
Bayesian estimation

• Bayes’s theorem: prior, likelihood, posterior

• Techniques to design prior disribution

• Loss function and Bayesian point estimation

• Bayesian interval estimation

• Information from Bayesian point of view

• Exercise



Bayes’s theorem

Let us recall Bayes’s theorem:

Where f(θ) is density of prior distribution for parameter of interest, f(x|θ) is conditional density of 

probability distribution of x given θ, f(θ|x) is posterior density of distribution of the 

parameter of interest - θ.  Integral is the normalisation coefficient that ensures that integral 

of posterior is equal to 1.

Bayesian estimation is fundamentally different from the maximum likelihood estimation. In 

maximum likelihood estimation parameters we want to estimate are not random variables. 

In Bayesian statistics they are. 

Prior, likelihood and posterior have the following interpretations:

Prior: It reflects state of our knowledge about the parameter(s) before we have seen the data. E.g. 

if this distribution is sharp then we have fairly good idea about the parameter of interest.

Likelihood: How likely it is to observe current observation if parameter of interest would have 

current value. 

Posterior: It reflects state of our knowledge about the parameter(s) after we have observed the 

data.

In this lecture we will assume that we are dealing with continuous distribution of the parameters 

and unless otherwise stated all function are continuously differentiable. 
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Bayes’s theorem and learning

Bayes’s theorem in some sense reflects dynamic of learning and accumulation of the 
knowledge. Prior distribution encapsulates state of our current knowledge. When we 
observe some data then they can change our knowledge. Posterior distribution reflects it. 
When we observe another data then our current posterior distribution becomes prior for 
this new experiment. Thus every time using our current knowledge we design 
experiment, observe data and store gained information in the form of the new prior 
knowledge. Sequential nature of Bayes’s theorem elegantly reflects it. Let us assume 
that we have prior knowledge written as f(θ) and we observe the data x. Then our 
posterior distribution will be f(θ|x). Now let us assume that we have observed new 
independent data y. Then we can write Bayes’s theorem as follows:

Last term shows that posterior distribution after observing and incorporating information from 
x is now prior for treatment of the data y. That is one reason why in many Bayesian 
statistics book priors are written as f(θ|I), where I reflects information we had before the 
current observation. If data are not independent then likelihood becomes conditional on 
parameter and on the previous data.

One more important point is that prior is different from a priori. Prior is knowledge available 
before this experiment (or observation) a priori is before any experiment. In science we 
do not deal with the problem of knowledge before any experiment.
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Prior, likelihood and posterior

Before using Bayesian theorem as an estimation tool we should have the forms of prior, 
likelihood and posterior. 

Likelihood is usually derived or approximated using physical properties of the system under 
study. Usual technique used for derivation of the form of the likelihood is central limit 
theorem. 

Prior distribution should reflect state of knowledge. Converting knowledge into distribution could 
be a challenging task. One of the techniques used to derive prior probability distribution is 
maximum entropy approach. In this approach entropy of distribution is maximised under 
constraint defined by the available knowledge. Some of the knowledge we have can easily 
be incorporated into maximum entropy formalism. Problem with this approach might be 
that not all available knowledge can easily be used, Another approach is to study the 
problem, ask experts and build physically sensible prior. One more approach is to find 
such prior that when used in conjunction with the likelihood they give easy and elegant 
forms for posterior distributions. These type of priors are called conjugate priors. They 
depend on the form of likelihood. Here is list of some of conjugate priors used for one 
dimensional cases:

Likelihood                  Parameter                        Prior/Posterior

Normal                      mean (µ)                             Normal

Normal                     variance (σ2)                        Inverse gamma

Poisson                        λ Beta

Binomial                      π Gamma



Importance of prior distributions

One of the difficult parts of the Bayesian statistics is finding prior and calculating posterior 

distributions. Convenient priors can easily be incorporated into calculations but they are 

not ideal and they may result in incorrect results and interpretation. If prior knowledge 

says that some parameters are impossible then no experiment can change it. For 

example if prior is defined so that values of the parameter of interest are positive then no 

observation can result in non 0 probability for negative values. If some values of the 

parameter have extremely small probability then one might need many, many 

experimental data to see that these values are genuinely possible. 

Bayesian statistics assumes that probability distribution is known and it in turn involves 

integration to get the normalisation coefficient. This integration might be tricky and in 

many cases there is no analytical solution. That was main reason why conjugate prior 

were so popular. With advent of computers and various integration techniques this 

problem can partially be overcome. In many application of Bayesian statistics prior is 

tabulated and then sophisticated numerical integration techniques are used to derive 

posterior distributions. 

Popular approximate integration techniques used in Bayesian statistics involve: Gaussian 

integration, numerical integration based on stochastic approaches etc.



Bayesian statistics and estimation

Once posterior distribution is available it can be used in various forms to estimate parameter of interest. It 
is best done using idea of loss function. Loss function is strongly related with the decision theory. 
This function reflects which values of the parameter are more important than others. It can also 
reflect purpose of parameter estimation also. 

Using loss function and posterior distribution estimation is carried out as follows. We define loss function 
that links parameter to its estimated value:

θ - is the parameter we want to estimate and t is its estimator. Then expected value of this function is 
minimised:

Resultant value of t is taking as an estimate for the parameters. Let us consider several forms of the loss 
function.

1) Quadratic loss function:

If we use this function and then we can write for the expected value:

This function has the minimum when t is equal to the expected value of  θ:
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Bayesian statistics: Estimation

2) Absolute loss function:

Expected value will have the form:

If we get derivative of this function wrt t and equate it to 0 then we can get:

In this case estimator is the median of the distribution

3) Zero-one loss function is defined as:

Expectation value of this loss function is 
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Bayesian statistics: Estimation: Cont.

With zero-one loss function we want to minimise probability that |t-θ| is more than 
given b or we want to maximise that |t-θ| is less than b. It in its turn means that 
we want maximise probability that θ is in the interval (t-b,t+b). In this case an 
estimator is the centre of the interval of width 2b that has highest probability. If 
b goes to 0 then this estimator converges to the maximum of the posterior 
distribution. 

Maximum of the posterior distribution can be considered as a generalisation of the 
maximum likelihood estimation. It is called either the generalised maximum 
likelihood estimator or more appropriately maximum posterior estimation.

These examples shows that loss function influences the choice of the estimator. Each 
estimator has it is own interpretation. 

Quadratic loss function penalizes large deviations of the estimator t from “true” value 
of the parameter. Absolute loss is more tolerant to large deviations. Zero-one 
loss function is even more tolerant to large deviations of the estimate. In the 
limit it converges to the maximum of the density of the distribution and gives 
no importance to the tails of the distribution. 

Under some circumstances overestimation could be penalized more than 
underestimations. These and other factors can be incorporated into the loss 
function. 



Bayesian interval estimation

Interval estimation can also be considered as minimisation of some loss function. 

Let us assume that we want to find interval d that is optimal in some sense. If our parameter is 

in this interval then we consider it to be suitable for our use in some sense. Let us 

consider loss function as:

And w(d) is defined so that to minimise size of the interval d. Now we need to take expectation 

value of this loss function and minimise it.

That is probability that parameter does not belong to this interval plus some function that 

regulates size of the interval. Minimising this function wrt interval will give us optimal 

interval satisfying our loss function. Now let consider that our interval is (α,β) then 

expected value of the loss function can be written as:

If we get derivative of this function wrt α and β and equate them to 0 then we get following 

equations:
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Bayesian interval estimation: Cont

If we sum above two equation and subtract one from another we can get:

If w is defined then we can solve these equations w.r.t end points of interval. Obviously size of 
this interval will depend on w(d). For example if we have unimodal symmetric 
distribution then the first equation gives us α=-β. I.e. as it could be expected interval is 
symmetric. If we take w(d) as a quadratic function of the interval length w(d) = k(β-α)2

then we can write:

In practice it is usual to set probability of the parameter belonging to the given value (say p). 
Then problem reduces to finding of minimum of the function w(d) under condition that:

If w and f are a symmetric unimodal functions then it reduces to:

Here we have considered one dimensional case. It can be generalised to the multidimensional 
cases also. In this case we are interested in finding multidimensional volume satisfying 
the given conditions (defined by loss function).
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Bayesian statistics: Elementary hypothesis testing.

Bayesian statistics can be used for other classical inferences also. One of the examples is 

hypothesis testing. Let us consider very simple hypothesis testing. Let us assume that we 

are interested in some parameter θ. We want to know if this parameter belongs to some 

region, say Ω0. Now our hypothesis is

Let us define loss function like (dj,j=0,1 are accepting or rejecting the hypothesis):

As it can be seen first loss function is related with type I error and second is related with the 

type II error. Then we reject hypothesis if expected value type II error is less than the 

expected value of the type I error. I.e. 

Hypothesis is rejected if the probability that the parameter is in the region defined by the 

hypothesis is less than the critical value a0/(a0+a1). Here a0 and a1 play same role as α
and β in the classical hypothesis testing. 
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Bayesian statistics: Another concept of information

There are many attempts to define information. Two of them we have touched in the previous 

lectures. One of them was information related with the entropy (Shannon information) 

another one was related with maximum likelihood estimation (observed, Fisher’s 

information and their values at the maximum likelihood estimate). 

Here is one more definition of information used by Bayesian statisticians. It is related with 

posterior and prior variance of the parameter of interest. It is defined as (it is also called 

quadratic information measure):

Here expectation is taken over observed values of x. It in principle says that on average how 

much variance of the parameter would be reduced when we observe x. In some sense 

variance says that how confident we are about current parameter value. In that sense 

quadratic information measure says how much confidence about the given parameter 

increased by observing x?
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Exercise: Bayes (These exercises are not compulsory)

a) Let us assume that prior density of the distribution has the gamma distribution:

Data have the Poisson distribution:

What is posterior distribution. Hint use the form of gamma function:

b)     If we use loss function defined as (generalisation of absolute loss function):

What would be estimation? 

Hint: use the fact that expectation value for this loss function is:

And following relations:
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Further reading

If you want deeper understanding of the Bayesian statistics then this book is good 

place to start.

O’Hagan, A. (1994) Kendall’s Advanced Theory of Statistics, Voume 2B: Bayesian 

inference. Wiley & Sons


