

(1). However, MV portfolio selection based on estimates of population moments 

leads to a problem of estimation risk that arises from the difference between the 

estimates and the true parameter values. It has been well documented that the 

problem of estimation risk is significant (Dickinson 1974; Putnam and Quintana 

1991; Pari and Chen 1985; Frankfurter, Phillips, and Seagle 1971; Jobson and 

Korkie 1980). Empirical studies of estimation risk associated with least-squares 

estimates appear in Levy and Sarnat (1970); Solnik (1982); Board and Sutcliffe, 

(1992); Chopra, Hensel, and Turner (1993); Chopra and Ziemba (1993). All of 

these studies conclude that resulting portfolios involve either extreme volatility or 

lack of diversification.  

The use of Bayes and empirical Bayes estimators to estimate (µµµµ,ΣΣΣΣ) have been 

advocated by several researchers (Brown 1976; Klein and Bawa 1976; Bawa, 

Brown and Klein 1979; Jorion1986; Frost and Savarino 1986). Jorion (1986, 

1991) employs Bayes modifications of James-Stein shrinking formulas (James 

and Stein 1960) to estimate µµµµ, while Frost and Savarino (1986) employ empirical 

Bayes estimators of µµµµ, assuming ΣΣΣΣ has intraclass structure. They show through 

simulated and historical data that MV portfolios using their respective Bayes esti-

mates in model (1) dominate MV portfolios using classical least squares estimates. 

See also Kadiyala and Karlsson (1997), Kandel, McCulloch and Stambaugh 

(1995), and Shaken (1987).  

This paper examines a fully hierarchical Bayes model for (µµµµ,ΣΣΣΣ). These models 

are multivariate and thus can capture more complete information on the interde-
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pendence between assets than previous models. Although these models are cross-

sectional, one-step forward forecasts based on the posterior predictive distribution 

of returns are available for ranking portfolios. The posterior predictive distribution 

has been proposed for forecasting univariate ARMA models since Zellner (1971); 

also see West and Harrison (1989). This paper will empirically demonstrate that 

Bayesian forecasts are superior to moment estimates in portfolio ranking. More-

over, this approach applies to any utility function. 

Marriott et al. (1994) show how to obtain the predictive distribution for a vec-

tor of future values via the Gibbs sampler and Monte Carlo integration. Kim, 

Shephard, and Chib (1998) exploit MCMC sampling methods to provide a practi-

cal likelihood based framework for the analysis of stochastic volatility models. 

These methods are used to compare the fit of stochastic volatility and GARCH 

models. Nakatsuma and Tsurumi (1996) compare small-sample properties of 

Bayes estimation and maximum likelihood estimation (MLE) of ARMA-GARCH 

models using MCMC sampling. McCulloch and Tsay (1994) use the Gibbs sam-

pler for Bayesian analysis of AR models. This paper also exploits Monte Carlo 

Markov Chain (MCMC) sampling methods to obtain a practical stochastic ap-

proximation to the posterior predictive distribution and its moments. 

This paper is structured as follows. The definition of posterior predictive dis-

tributions is given in section 1. Maximum expected utility is defined in section 2. 

In section 3, we describe data on eleven country-stock index funds provided by 

Morgan Stanley Capital International. In addition, designs for comparing the dif-

ferent Bayesian models are described. Bayesian data models including the fully 
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hierarchical prior are explained in section 4. Sections 5 and 6 describe the results 

and conclusion, respectively. 

1 Bayes Posterior Predictive Distributions 

Denote observed returns on m assets by y and future, or unobserved, returns by ~y . 

Let θ ∈∈∈∈R p  and φ ∈∈∈∈Rq  denote p parameters and q hyperparameters, respectively. 

The parametric family of the joint likelihood of y and ~y  will be denoted by 

f y y, ~| ,θ φb g = f y y, ~|θb gand depends on the joint parameters only through the 

low-level parameter θ. Denote the prior distribution of (φ,θ) by 

π φ θ π φ π θ φ, |b g bgb g==== . Nonhierarchical models fix φ and compute posterior distri-

butions using the prior π θ φ|b g, while hierarchical models compute posterior dis-

tributions using the joint prior π φ θ,b g.  

In the portfolio selection problem, θ = (µ,Σ) and φ will represent a vector of 

hyperparameters in the prior for (µ,Σ). Portfolio selection using posterior predic-

tive distributions addresses two unknown quantities, ~y  and (φ,θ), with the pri-

mary goal being to gain information about ~y  with (φ,θ) as nuisance parameters. 

The advantage of the hierarchical model, with priors instead of point estimates of 

hyperparameters, is that the posterior distributions will reflect the appropriate un-

certainty in the hyperparameters. The disadvantage is that the posterior predictive 

distribution will not be analytically tractable usually; however, the method based 

on the MCMC sampler provides a stochastic approximation of the posterior pre-

dictive distribution. 
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According to the likelihood principal all evidence about ( ~y ,φ,θ) is contained 

in the joint likelihood function f y y, ~| ,φ θb g (for an overview see Bjφrnstad, 1990). 

Based on this likelihood, we wish to develop a posterior predictive distribution for 

~y , π ~|y yb g, by eliminating (φ,θ) from the joint likelihood. The Bayes approach for 

this problem is to integrate out (φ, θ) using the joint prior. The resulting predictive 

distribution for ~y  given the data, y, is the following: 

 π θ π θ φ θ φ
θφ

~| ~| , |
RR

y y y yb g b gb g====
∈∈∈∈∈∈∈∈

zz f d d
pq

. (4) 

A stochastic approximation of the posterior predictive distribution is generated by 

simulation, using the MCMC sampler if necessary, using θ ϕ π θ ϕ, ~ , |b g b gy  to 

generate ~ ~ | ,y yf θ φb g, and repeating these steps to obtain more simulated obser-

vations. 

2 Maximum Expected Utility 

For the reader’s convenience, we repeat the basic notation. Let w ∈R m  denote 

portfolio weights satisfying w i m wi ii m
≥≥≥≥ ==== ====

====∑∑∑∑0 1 1
1

, , , ;
, ,

K
K

. The inner product 

′w y~  is the portfolio-return on future investment performance. An investor will 

choose a utility for wealth. This utility is denoted by a monotonically increasing, 

concave function U W W; : Rλb g →→→→ , where λ ≥ 0 is a fixed parameter denoting risk 

aversion. The posterior expected utility of W W==== ++++1 0w y' ~b g , where W0 is initial 

wealth, given the data y is: 



  8 

 E U W U W | d
m

1 10 0++++ ==== ++++
∈∈∈∈

zw' y y w' y y y y

y

~ ; | ~ ; ~ ~

~ R

b gc hn s b gc hb gλ λ π . (5) 

This expectation exists under standard regularity conditions.  

The direct utility (DU) optimal portfolio model is a solution to the following 

model: 

 
Maximize   E

subject to     =  

U W1

1

0++++ w' y y

w'e

~ ; |b gc hn sλ
. (6) 

Typically, model (6) must be solved with a non-linear optimization algorithm. 

Many standard algorithms exist, such as sequential quadratic programming (see 

Gill, Murray, and Wright 1981, p. 237; Schittowski 1980, 1985) as implemented 

in MATLAB, enabling solutions for any utility function that is twice-continuously 

differentiable. In case the expected utility is not analytically tractable, it is neces-

sary to contemplate samples from the posterior predictive distribution that can be 

used to approximate the expected utility. This is an advantage since portfolio se-

lection can be carried out with a general utility function. Given a sample, 

~ , , ~y y1 K K , from the predictive posterior distribution, the direct utility portfolio 

selection problem (6) is approximated by the model: 

 
Maximize 

subject to 

K U Wk

k

K
−−−−

====

++++

′′′′ ====

∑∑∑∑
1

0

1

1

1

w' y

w e

~ ;b gc hλ
. (7) 

3 Empirical Data Analysis 

The daily stock market indices for 11 different countries over the period 1975-

1994 are used in this comparison of DU and MV using different data models. The 

countries include US, UK, Canada, Belgium, Australia, France, Japan, Austria, 
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Spain, Germany, and Hong Kong. The indices are compiled and provided by 

Morgan Stanley Capital International. Monthly returns were computed as the per-

centage changes in the index between consecutive last days of the month. Morgan 

Stanley Capital International provided two indices per country, one in local cur-

rency and one in $US. Our study is based on the returns in $US.  

The data are partitioned into four periods of five consecutive years. This al-

lows a comparison of the means, standard deviations, within-country serial corre-

lations and between-country correlations. Table 1a displays the average-monthly 

asset-returns. Note the variability of the mean returns within countries across the 

four times periods. It appears that Spain exhibits the greatest change on mean re-

turn while the US is stable. 

Table 1a also displays the standard deviation of the monthly returns, demon-

strating considerable instability or risk over the four periods, especially for Hong 

Kong. Comparison of the means and standard deviations of returns reveals that 

the US has moderately stable returns with relatively low risk; while Hong Kong 

has consistently high return and risk.  

Table 1b exhibits between-country covariance and correlation of monthly as-

set returns. When the covariance structure changes over time, there are important 

implications for the appropriate hierarchical model for the data. Although it is not 

shown in this table, there is much change over time in the covariance matrix for 

these data. For the extreme instance, the correlation between Spain and the other 

10 countries appear to change this period; the correlation structure for Hong Kong 

appears to change as well.  
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3.1 Comparison Design 

To examine the performance of different models, 180 overlapping, out-of-sample 

periods of one month each, covering the period Jan 1980 to Dec 1994, are used. 

That is, the first data set is from Jan 1975 through Dec 1979 (60 monthly observa-

tions) and the first out of sample observation is for Jan 1980. Our last out-of- sam-

ple portfolio is for Dec 1994. For a given model, we run the MCMC sampler inde-

pendently on 180 data sets, and use the individual posterior distributions to form 

the portfolio. Our procedure can be summarized as follows: 

1. Use 60 observations (initially those for months 1 to 60) to generate the joint 

posterior distributions of the means and covariances (via the MCMC sampler) 

and, in accordance with the decision theory rules, compute the posterior means 

of these distributions. 

2. For a given λ, the risk aversion parameter, find the investment proportions w. 

3. Apply these proportions to the actual returns observed in the next month to 

obtain the actual portfolio return for each model and value of λ. 

4. Roll the sample forward by one month, e.g. months 2 to 61, and repeat steps 

(1) through (3).  

This resulted in 180 sample periods being used. A common value, λ = 0.02, 

of the risk-aversion parameter was used. Computational time prevented expanding 

the procedure to a range of λ’s in this study. This is planned for future research. 
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4 Bayesian Data Models 

We will examine two hierarchical data models, and apply MCMC sampling to 

obtain estimates of the posterior distribution of (µµµµ,ΣΣΣΣ) and ~y . These estimates will 

then be used to solve models (1) and (6) for MV and DU portfolios respectively. 

All models, even non-Bayesian, can be specified within a hierarchical Bayes-

ian structure. In addition, the MCMC sampler can be used to solve even the sim-

plest model (while a closed-form analytical solution may exist, it may still be eas-

ier to run the MCMC sampler to generate the posterior distributions). The follow-

ing three data models will be tested empirically: 

4.1 Classical Model 

 

y I| , ~ N ,

~ Uniform , , , ,

~ Inv Gamma ,

µµµµ µµµµσ σ

µ

σ ε ε

2 2

2

1 2

1 11

c h
b g
b g

j iid j−∞−∞−∞−∞ ∞∞∞∞ ====

−−−−

 K  (8) 

The values of ε ε1 2 and  are equal to 0.0001 allowing for a proper, diffuse hyper-

prior. The MCMC sampler with diffuse priors yields close approximations of the 

classical estimators.  

4.2 James-Stein Model 

 

y I

1 I

| , ~ N ,

| , ~ N ,

~ Uniform ,

~ Inv Gamma ,

~ Inv Gamma ,

µµµµ µµµµ

µµµµ

σ σ

µ τ µ τ

µ

σ ε ε

τ ε ε

2 2

0 0

2

0 0

2

0

2

1 2

0

2

3 4

c h
c h

b g
b g
b g

−∞−∞−∞−∞ ∞∞∞∞

−−−−

−−−−

 (9) 
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The values of ε ε ε ε1 2 3 4,  and , ,  are equal to 0.0001 allowing for a proper, diffuse 

hyperprior.  

4.3 Hierarchical Bayes Model 

 

y

1

P

| , ~ N ,

| , ~ N ,

~ Inv Wishart

~ ,

~ Inv ,

µµµµ µµµµ

µµµµ

ΣΣΣΣ ΣΣΣΣ

ΣΣΣΣ ΣΣΣΣ

ΣΣΣΣ

b g
b g

c h
b g

b g

µ µ κ

τ

µ

τ ε ε

ν

0 0 0

0

2

0

1

0

0

2

1 2

0
−−−−

−∞−∞−∞−∞ ∞∞∞∞

−−−−

−−−− −−−−

Uniform

Gamma

 (10) 

The degrees of freedom parameter, v0, is unrestricted other than ν 0 ≥ m,  where m 

is the number of asset, equal to 11 in this application. The values of ε ε1 2 and  are 

equal to 0.0001 allowing for a proper, diffuse hyperprior; and κ0 is equal to 0.10n 

where n represents the sample size. In addition, ΡΡΡΡ0 is a known correlation matrix 

with structure: 

 ΡΡΡΡ0

0 0

0 0

0 0

1

1

1

====

L

N

MMMM

O

Q

PPPP

ρ ρ

ρ ρ

ρ ρ

L

L

M M O M

L

. (11) 

In this application, the estimate of the correlation parameter ρ0 is 0.5. 

5 Results 

We will employ a method of comparison based on portfolio performance. We use 

the posterior means of µµµµt and ΣΣΣΣt as inputs to the MV framework (1); or the poste-

rior marginal predictive distribution as inputs to the direct utility framework (6). 

In either framework, we obtain a vector of weights wt. The actual performance of 

the portfolio, ′w yt t , is then tracked over time t = 1,…, 180. Consequently, we ob-
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tain an actual simulation of how a model would have performed over the study 

period. This performance is compared for the various models: Classical, James-

Stein, and Hierarchical Bayes. In addition to these three models, we include as a 

benchmark a heuristic portfolio-selection device that weighs each asset equally, 

denoted by the term Weighted in the ensuing figure.  

Table 2 displays the portfolio performance comparisons summarized over the 

stream of 180 monthly returns.  It is quite apparent that the Classical Models un-

der-perform all the other models, including a naïve equal weight portfolio. The 

James-Stein Model portfolio produces superior results to the Classical Model 

portfolio. The additional edge in performance due to the Hierarchical Bayes 

Model is quite significant. In addition, the Direct Utility (DU) method increases 

performance significantly over methods that impute estimates into the MV model 

(1). 

Figure 1 shows the equity performance of the various data models and their 

turnover rates (to be discussed shortly), where we show the growth of a hypotheti-

cal $1000 portfolio. The top series display the MV portfolios, while the middle 

series display the DU factors. The actual performance of the DU portfolios are 

obtained as the DU factor times the performance of the MV performance. Note the 

Hierarchical Bayes factor remains above 1 after the mid-1980’s.  

An interesting point is to ask why the James-Stein and Hierarchical Bayes 

Models under-perform the Classical Model for the first 4 years and then signifi-

cantly outperform the next 10 years (1985 and on). Closer inspection confirmed 

what we suspected from general knowledge of the history of these particular mar-
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kets: some markets, such as the US, Japan, and Germany exhibited stable positive 

trends in the early 80's. The Classical Model interprets the data of the late 70’s to 

invest in these markets. The shrinking characteristics of the Bayes models, how-

ever, hurt their performance during this period. 

Portfolio return and the resulting commission costs are obviously of great in-

terest in practical applications. We define turnover as  

 PT w wi i t i t

i

= − −

=

∑ , , 1

1

11

c h,  (12) 

that is, the portfolio turnover in a given month is the sum of the changes in portfo-

lio weights from the previous month to that month. We will analyze the portfolio 

turnover for each of our models. 

Figure 1 (bottom series) compares the portfolio turnover rates of the three 

data models using the DU method. It is quite apparent that the Classical Model 

under-performs all the other models most of the time. The James-Stein portfolio 

produces superior results to the Classical portfolio. The Hierarchical Bayes 

model results in significantly lower turnover rates. Note that the Classical portfo-

lio showed significant gains in the early 1980’s but at the cost of high turnover 

rates. 

6 Summary and Conclusion 

A contribution of this paper was to employ practical hierarchical Bayesian 

models that incorporate a high degree of parameter uncertainty. A practical hierar-

chical Bayesian model accounting interclass covariance was applied to portfolio 

selection. The MCMC sampler was used to generate posterior prediction distribu-
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tions and estimates of moments. The James-Stein model which has appeared pre-

viously in the finance literature is basically the Markowitz model using shrinking 

estimators in the mean, while the covariance matrix estimate is taken (independ-

ently of the mean) to be the sample covariance matrix. The Hierarchical Bayes 

model is a more general model, in both µµµµ and ΣΣΣΣ.  

We carried out a numerical optimization procedure to maximize expected 

utility using the MCMC samples form the posterior predictive distribution. This 

model resulted in an extra 1.5 percentage points per year in additional portfolio 

performance (on top of the Hierarchical Bayes model to estimate µµµµ and ΣΣΣΣ and use 

the Markowitz model), which is quite a significant empirical result. This approach 

applies to a large class of utility functions and models for market returns.  
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Tables 

Table 1a. Monthly Asset Returns Mean (Standard Deviation) 

  75-94 75-79 80-84 85-89  90-94 

Hong Kong  2.1 (9.1) 3.0 (9.1) 1.2 (10.5) 2.1 (9.0) 2.0 (8.0) 
United Kingdom  1.5 (6.6) 2.4 (9.7) 1.6 (4.5) 1.4 (6.0) 0.5 (4.8) 

Australia  1.2 (6.2) 1.6 (5.4) 0.7 (7.2) 1.9 (7.4) 0.4 (4.6) 
France  1.1 (6.3) 1.2 (6.9) 1.1 (5.8) 2.0 (7.0) 0.2 (5.2) 

United States  0.9 (4.2) 0.7 (4.1) 0.8 (4.0) 1.3 (5.1) 0.6 (3.4) 
Japan  0.9 (5.3) 0.9 (3.6) 1.3 (4.2) 2.1 (5.3) -0.7 (7.0) 

Belgium  0.8 (5.2) 0.3 (3.7) 0.8 (5.4) 2.0 (6.5) 0.1 (4.5) 
Germany  0.8 (5.1) 0.4 (3.7) 0.9 (4.0) 1.5 (7.0) 0.2 (5.0) 

Canada  0.7 (4.9) 1.4 (4.8) 0.6 (6.3) 0.9 (4.6) 0.1 (3.5) 
Austria  0.6 (5.9) 0.0 (1.5) -0.2 (2.5) 2.6 (8.0) 0.0 (7.9) 
Spain  0.4 (6.3) -1.4 (5.4) 0.9 (4.7) 2.1 (7.7) 0.2 (6.4) 

 

Table 1b. Monthly Asset Returns Covariance and Correlation 

75-94 HK UK AU FR US JA BE GE CA AUS SP 

Hong Kong 84 0.5 0.4 0.3 0.4 0.2 0.3 0.3 0.4 0.2 0.3 
United Kingdom 26 43 0.4 0.5 0.5 0.4 0.5 0.4 0.5 0.3 0.4 

Australia 24 18 39 0.4 0.4 0.3 0.3 0.3 0.6 0.2 0.3 
France 17 22 14 39 0.4 0.4 0.6 0.6 0.4 0.4 0.4 

United States 14 14 11 11 17 0.3 0.4 0.4 0.7 0.2 0.3 
Japan 11 13 9 14 6 28 0.4 0.4 0.3 0.2 0.4 

Belgium 14 17 9 20 9 12 27 0.6 0.4 0.4 0.4 
Germany 15 14 8 18 8 10 16 26 0.3 0.6 0.4 

Canada 17 16 18 12 14 7 9 7 24 0.2 0.3 
Austria 13 10 7 15 4 6 12 17 6 35 0.3 
Spain 16 15 12 16 8 13 12 12 9 11 39 
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Table 2. Portfolio Yearly Return Performance Comparisons 

 Method 
 Mean Variance (MV) Direct Utility (DU) 

Data Model Average SD Average SD 
Weighted 12.0 .58 12.0 .58 
Classical 10.9 .46 11.2 .48 

James-Stein 12.5 .53 12.7 .57 
Hierarchical Bayes 14.5 .65 16.0 .70 
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Figure 

Figure 1. Equity Performance Mean Variance (Top), Direct Utility Factors (Mid) 
and Turnover Rates (Bottom). 
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