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1 Introduction

After years of relative neglect in academic circles, portfolio choice problems are again at

the forefront of financial research. The economic theory underlying an investor’s optimal

portfolio choice, pioneered by Markowitz (1952), Merton (1969,1971), Samuelson (1969), and

Fama (1970), is by now well understood. The renewed interest in portfolio choice problems

follows the relatively recent empirical evidence of time-varying return distributions (e.g.,

predictability and conditional heteroskedasticity) and is fueled by realistic issues including

model and parameter uncertainty, learning, background risks, and frictions. The general

focus of the current academic research is to identify key aspects of real-world portfolio choice

problems and to understand qualitatively as well as quantitatively their role in the optimal

investment decisions of individuals and institutions.

Whether for academic researchers studying the portfolio choice implications of return

predictability, for example, or for practitioners whose livelihood depends on the outcome of

their investment decisions, a critical step in solving realistic portfolio choice problems is to

relate the theoretical formulation of the problem and its solution to the data. There are a

number of ways to accomplish this task, ranging from calibration with only vague regard for

the data to decision theoretic approaches which explicitly incorporate the specification of

the return model and the associated statistical inferences in the investor’s decision process.

Surprisingly, given the practical importance of portfolio choice problems, no single econo-

metric approach has emerged yet as clear favorite. Since each approach has its advantages

and disadvantages, an approach favored in one context is often less attractive in another.

This chapter is devoted to the econometric treatment of portfolio choice problems. The

goal is to describe, discuss, and illustrate through examples the different econometric ap-

proaches proposed in the literature for relating the theoretical formulation and solution of a

portfolio choice problem to the data. The chapter is intended for academic researchers who

seek an introduction to the empirical implementation of portfolio choice problems as well as

for practitioners as a review of the academic literature on the topic.

The chapter is divided into three parts. Section 2 reviews the theory of portfolio choice in

discrete and continuous time. It also discusses a number of modeling issues and extensions

that arise in formulating the problem. Section 3 presents the two traditional econometric

approaches to portfolio choice problems: plug-in estimation and Bayesian decision theory.

In Section 4, I then describe a more recently developed econometric approach for drawing

inferences about optimal portfolio weights without modeling return distributions.
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2 Theoretical Problem

2.1 Markowitz Paradigm

The mean-variance paradigm of Markowitz (1952) is by far the most common formulation

of portfolio choice problems. Consider N risky assets with random return vector Rt+1 and a

riskfree asset with known return Rf
t . Define the excess returns rt+1 = Rt+1−Rf

t and denote

their conditional means (or risk premia) and covariance matrix by µt and Σt, respectively.

Assume, for now, that the excess returns are iid with constant moments.

Suppose the investor can only allocate wealth to the N risky securities. In the absence

of a risk-free asset, the mean-variance problem is to choose the vector of portfolio weights x,

which represent the investor’s relative allocations of wealth to each of the N risky assets, to

minimize the variance of the resulting portfolio return Rp,t+1 = x′Rt+1 for a pre-determined

target expected return of the portfolio Rf
t + µ̄:

min
x

var[Rp,t+1] = x′Σx, (2.1)

subject to

E[Rp,t+1] = x′(Rf + µ) = (Rf + µ̄) and
∑N

i=1 xi = 1. (2.2)

The first constraint fixes the expected return of the portfolio to its target, and the second

constraint ensures that all wealth is invested in the risky assets. Setting up the Lagragian

and solving the corresponding first-order conditions, the optimal portfolio weights are:

x? = Λ1 + Λ2µ̄ (2.3)

with

Λ1 =
1

D

[
B(Σ−1ι)− A(Σ−1µ)

]
and Λ2 =

1

D

[
C(Σ−1µ)− A(Σ−1ι)

]
, (2.4)

where ι denotes an appropriately sized vector of ones and where A = ι′Σ−1µ, B = µ′Σ−1µ,

C = ι′Σ−1ι, and D = BC − A2. The minimized portfolio variance is equal to x?′Σx?.

The Markowitz paradigm yields two important economic insights. First, it illustrates the

effect of diversification. Imperfectly correlated assets can be combined into portfolios with

preferred expected return–risk characteristics. Second, the Markowitz paradigm shows that,

once a portfolio is fully diversified, higher expected returns can only be achieved through

more extreme allocations (notice x? is linear in µ̄) and therefore by taking on more risk.

Figure 1 illustrates graphically these two economic insights. The figure plots as hyperbola
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Figure 1: Mean-variance frontiers with and without risk-free asset generated
by historical moments of monthly returns on 10 industry-sorted portfolios.
Expected return and volatility are annualized.

the mean-variance generated by the historical moments of monthly returns on 10 industry-

sorted portfolios. Each point on the frontier gives along the horizonal axis the minimized

portfolio return volatility (annualized) for a pre-determined expected portfolio return (also

annualized) along the vertical axis. The dots inside the hyperbola represent the 10 individual

industry portfolios from which the frontier is constructed. The fact that these dots lie well

inside the frontier illustrates the effect of diversification. The individual industry portfolios

can be combined to generate returns with the same or lower volatility and the same or higher

expected return. The figure also illustrates the fundamental trade-off between expected

return and risk. Starting with the most diversified and hence least volatile portfolio at the

left tip of the hyperbola (the global minimum variance portfolio), higher expected returns

can only be achieved at the cost of greater volatility.

If the investor can also allocate wealth to the risk-free asset, in the form of unlimited

risk-free borrowing and lending at the risk-free rate Rf
t , any portfolio on the mean-variance

frontier generated by the risky assets (the hyperbola) can be combined with the risk-free as-

set on the vertical axis to generate an expected return-risk profile that lies on a straight line

from the risk-free rate (no risky investments) through the frontier portfolio (fully invested in

risky asset) and beyond (leveraged risky investments). The optimal combination of the risky
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frontier portfolios with risk-free borrowing and lending is the one that maximizes the Sharpe

ratio of the overall portfolio, defined as E[rp,t+1]/std[rp,t+1] and represented graphically by

the slope of the line from the risk-free asset through the risky frontier portfolio. The highest

obtainable Sharpe ratio is achieved by the upper tangency on the hyperbola shown in Fig-

ure 1. This tangency therefore represents the mean-variance frontier with risk-free borrowing

and lending. The critical feature of this mean-variance frontier with risk-free borrowing and

lending is that every investor combines the risk-free asset with the same portfolio or risky

assets – the tangency portfolio in Figure 1.

In the presence of a risk-free asset, the investor allocates fractions x of wealth to the risky

assets and the remainder (1 − ι′x) to the risk-free asset. The portfolio return is therefore

Rp,t+1 = x′Rt+1 +(1− ι′x)Rf
t = x′rt+1 +Rf

t and the mean-variance problem can be expressed

in terms of excess returns:

min
x

var[rp] = x′Σx subject to E[rp] = x′µ = µ̄. (2.5)

The solution to this problem is much simpler than in the case without a risk-free asset:

x? =
µ̄

µ′Σ−1µ
︸ ︷︷ ︸

λ

×Σ−1µ, (2.6)

where λ is a constant that scales proportionately all elements of Σ−1µ to achieved the desired

portfolio risk premium µ̄. From this expression, the weights of the tangency portfolio can be

found simply by noting that the weights of the tangency portfolio must sum to one, since it

lies on the mean-variance frontier of the risky assets. For the tangency portfolio:

λtgc =
1

ι′Σ−1µ
and µ̄tgc =

µ′Σ−1µ

ι′Σ−1µ
. (2.7)

The formulations (2.1)-(2.2) or (2.5) of the mean-variance problem generate a mapping

from a pre-determined portfolio risk premium µ̄ to the minimum-variance portfolio weights

x? and resulting portfolio return volatility
√

x?′Σx?. The choice of the desired risk pre-

mium, however, depends inherently on the investor’s tolerance for risk. To incorporate the

investor’s optimal trade-off between expected return and risk, the mean-variance problem

can be formulated alternatively as the following expected utility maximization:

max
x

E[rp,t+1]− γ

2
var[rp,t+1], (2.8)
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where γ measures the investor’s level of relative risk aversion. The solution to this maxi-

mization problem is given by equation (2.6) with λ = 1/γ, which explicitly links the optimal

allocation to the tangency portfolio to the investor’s tolerance for risk.

The obvious appeal of the Markowitz paradigm is that it captures the two fundamental

aspects of portfolio choice – diversification and the trade-off between expected return and risk

– in an analytically tractable and easily extendable framework. This has made it the de-facto

standard in the finance profession. Nevertheless, there are several common objections to the

Markowitz paradigm. First, the mean-variance problem only represents an expected utility

maximization for the special case of quadratic utility, which is a problematic preference spec-

ification because it is not monotonically increasing in wealth. For all other utility functions,

the mean-variance problem can at best be interpreted as a second-order approximation of

expected utility maximization. Second, but related, the mean-variance problem ignores any

preferences toward higher-order return moments, in particular toward return skewness and

kurtosis. In the context of interpreting the mean-variance problem as a second-order ap-

proximation, the third and higher-order terms may be economically non-negligible. Third,

the mean-variance problem is inherently a myopic single-period problem, whereas we think

of most investment problems as involving longer horizons with intermediate portfolio rebal-

ancing. Each criticism has prompted numerous extensions of the mean-variance paradigm.1

However, the most straightforward way to address all these issues, and particularly the third,

is to formulate the problem explicitly as an intertemporal expected utility maximization.

2.2 Intertemporal Expected Utility Maximization

2.2.1 Discrete Time Formulation

Consider the portfolio choice at time t of an investor who maximizes the expected utility of

wealth at some future date t + τ by trading in N risky assets and a risk-free asset at times

t, t + 1, . . . , t + τ − 1. The investor’s problem is:

V (τ,Wt, zt) = max
{xs}t+τ−1

s=t

Et

[
u(Wt+τ )

]
, (2.9)

1The majority of extensions deal with incorporating higher-order moments. For example, in Brandt,
Goyal, Santa-Clara, and Stroud (2003), we propose a forth-order approximation of expected utility maxi-
mization that captures preferences toward skewness and kurtosis. While the optimal portfolio weights cannot
be solved for analytically, we provide a simple and efficient numerical procedure. Other work on incorporat-
ing higher-order moments include Kraus and Litzenberger (1976), Kane (1982), Simaan (1993), de Athayde
and Flores (2004), and Harvey, Liechty, Liechty, and Müller (2004).
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subject to the budget constraint:

Ws+1 = Ws

(
xs
′rs+1 + Rf

s

)
(2.10)

and having positive wealth each period, Ws ≥ 0. The function u(·) measures the investor’s

utility of terminal wealth Wt+τ , and the subscript on the expectation denotes that the ex-

pectation is taken conditional on the information set zt available at time t. For concreteness,

think of zt as a K < ∞ dimensional vector of state variables and assume that yt ≡ [rt, zt]

evolves as a first-order Markov process with transition density f(yt|yt−1).
2

The case τ = 1 corresponds to a static single-period optimization. In general, however,

the portfolio choice is a more complicated dynamic multiperiod problem. In choosing at date

t the optimal portfolio weights xt conditional on having wealth Wt and information zt, the

investor takes into account that at every future date s the portfolio weights will be optimally

revised conditional on the then available wealth Ws and information zs.

The function V (τ,Wt, zt) denotes the investor’s expectation at time t, conditional on

the information zt, of the utility of terminal wealth Wt+τ generated by the current wealth

Wt and the sequence of optimal portfolio weights {x?
s}t+τ−1

s=t over the next τ periods. V (·)
is called the value function because it represents the value, in units of expected utils, of

the portfolio choice problem to the investor. Think of the value function as measuring the

quality of the investment opportunities available to the investor. If the current information

suggests that investment opportunities are good, meaning, for example, that the sequence of

optimal portfolio choices is expected to generate an above average return with below average

risk, the current value of the portfolio choice problem to the investor is high. If investment

opportunities are poor, the value of the problem is low.

The dynamic nature of the multiperiod portfolio choice is best illustrated by expressing

the problem (2.9) as a single-period problem with state-dependent utility V (τ−1,Wt+1, zt+1)

of next period’s wealth Wt+1 and information zt+1:

V (τ, Wt, zt) = max
{xs}t+τ−1

s=t

Et

[
u
(
Wt+τ

)]

= max
xt

Et

[
max

{xs}t+τ−1
s=t+1

Et+1

[
u
(
Wt+τ

)]]
(2.11)

= max
xt

Et

[
V

(
τ − 1,Wt(xt

′rt+1 + Rf
t ), zt+1

)]
,

subject to the terminal condition V (0,Wt+τ , zt+τ ) = u(Wt+τ ). The second equality follows

2The first-order assumption is innocuous because zt can contain lagged values.
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from the law of iterated expectations, and the third equality uses the definition of the value

function as well as the budget constraint. It is important to recognize that the expectation in

the third line is taken over the joint distribution of next period’s returns rt+1 and information

zt+1, conditional on the current information zt.

Equation (2.11) is the so-called Bellman equation and is the basis for any recursive

solution of the dynamic portfolio choice problem. The first-order conditions (FOCs) for an

optimum at each date t are:3

Et

[
V2

(
τ − 1,Wt(xt

′rt+1 + Rf
t ), zt+1

)
rt+1

]
= 0, (2.12)

where Vi(·) denotes the partial derivative with respect to the ith argument of the value

function. These FOCs make up a system of nonlinear equations involving possibly high-

order integrals and can in general be solved for xt only numerically.

CRRA Utility Example

For illustrative purposes, consider the case of constant relative risk aversion (CRRA) utility

u(Wt+τ ) = Wt+τ
1−γ/(1 − γ), where γ denotes the coefficient of relative risk aversion. The

Bellman equation then simplifies to:

V (τ,Wt, zt) = max
xt

Et

[
max

{xs}t+τ−1
s=t+1

Et+1

[Wt+τ
1−γ

1− γ

]]

= max
xt

Et

[
max

{xs}t+τ−1
s=t+1

Et+1

[(
Wt

∏t+τ−1
s=t (xs

′rs+1 + Rf
s )

)1−γ

1− γ

]]
(2.13)

= max
xt

Et

[ (
Wt(xt

′rt+1+ Rf
t )

)1−γ

1− γ
︸ ︷︷ ︸

u
(
Wt+1

)
max

{xs}t+τ−1
s=t+1

Et+1

[( ∏t+τ−1
s=t+1(xs

′rs+1 + Rf
s )

)1−γ
]

︸ ︷︷ ︸
ψ(τ − 1, zt+1)

]

In words, with CRRA utility the value function next period, V (τ − 1,Wt+1, zt+1), is equal to

the product of the utility of wealth u(Wt+1) and a function ψ(τ−1, zt+1) of the horizon τ−1

and the state variables zt. Furthermore, since the utility function is homothetic in wealth we

can, without loss of generality, normalize Wt = 1. It follows that the value function depends

only on the horizon and state variables, and that the Bellman equation is:

1

1− γ
ψ(τ, zt) = max

xt

Et

[(
xt
′rt+1 + Rf

t

)1−γ

1− γ
ψ

(
τ − 1, zt+1

)]
. (2.14)

3As long as the utility function is concave, the second-order conditions are satisfied.
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The corresponding FOCs are:

Et

[(
xt
′rt+1 + Rf

t

)−γ
ψ

(
τ − 1, zt+1

)
rt+1

]
= 0, (2.15)

which, despite being simpler than in the general case, can still only be solved numerically.

The Bellman equation for CRRA utility illustrates how the dynamic and myopic portfolio

choices can differ. If the excess returns rt+1 are contemporaneously independent of the

innovations to the state variables zt+1, the optimal τ and one-period portfolio choices at date

t are identical because the conditional expectation in the Bellman equation factors into a

product of two conditional expectations. The first expectation is of the utility of next period’s

wealth u(Wt+1) and the second is of the function of the state variables ψt+1

(
τ−1, zt+1

)
. Since

the latter expectation does not depend on the portfolio weights, the FOCs of the multiperiod

problem are the same as those of the single-period problem. If, in contrast, the excess returns

are not independent of the innovations to the state variables, the conditional expectation

does not factor, the FOCs are not the same, and, as a result, the dynamic portfolio choice

may be substantially different from the myopic portfolio choice. The differences between the

two policies are called hedging demands because by deviating from the single-period portfolio

choice the investor tries to hedge against changes in the investment opportunities.

More concretely, consider as data generating process f(yt|yt−1) the following restricted

and homoskedastic vector auto-regression (VAR) for the excess market return and dividend

yield (in logs):4 [
ln(1 + rt+1)

ln dpt+1

]
= β0 + β1 ln dpt + εt+1, (2.16)

where dpt+1 denotes the dividend-to-price ratio and εt+1
iid∼ MVN[0, Σ]. Table 1 presents OLS

estimates of this return model for quarterly real data on the value weighted CRSP index

and 90-day Treasury bill rates from April 1952 through December 1996.5 The equation-by-

equation adjusted R2s are 2.3% and 89.3%, reflecting the facts that is it quite difficult to

forecast excess returns and that the dividend yield is highly persistent and predictable.

Taking these estimates of the data generating process as the truth, the FOCs (2.15) can

4This data generating process is motivated by the evidence of return predictability by the dividend yield
(e.g., Campbell and Shiller (1988), Fama and French (1988)) and has been used extensively in the portfolio
choice literature (e.g., Kandel and Stambaugh (1996), Campbell and Viceira (1999), Barberis (2000)).

5Note that the evidence of return predictability by the dividend yield has significantly weakened over the
past seven years (1997–2003) (e.g., Goyal and Welch (2003), Ang and Bekaert (2003)). I ignore this most
recent sample period for illustrative purposes and to reflect the literature on portfolio choice under return
predictability by the dividend yield (e.g., Kandel and Stambaugh (1996), Campbell and Viceira (1999),
Barberis (2000)). However, keep in mind that the results do not necessarily reflect the current data.
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Dependent
variable Intercept ln dpt var[εt+1] (×10−3)

ln(1 + rt+1) 0.2049 0.0568
(0.0839) (0.0249)

[
6.225 −6.044

−6.044 6.316

]

ln dpt+1 -0.1694 0.9514
(0.0845) (0.0251)

Table 1: OLS estimates of the VAR using quarterly real data on the value
weighted CRSP index and 90-day Treasury bill rates from April 1952 through
December 1996. Standard errors in parentheses.
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Figure 2: Plot A shows the optimal fraction of wealth invested in stocks as a
function of the dividend yield for a CRRA investor with one-quarter horizon
and relative risk aversion of two (solid line), five (dashed-dotted line), or ten
(dotted line). Plot B shows the corresponding annualize certainty equivalent
rates of return (in percent).

be solved numerically using a variety of dynamic programming methods (see Judd (1998) for

a review of numerical methods for dynamic programming). Figure 1 presents the solution to

the single-period (one-quarter) problem. Plot A shows the optimal fraction of wealth invested

in stocks x?
t as a function of the dividend yield. Plot B shows the corresponding annualized

certainty equivalent rate of return Rce
t (τ), defined as the riskfree rate that makes the investor

indifferent between holding the optimal portfolio and earning the certainty equivalent rate

over the next τ periods.6 The solid, dashed-dotted, and dotted lines are for relative risk

aversion γ of two, five, and ten, respectively.

At least three features of the solution to the single-period problem are noteworthy. First,

6For CRRA utility, the certainty equivalent rate is defined by
[
Rce

t (τ)Wt

]1−γ
/(1− γ) = V (τ, Wt, zt).
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both the optimal allocation to stocks and the certainty equivalent rate increase with the

dividend yield, which is consistent with the fact that the equity risk premium increases with

the dividend yield. Second, the extent to which the investor tries to time the market decreases

with risk aversion. The intuition is simple. When the risk premium increases, stocks become

more attractive (higher expected return for the same level of risk), and consequently the

investors allocates more wealth to stocks. As the stock allocation increases, the mean of

the portfolio return increases linearly while the variance increases quadratically and hence

at some point increases faster than the mean. Ignoring higher-order moments, the optimal

allocation sets the expected utility gain from a marginal increase in the portfolio mean to

equal the expected utility loss from the associated increase in the portfolio variance. The

willingness to trade off expected return for risk at the margin depends on the investor’s risk

aversion. Third, the benefits from market timing also decrease with risk aversion. This is

because a more risk averse investor allocates less wealth to stocks and therefore has a lower

expected portfolio return and because, even for the same expected portfolio return, a more

risk averse investor requires a smaller incentive to abstain from risky investments.

Figure 2 presents the solution to the multiperiod portfolio choice for horizons τ ranging

from one quarter to 10 years for an investor with γ = 5 (corresponding to the dashed-dotted

lines in Figure 1). Rather than plotting the entire policy fuction for each horizon, plot A

shows only the allocations for current dividend yields of 2.9% (25th percentile, dotted line),

3.5% (median, dashed-dotted line), and 4.1% (75th percentile, solid line). Plot B shows

the expected utility gain, measured by the increase in the annualized certainty equivalent

rates (in percent), from implementing the dynamic multiperiod portfolio policy as opposed

to making a sequence of myopic single-period portfolio choices.

It is clear from plot A that the optimal portfolio choice depends on the investor’s horizon.

At the median dividend yield, for example, the optimal allocation is 58% stocks for a one-

quarter horizon (one period), 66% stocks for a one-year horizon (four periods), 96% stocks

for a five-year horizon (20 periods), and 100% stocks for all horizons longer than six years

(24 periods). The differences between the single-period allocations (23%, 58%, and 87%

stocks at the 25th, 50th, and 75th percentiles of the dividend yield, respectively) and the

corresponding multiperiod allocations represent the investor’s hedging demands. Plot B

shows that these hedging demands can lead to substantial increases in expected utility. At

the median dividend yield, the increase in the certainty equivalent rate is 2 basis points per

year for the one-year problem, 30 basis points per year for the five-year problem, and 57

basis points per year for the ten-year problem. Although these gains are small relative to

the level of the certainty equivalent rate (5.2% at the median dividend yield), they are large
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Figure 3: Plot A shows the optimal fraction of wealth invested in stocks as
a function of the investment horizon for a CRRA investor with relative risk
aversion of five conditional on the current dividend yield being equal to 2.9
(dotted line), 3.5 (dashed-dotted line), and 4.1 (solid line) percent. Plot B
shows the corresponding increase in the annualized certainty equivalent rates
of return from investing optimally as opposed to myopically (in percent).

when we ask “how much wealth is the investor willing to give up today to invest optimally,

as opposed to myopically, for the remainder of the horizon?” The answer is less than 0.1%

for a one-year investor, but 1.5% for a five-year investor and 5.9% for a ten-year investor.

Although it is not the most realistic data generating process, the homoskedastic VAR has

pedagogical value. First, it demonstrates that in a multiperiod context the optimal portfolio

choice can be substantially different from a sequence of single-period portfolio choices, both

in terms of allocations and expected utilities. Second, it illustrates the mechanism by which

hedging demands arise. The expected return increases with the dividend yield and the higher-

order moments are constant. A high (low) dividend yield therefore implies a relatively high

(low) value of the portfolio choice problem. In a multiperiod context, this link between

the dividend yield and the value of the problem means that the investor faces not only the

uncertainty inherent in returns but also uncertainty about whether in the future the dividend

yield will be higher, lower, or the same and whether, as a result, the investment opportunities

will improve, deteriorate or remain the same, respectively. Analogous to diversifying cross-

sectionally the return risk, the investor wants to smooth intertemporally this risk regarding

future investment opportunities. Since the VAR estimates imply a large negative correlation

between the stock returns and innovations to the dividend yield, the investment opportunities

risk can be smoothed quite effectively by over-investing in stocks, relative to the myopic

allocation. By over-investing, the investor realizes a greater gain when the return is positive

and a greater loss when it is negative. A positive return tends to be associated with a drop in

the dividend yield and an expected utility loss due to deteriorated investment opportunities in
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the future. Likewise, a negative return tends to be associated with a rise in the dividend yield

and an expected utility gain due to improved investment opportunities. Thus, the financial

gain (loss) from over-investing partially offsets the expected utility loss (gain) associated

with the drop (rise) in the dividend yield (hence, the name “hedging demands”).

2.2.2 Continuous Time Formulation

The intertemporal portfolio choice problem can alternatively be expressed in continuous

time. The main advantage of the continuous time formulation is its analytical tractability.

As Merton (1975) and the continuous time finance literature that followed demonstrates,

stochastic calculus allows us to solve in closed form portfolio choice problems in continuous

time that are analytically intractable in discrete time.7

The objective function in the continuous time formulation is the same as in equation (2.9),

except that the maximization is over a continuum of portfolio choices xs, with t ≤ s < t+ τ ,

because the portfolio is rebalanced at every instant in time. Assuming that the risky asset

prices pt and the vector of state variables evolve jointly as correlated Itô vector processes:

dpt

pt

− rdt = µp(zt, t)dt + Dp(zt, t)dBp
t

dzt = µz(zt, t)dt + Dz(zt, t)dBz
t ,

(2.17)

the budget constraint is:

dWt

Wt

=
(
xt
′µp

t + r
)
dt + xt

′Dp
t dBp

t , (2.18)

Using the abbreviated notation ft = f(zt, t), µp
t and µz

t are N and K dimensional conditional

mean vectors, Dp
t and Dz

t are N ×N and K ×K conditional diffusion matrices that imply

covariance matrices Σp
t = Dp

t D
p′
t and Σz

t = Dz
t D

z′
t , and Bp

t and Bz
t are N and K dimensional

vector Brownian motion processes with N ×K correlation matrix ρt. Finally, r denotes here

the instantaneous riskfree rate (assumed constant for notational convenience).

The continuous time Bellman equation is (Merton (1969)):

0 = max
xt

[
V1(·) + Wt

(
xt
′µp

t + r
)
V2(·) + µz′

t V3(·)+
1

2
W 2

t xt
′Σp

t xt V2 2(·) + Wtxt
′ Dp

t ρt
′ Dz′

t V2 3(·) +
1

2
tr[Σz

t V3 3(·)]
]
,

(2.19)

7See Shimko (1999) for an introduction to stochastic calculus. Mathematically more rigorous treatments
of the material can be found in Karatzas and Shreve (1991) and Steele (2001).
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subject to the terminal condition V (0,Wt+τ , zt+τ ) = u(Wt+τ ).

As one might expect, equation (2.19) is simply the limit, as ∆t→0, of the discrete time

Bellman equation (2.11). To fully appreciate this link between the discrete and continuous

time formulations, rearrange equation (2.11) as:

0 = max
xt

Et

[
V (τ − 1,Wt+1, zt+1)− V (τ,Wt, zt)

]
(2.20)

and take the limit of ∆t → 0:

0 = max
xt

Et

[
dV (τ,Wt, zt)

]
. (2.21)

Then, apply Itô’s lemma to the value function to derive:

dV (·) = V1(·)dt + V2(·)dWt + V3(·)dzt + V2 2(·)dWt
2 + V2 3(·)dWtdzt + V3 3(·)dzt

2. (2.22)

Finally, take the expectation of equation (2.22), which picks up the drifts of dWt, dzt, dWt
2,

dWt dzt, and dzt
2 (the second-order processes must be derived through Itô’s lemma), plug it

into equation (2.21), and cancel out the common term dt. The result is equation (2.19).

The continuous time FOCs are:

µp
t V2(·) + Wt xt

′Σp
t V2 2(·) + Dp

t ρt
′ Dz′ V2 3 = 0, (2.23)

which we can solve for the optimal portfolio weights:

x?
t = − V2(·)

Wt V2 2(·) (Σp
t )
−1 µp

t

︸ ︷︷ ︸
myopic demand

− V2(·)
Wt V2 2(·)

V2 3(·)
V2(·) (Σp

t )
−1 Dp

t ρt
′ Dz′

t

︸ ︷︷ ︸
hedging demand

. (2.24)

This analytical solution illustrates more clearly the difference between the dynamic and

myopic portfolio choice. The optimal portfolio weights x?
t are the sum of two terms, the first

being the myopically optimal portfolio weights and the second representing the difference

between the dynamic and myopic solutions. Specifically, the first term depends on the

ratio of the first to second moments of excess returns and on the inverse of the investor’s

relative risk aversion γt≡−WtV2 2(·)/V2(·). It corresponds to holding a fraction 1/γt in the

tangency portfolio of the instantaneous mean-variance frontier. The second term depends

on the projection of the state variable innovations dBz
t onto the return innovations dBp

t ,

which is given by (Σp
t )
−1 Dp

t ρt
′ Dz′

t , on the inverse of the investor’s relative risk aversion,
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and on the sensitivity of the investor’s marginal utility to the state variables V2 3(·)/V2(·).
The projection delivers the weights of K portfolios that are maximally correlated with the

state variable innovations and the derivatives of marginal utility with respect to the state

variables measure how important each of these state variables is to the investor. Intuitively,

the investor takes positions in each of the maximally correlated portfolios to partially hedge

against undesirable innovations in the state variables. The maximally correlated portfolios

are therefore called “hedging portfolios” and the second term in the optimal portfolio weights

is labeled the hedging demand. It is important to note that both the myopic and hedging

demands are scaled equally by relative risk aversion and that the trade-off between holding

a myopically optimal portfolio and intertemporal hedging is determined by the derivatives

of marginal utility with respect to the state variables.

CRRA Utility Example Continued

To illustrate the tractability of the continuous time formulation, consider again the CRRA

utility example. Conjecture that the value function has the separable form:

V (τ,Wt, zt)=
W 1−γ

t

1− γ
ψ(τ, zt), (2.25)

which implies that the optimal portfolio weights are:

x?
t =

1

γ
(Σp

t )
−1 µp

t +
1

γ

ψ2(·)
ψ(·) (Σp

t )
−1 Dp

t ρt
′ Dz′

t . (2.26)

This solution is sensible given the well-known properties of CRRA utility. Both the tangency

and hedging portfolio weights are scaled by a constant 1/γ and the relative importance of

intertemporal hedging, given by ψ2(·)/ψ(·), is independent of wealth.

Plugging the derivatives of the value function (2.25) and the optimal portfolio weights (2.26)

into the Bellman equation (2.19), yields the nonlinear differential equation:

0 = ψ1(·) + (1− γ)
(
x?

t
′µp

t + r
)
ψ(·) + µz′

t ψ2(·)−
1

2
γ(1− γ) x?

t
′Σp

t x
?
t ψ(·) + (1− γ)x?

t
′ Dp

t ρt
′ Dz

t ψ2(·) +
1

2
tr[Σz

t ψ2 2(·)].
(2.27)

The fact that this equation, which implicitly defines the function ψ(τ, zt), does not depend

on the investor’s wealth Wt confirms the conjecture of the separable value function.

Continuous Time Portfolio Policies in Discrete Time

Since the continuous time Bellman equation is the limit of its discrete time counterpart, it is
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tempting to think that the solutions to the two problems share the same limiting property.

Unfortunately, this presumption is wrong. The reason is that the continuous time portfolio

policies are often inadmissible in discrete time because they cannot guarantee non-negative

wealth unless the portfolio is rebalanced at every instant.

Consider a simpler example of logarithmic preferences (CRRA utility with γ = 1) and

iid log-normal stock returns with annualized risk premium of 5.7% and volatility of 16.1%

(consistent with the VAR in the previous section). In the continuous time formulation, the

optimal stock allocation is x?
t = 0.057/0.1612 = 2.20, which means that the investor borrows

120% of wealth to invest a total of 220% in stocks. Technically, such levered position is

inadmissable over any discrete time interval, irrespective of how short it is. The reason is

that under log-normality the gross return on stocks over any finite interval can be arbitrarily

close to zero, implying a positive probability that the investor cannot repay the loan next

period. This constitutes a possible violation of the no-bankruptcy constraint Ws ≥ 0 and,

with CRRA utility, can lead to infinite disutility. The continuous time solution is therefore

inadmissable in discrete time, and the optimal discrete-time allocation is x?
t ≤ 1.

Whether this inadmissability is important enough to abandon the analytical convenience

of the continuous time formulation is up to the researcher to decide. On the one hand, the

probability of bankruptcy is often very small. In the log utility example, for instance, the

probability of realizing a sufficiently negative stock return over the period of one quarter is

only 1.3×10−9. On the other hand, in reality an investor always faces some risk of loosing all,

or almost all wealth invested in risky securities due to an extremely rare but severe event,

such as a stock market crash, the collapse of the financial system, or investor fraud.8

2.3 When is it Optimal to Invest Myopically?

Armed with the discrete and continuous time formulations of the portfolio choice problem,

we can be more explicit about when it is optimal to invest myopically. The myopic portfolio

choice is an important special case for practitioners and academics alike. There are, to

my knowledge, few financial institutions that implement multiperiod investment strategies

involving hedging demands.9 Furthermore, until recently the empirically oriented academic

8Guided by this rare events argument, there are at least two ways to formally bridge the gap between
the discrete and continuous time solutions. We can either introduce the rare events through jumps in the
continuous time formulation (e.g., Longstaff, Liu, and Pan (2003)) or allow the investor to purchase insurance
against the rare events through put options or other derivatives in the discrete time formulation.

9A common justification from practitioners is that the expected utility loss from errors that could creep
into the solution of a complicated dynamic optimization problem outweighs the expected utility gain from
investing optimally as opposed to myopically. Recall that in the dividend yield predictability case the gain

15



literature on portfolio choice was focused almost exclusively on single-period problems, in

particular the mean-variance paradigm of Markowitz (1952) discussed in Section 2.1.

In addition to the obvious case of having a single-period horizon, it is optimal to invest

myopically under each of the following three assumptions:

Constant Investment Opportuntities

Hedging demands only arise when the investment opportunities vary stochastically through

time. With constant investment opportunities, the value function does not depend on the

state variables, so that zt drops out of the discrete time FOCs (2.12) and V2 3(·) = 0 in the

continuous time solution (2.24). The obvious case of constant investment opportunities is iid

returns. However, the investment opportunities can be constant even when the conditional

moments of returns are stochastic. For example, Nielsen and Vassalou (2002) show that in

the context of the diffusion model (2.17), the investment opportunities are constant as long

as the instantaneous riskfree rate and the Sharpe ratio of the optimal portfolio of an investor

with logarithmic preferences are constant. The conditional means, variances, and covariances

of the individual assets that make up this log-optimal portfolio can vary stochastically.

Stochastic but Unhedgable Investment Opportunities

Even with stochastically varying investment opportunities, hedging demands only arise when

the investor can use the available assets to hedge against changes in future investment op-

portunities. If the variation is completely independent of the returns, the optimal portfolio

is again myopic. In discrete time, independence of the state variables and returns implies

that the expectation in the Bellman equation can be decomposed into an expectation with

respect to the portfolio returns and an expectation with respect to the state variables. The

FOCs then turn out to be the same as in the single-period problem. In continuous time, a

correlation ρt = 0 between the return and state variable innovations eliminates the hedging

demands term in the optimal portfolio weights.

Logarithmic Utility

Finally, the portfolio choice reduces to a myopic problem when the investor has logarithmic

preferences u(W ) = ln(W ). The reason is that with logarithmic preferences the utility of

terminal wealth is simply the sum of the utilities of single period portfolio returns:

ln(Wt+τ ) = ln
(
Wt

t+τ−1∏
s=t

(
x′srs+1 + Rf

s

))
= ln Wt +

t+τ−1∑
s=t

ln
(
x′srs+1 + Rf

s

)
. (2.28)

for CRRA utility is only a few basis points per year.
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The portfolio weights that maximize the expectation of the sum are the same as the ones

that maximize the expectations of each element of the sum, which are, by definition, the

sequence of single-period portfolio weights. Therefore, the portfolio choice is myopic.

2.4 Modelling Issues and Extensions

2.4.1 Preferences

The most critical ingredient to any portfolio choice problem is the objective function. His-

torically, the academic literature has focused mostly on time-separable expected utility with

hyperbolic absolute risk aversion (HARA), which includes as special cases logarithmic util-

ity, power or constant relative risk aversion (CRRA) utility, negative exponential or constant

absolute risk aversion (CARA) utility, and quadratic utility. The reason for this popular-

ity is the fact that HARA is a necessary and sufficient condition to obtain asset demand

functions expressed in currency units, not percent of wealth, that are linear in wealth (Mer-

ton (1969)). In particular, the portfolio choice expressed in currency units is proportional to

wealth with CRRA utility and independent of wealth with CARA utility. Alternatively, the

corresponding portfolio choice expressed in percent of wealth is independent of wealth with

CRRA utility and inversely proportional to wealth with CARA utility.

In the HARA class, power or CRRA preferences are by far the most popular because the

value function turns out to be homogeneous in wealth (see the examples above). However,

CRRA preferences are not without faults. One critique that is particularly relevant in the

portfolio choice context is that with CRRA the elasticity of intertemporal substitution is

directly tied to the level of relative risk aversion (one is the reciprocal of the other), which

creates an unnatural link between two very different aspects of the investor’s preferences –

the willingness to substitute consumption intertemporally versus the willingness to take on

risk. Epstein and Zin (1989) and Weil (1989) propose a generalization of CRRA preferences

based on recursive utility that severs this link between intertemporal substitution and risk

aversion. Campbell and Viceira (1999) and Schroder and Skiadas (1999)) consider these

generalized CRRA preferences in portfolio choice problems.

A number of stylized facts of actual investment decisions and professional investment

advice are difficult to reconcile with HARA or even Epstein-Zin-Weil preferences. The most

prominent empirical anomaly is the strong dependence of observed and recommended asset

allocations on the investment horizon.10 There have been a number of attempts to explain

10E.g., see Bodie and Crane (1997), Canner, Mankiw, and Weil (1997), and Ameriks and Zeldes (2001).
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this horizon puzzle using preferences in which utility is defined with respect to a non-zero

and potentially time-varying lower bound on wealth or consumption, including a constant

subsistence level (Samuelson (1989), Jagannathan and Kocherlakota (1996)), consumption

racheting (Dybvig (1995)), and habit formation (Lax (2002), Schroder and Skiadas (2002)).

Experiments by psychologists, sociologists, and behavioral economists have uncovered a

variety of more fundamental behavioral anomalies. For example, the way experimental sub-

jects make decisions under uncertainty tends to systematically violate the axioms of expected

utility theory (e.g., Camerer (1995)). To capture these behavioral anomalies in an optimiz-

ing framework, several non-expected utility preference formulations have been proposed,

including loss aversion and prospect theory (Kahneman and Tversky (1979)), anticipated or

rank-dependent utility (Quiggin (1982)), ambiguity aversion (Gilboa and Schmeidler (1989)),

and disappointment aversion (Gul (1991)). These non-expected utility preferences have

been applied to portfolio choice problems by Benartzi and Thaler (1995), Shefrin and Stat-

man (2000), Aı̈t-Sahalia and Brandt (2001), Liu (2002b), Ang, Bekaert, and Liu (2003), and

Gomes (2003), among others.

Finally, there are numerous applications of more practitioner-oriented objective functions,

such as minimizing the probability of a short-fall (Roy (1952), Telser (1956), Kataoka (1963)),

maximizing expected utility with either absolute or relative portfolio insurance (Black and

Jones (1987), Perold and Sharpe (1988), Grossman and Vila (1989)), maximizing expected

utility subject to beating a stochastic benchmark (Browne (1999), Tepla (2001)), and max-

imizing expected utility subject to maintaining a critical value at risk (VaR) (Basak and

Shapiro (2001), Cuoco, He, and Issaenko (2001), Alexander and Baptista (2002)).

2.4.2 Intermediate Consumption

Both the discrete and continuous time formulations of the portfolio choice problem can be

amended to accommodate intermediate consumption. Simply add to the utility of terminal

wealth (interpreted then as the utility of bequests to future generations) the utility of the

life-time consumption stream (typically assumed to be time-separable and geometrically

discounted) and replace in the budget constraint the current wealth Wt with the current

wealth net of consumption (1 − ct)Wt, where ct denotes the fraction of wealth consumed.

The investor’s problem with intermediate consumption then is to choose at each date t the

optimal consumption ct as well as the asset allocation xt.

For example, the discrete time problem with time-separable CRRA utility of consumption
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and without bequests is:

V (τ,Wt, zt) = max
{xs,cs}t+τ−1

s=t

Et

[ t+τ∑
s=t

βs−t (ctWt)
1−γ

1− γ

]
, (2.29)

subject to the budget constraint:

Ws+1 = (1− cs)Ws

(
xs
′rs+1 + Rf

s

)
, (2.30)

the no-bankruptcy constraint Ws ≥ 0, and the terminal condition ct+τ = 1. Following a few

steps analogous to the case without intermediate consumption, the Bellman equation can in

this case be written as:

1

1− γ
ψ(τ, zt) = max

xt,ct


 c1−γ

t

1− γ
+ β Et

[(
(1− ct)

(
xt
′rt+1 + Rf

t

))1−γ

1− γ
ψ(τ − 1, zt+1)

]

 , (2.31)

where ψ(τ, zt) is again a function of the horizon and state variables that is in general different

from the case without intermediate consumption.

Although the Bellman equation with intermediate consumption is more involved than

without, in the case of CRRA utility the problem is actually easier to handle numeri-

cally because the value function can be solved for explicitly from the envelope condition

∂V (τ, W, z)/∂W = ∂u(cW )/∂(cW ). Specifically, ψ(τ, z) = c(τ, z)−γ for γ > 0 and γ 6= 1 or

ψ(τ, z) = 1 for γ = 1. This explicit form of the value function implies that in a backward-

recursive dynamic programming solution to the policy functions x(τ, z) and c(τ, z), the value

function at date t+1, which enters the FOCs at date t, is automatically provided by the con-

sumption policy at date t + 1 obtained in the previous recursion. Furthermore, with CRRA

utility the portfolio and consumption choices turn out to be sequential. Since the value

function is homothetic in wealth and the consumption choice ct only scales the investable

wealth (1 − ct)Wt, the FOCs for the portfolio weights xt are independent of ct. There-

fore, the investor first makes the portfolio choice ignoring consumption and then makes the

consumption choice given the optimal portfolio weights.

As Wachter (2002) demonstrates, the economic implication of introducing intermediate

consumption in a CRRA framework is to shorten the effective horizon of the investor. While

the myopic portfolio choice is the same with and without intermediate consumption, the

hedging demands are quite different in the two cases. In particular, Wachter shows that the

hedging demands with intermediate consumption are a weighted sum of the hedging demands
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of a sequence of terminal wealth problems, analogous to the price of a coupon-bearing bond

being a weighted sum of the prices of a sequence of zero-coupon bonds.

2.4.3 Complete Markets

A financial market is said to be complete when all future outcomes (states) are spanned

by the payoffs of traded assets. In a complete market, state-contingent claims or so-called

Arrow-Debreu securities that pay off one unit of consumption in a particular state and zero

in all other states can be constructed for every state. These state-contingent claims can then

be used by investors to place bets on a particular state or set of states.

Markets can be either statically or dynamically complete. For a market to be statically

complete, there must be as many traded assets as there are states, such that investors can

form state-contingent claims as buy-and-hold portfolios of these assets. Real asset markets,

in which there is a continuum of states and only a finite number of traded assets, are at

best dynamically complete. In a dynamically complete market, investors can construct a

continuum of state-contingent claims by dynamically trading in the finite set of base assets.

Dynamic completion underlies, for example, the famous Black and Scholes (1973) model and

the extensive literature on derivatives pricing that followed.11

The assumption of complete markets simplifies not only the pricing of derivatives but,

as Cox and Huang (1989,1991) demonstrate, also the dynamic portfolio choice. Rather

than solve for a dynamic trading strategy in a set of base assets, Cox and Huang solve for

the optimal buy-and-hold portfolio of the state-contingent claims. The intuition is that any

dynamic trading strategy in the base assets generates a particular terminal payoff distribution

that can be replicated by some buy-and-hold portfolio of state-contingent claims. Conversely,

any state contingent claim can be replicated by a dynamic trading strategy in the base assets.

It follows that the terminal payoff distribution generated by the optimal dynamic trading

strategy in the base assets is identical to that of the optimal static buy-and-hold portfolio

of state-contingent claims. Once this static problem is solved (which is obviously much

easier than solving the dynamic optimization), the optimal dynamic trading strategy in the

base assets can be recovered by adding up the replicating trading strategies of each state-

contingent claim position in the buy-and-hold portfolio.

The Cox and Huang (1989,1991) approach to portfolio choice relies on the existence

11Dynamic completion arises usually in a continuous time setting, but Cox, Ross, and Rubinstein (1979)
illustrate that continuous trading is not a critical assumption. They construct an (N+1) state discrete time
economy as a sequence of N binomial economies and show that this statically incomplete economy can be
dynamically completed by trading in only two assets.
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of a state price density or equivalent Martingale measure (see Harrison and Kreps (1979))

and is therefore often referred to as the “Martingale approach” to portfolio choice. Cox

and Huang solve the continuous time HARA problem with intermediate consumption and

confirm that the results are identical to the dynamic programming solution of Merton (1969).

Recent applications of the Martingale approach to portfolio choice problems with frictionless

markets and the usual utility functions include Wachter (2002), who specializes Cox and

Huang’s solution to CRRA utility and a return process similar to the VAR above, Detemple,

Garcia, and Rindisbacher (2003), who show how to recover the optimal trading strategy in

the base assets as opposed to the Arrow-Debreu securities for a more general return processes

using simulations, and Aı̈t-Sahalia and Brandt (2004), who incorporate the information in

option-implied state prices in the portfolio choice problem.

Although originally intended for solving portfolio choice problems in complete markets,

the main success of the Martingale approach has been in the context of problems with

incompleteness due to portfolio constraints, transaction costs, and other frictions, which are

notoriously difficult to solve using dynamic programming techniques. He and Pearson (1991)

explain how to deal with market incompleteness in the Martingale approach. Cvitanic (2001)

surveys the extensive literature that applies the Martingale approach to portfolio choice

problems with different forms of frictions. Another popular use of the Martingale approach

is in the context of less standard preferences (see the references in Section 2.4.1).

2.4.4 Infinite or Random Horizon

Solving an infinite horizon problem is often easier than solving an otherwise identical finite

horizon problem because the infinite horizon assumption eliminates the dependence of the

Bellman equation on time. An infinite horizon problem only needs to be solved for a steady-

state policy, whereas a finite horizon problem must be solved for a different policy each

period. For example, Campbell and Viceira (1999) and Campbell, Chan, and Viceira (2003)

are able to derive approximate analytical solutions to the infinite horizon portfolio choice

of an investor with recursive Epstein-Zin-Weil utility, intermediate consumption, and mean-

reverting expected returns. The same problem with a finite horizon can only be solved

numerically, which is difficult (in particular in the multi-asset case considered by Campbell,

Chan, and Viceira) and the results are not as transparent as an analytical solution.

Intuitively, one would expect the sequence of solutions to a finite horizon problem to

converge to that of the corresponding infinite horizon problem as the horizon increases.12 In

12Merton (1969) proves this intuition for the continuous time portfolio choice with CRRA utility. Kim
and Omberg (1996) provide counter-examples with HARA utility for which the investment problem becomes
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the case of CRRA utility and empirically sensible return processes, this convergence appears

to be quite fast. Brandt (1999), Barberis (2000), and Wachter (2002) all document that 10-

to 15-year CRRA portfolio policies are very similar to their infinite horizon counterparts.

This rapid convergence suggests that the solution to the infinite horizon problem can in

many cases be confidently used to study the properties of long- but finite-horizon portfolio

choice in general (e.g., Campbell and Viceira (1999,2002)).

Having a known finite or an infinite horizon are pedagogical extremes. In reality, an

investor rarely knows the terminal date of an investment, which introduces another source of

uncertainty. In the case of intermediate consumption, the effect of horizon uncertainty can be

substantial because the investor risks either running out of wealth before the terminal date

or leaving behind accidental bequests (e.g., Hakansson (1969), Barro and Friedman (1977)).

An alternative motivation for a random terminal date is to set a finite expected horizon in

an infinite horizon problem to sharpen the approximation of a long-horizon portfolio choice

by its easier to solve infinite horizon counterpart (e.g., Viceira (2001))

2.4.5 Frictions and Background Risks

Arguably the two most realistic features of an investor’s problem are frictions, such as trans-

action costs and taxation, and background risks, which refers to any risks other than those

directly associated with the risky securities. Frictions are particularly difficult to incorporate

because they generally introduce path dependencies in the solution to the portfolio choice

problem. For example, with proportional transaction costs, the costs incurred by rebalancing

depend on both the desired allocations for the next period and the current allocation inher-

ited from the previous period. In the case of capital gains taxes, the basis for calculating

the tax liability generated by selling an asset depends on the price at which the asset was

originally bought. Unfortunately, in the usual backward recursive solution of the dynamic

program, the previous investment decisions are unknown.

Due to its practical relevance, the work on incorporating frictions, transaction costs

and taxation in particular, into portfolio choice problems is extensive and ongoing. Re-

cent papers on transaction costs include Davis and Norman (1990), Duffie and Sun (1990),

Akian, Menaldi, and Sulem (1996) Balduzzi and Lynch (1999), Leland (2001), Liu (2002a),

and Lynch and Tan (2003). The implications of capital gains taxation are considered in

a single-period context by Elton and Gruber (1978) and Balcer and Judd (1987) and in

a multiperiod context by Dammon, Spatt, and Zhang (2001a,2001b), Garlappi, Naik, and

ill-defined at sufficiently long horizons (so-called nirvana solutions).
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Slive (2001), Huang (2001), Leland (2001), DeMiguel and Uppal (2003), Dammon, Spatt,

and Zhang (2004), and Gallmeyer, Kaniel, and Tompaidis (2004), among others.

In principle, background risks encompass all risks faced by an investor other than those

directly associated with the risky securities. The two most common sources of background

risk considered in the academic literature are uncertain labor or entrepreneurial income and

both the investment in and consumption of housing. Recent work on incorporating uncertain

labor or entrepreneurial income include Heaton and Lucas (1997) Koo (1998), Chan and

Viceira (2000), Heaton and Lucas (2000), Viceira (2001), and Gomes and Michaelides (2003).

The role of housing in portfolio choice problems is studied by Grossman and Laroque (1991),

Flavin and Yamashita (2002), Cocco (2000,2004), Hu (2002), Campbell and Cocco (2003),

and Yao and Zhang (2004), among others. The main challenge in incorporating background

risks is to specify a realistic model for the joint distribution of these risks with asset returns

at different horizons and over the investor’s life-cycle.

3 Traditional Econometric Approaches

The traditional role of econometrics in portfolio choice problems is to specify the data gener-

ating process f(yt|yt−1). As straightforward as this seems, there are two different econometric

approaches to portfolio choice problems: plug-in estimation and decision theory. In the plug-

in estimation approach, the econometrician draws inferences about some investor’s optimal

portfolio weights to make descriptive statements, while in the decision theory approach,

the econometrician takes on the role of the investor and draws inferences about the return

distribution to choose portfolio weights that are optimal with respect to these inferences.

3.1 Plug-In Estimation

The majority of the portfolio choice literature, and much of what practitioners do, falls under

the heading of plug-in estimation or calibration, where the econometrician estimates or oth-

erwise specifies the parameters of the data generating process and then plugs these parameter

values into an analytical or numerical solution to the investor’s optimization problem. De-

pending on whether the econometrician treats the parameters as estimates or simply assumes

them to be the truth, the resulting portfolio weights are estimated or calibrated. Estimated

portfolio weights inherit the estimation error of the parameter estimates and therefore are

almost certainly different from the true optimal portfolio weights in finite samples.
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3.1.1 Theory

Single-Period Portfolio Choice

Consider first a single-period portfolio choice problem. The solution of the investor’s expected

utility maximization maps the preference parameters φ (e.g., the risk aversion coefficient γ

for CRRA utility), the state vector zt, and the parameters of the data generating process θ

into the optimal portfolio weights xt:

x?
t = x(φ, zt, θ), (3.1)

where φ is specified ex-ante and zt is observed. Given data YT ≡ {yt}T
t=0, we can typically

obtain unbiased or at least consistent estimates θ̂ of the parameters θ. Plugging these

estimate into equation (3.1) yields estimates of the optimal portfolio weights x̂?
t =x(φ, zt, θ̂).

Assuming θ̂ is consistent with asymptotic distribution
√

T (θ̂ − θ)
T→∞∼ N[0, Vθ] and the

mapping x(·) is sufficiently well-behaved in θ, the asymptotic distribution of the estimator

x̂?
t can be computed using the delta method:

√
T (x̂?

t − x?
t )

T→∞∼ N[0, x3(·)Vθx3(·)′]. (3.2)

To be more concrete, consider the mean-variance problem (2.8). Assuming iid excess

returns with constant risk premia µ and covariance matrix Σ, the optimal portfolio weights

are x? = (1/γ) Σ−1µ. Given excess return data {rt+1}T
t=1, the moments µ and Σ can be

estimated using the following sample analogues:

µ̂ =
1

T

T∑
t=1

rt+1 and Σ̂ =
1

T −N − 2

T∑
t=1

(rt+1 − µ̂)(rt+1 − µ̂)′ (3.3)

(notice the unusual degrees of freedom of Σ̂). Plugging these estimates into the expression

for the optimal portfolio weights gives the plug-in estimates x̂? = (1/γ) Σ̂−1µ̂.

Under the assumption of normality, this estimator is unbiased:

E[x̂?] =
1

γ
E[Σ̂−1] E[µ̂] =

1

γ
Σ−1µ, (3.4)

where the first equality follows from the standard independence of µ̂ and Σ̂, and the second

equality is due to the unbiasedness of µ̂ and Σ̂−1.13 Without normality or with the more

13The unbiasedness of µ̂ is standard. For the unbiasedness of Σ̂−1, recall that with normality, the matrix
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standard 1/T or 1/(T−1) normalization for the sample covariance matrix, the plug-estimator

is generally biased but nonetheless consistent with plim x̂? = x?.

The second moments of the plug-in estimator can be derived by expanding the estimator

around the true risk premia and return covariance matrix. With multiple risky assets,

this expansion is algebraicly tedious because of the non-linearities from the inverse of the

covariance matrix (see Jobson and Korkie (1980)). To illustrate the technique, consider

therefore a single risky asset. Expanding x̂? = (1/γ)µ̂/σ̂2 around both µ and σ2 yields:

x̂? =
1

γ

1

σ2

(
µ− µ̂

)− 1

γ

µ

σ4

(
σ2 − σ̂2

)
. (3.5)

Take variances and rearrange:

var
[
x̂?

]
=

1

γ2

( µ

σ2

)2
(

var[µ̂]

µ2
+

var[σ̂2]

σ4

)
. (3.6)

This expression shows that the imprecision of the plug-in estimator is scaled by the magnitude

of the optimal portfolio weight x? = (1/γ)µ/σ2 and depends on both the imprecision of the

risk premia and volatility estimates, each scaled by their respective magnitudes.

To get a quantitative sense for the estimation error, evaluate equation (3.6) for some

realistic values for µ, σ, var[µ̂] and var[σ̂2]. Suppose, for example, we have ten years of

monthly data on a stock with µ = 6% and σ = 15%. With iid data, the standard error

of the sample mean is std[µ̂] = σ/
√

T = 1.4%. Second moments are generally thought of

as being more precisely estimated than first moments. Consistent with this intuition, the

standard error of the sample variance under iid normality is std[σ̂2] =
√

2σ2/
√

T = 0.3%.

Putting together the pieces, the standard error of the plug-in estimator x̂? for a reasonable

risk aversion of γ = 5 is equal to 14%, which is large relative to the magnitude of the true

x? = 53.3%. This example illustrates a more general point: Portfolio weights tend to be

very imprecisely estimated because the inputs to the estimator are difficult to pin down.

It is tempting to conclude from this example that, at least for the asymptotics, uncer-

tainty about second moments is swamped by uncertainty about first moments. As Cho (2004)

illustrates, however, this conclusion hinges critically on the assumption of iid normality. In

particular, the precision of the sample variance depends on the kurtosis of the data. The fat-

ter are the tails, the more difficult it is to estimate second moments because outliers greatly

Ŝ =
∑T

t=1(rt+1− µ̂)(rt+1− µ̂)′ has a Wishart distribution (the multivariate extension of a chi-squared distri-
bution) with a mean of (T− 1)Σ. Its inverse Ŝ−1 therefore has an inverse Wishart distribution, which has a
mean of (T−N− 2)Σ−1 (see Marx and Hocking (1977)). This implies that Σ̂−1 is an unbiased estimator of
Σ−1 and explains the unusual degrees of freedom.
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affect the estimates. This means that conditional heteroskedasticity, in particular, can con-

siderably inflate the asymptotic variance of the unconditional sample variance. Returning

to the example, suppose that, instead of iid normality, the conditional variance ht of returns

follows a standard GARCH(1,1) process:

ht = ω + αε2
t−1 + βht−1. (3.7)

In this case, the variance of the unconditional sample variance is:

var
[
σ̂2

]
=

2σ4

T

(
1 +

κ

2

) (
1 +

2ρ

1− α− β

)
, (3.8)

where κ denotes the unconditional excess kurtosis of returns and ρ denotes the first-order

autocorrelation of the squared return innovations. Both κ and ρ can be computed from the

GARCH parameters α and β. With reasonable GARCH parameter values of α = 0.0175

and β = 0.9811, the variance of the sample variance is inflated by a factor of 233.3. As a

result, the standard error of x̂? is 105.8%, as compared to 14% under iid normality. While this

example is admittedly extreme (since volatility is close to being non-stationary), it illustrates

the point that both return moments, as well as high-order moments for other preferences,

can contribute to the asymptotic imprecision of plug-in portfolio weight estimates.

Returning to the computationally more involved case of multiple risky assets, Britten-

Jones (1999) derives a convenient way to draw asymptotic inferences about mean-variance

optimal portfolio weights. He shows that the plug-in estimates of the tangency portfolio:

x̂?
tgc =

Σ̂−1µ̂

ι′Σ̂−1µ̂
(3.9)

can be computed from OLS estimates of the slope coefficients b of regressing a vectors of

ones on the matrix of excess returns (without intercept):

1 = b rt+1 + ut+1, (3.10)

where x̂?
tgc = b̂/(ι′b̂). We can therefore use standard OLS distribution theory for b̂ to draw

inferences about x?
tgc . For example, testing whether the weight of the tangency portfolio on

a particular asset equals zero is equivalent to testing whether the corresponding element of b

is zero, which corresponds to a standard t test. Similarly, testing whether an element of x?
tgc

equals a constant c is equivalent to testing whether the corresponding element of b equals

c(ι′b), which is a linear restriction that can be tested using a joint F test.
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Multiperiod Portfolio Choice

The discussion above applies directly to both analytical and approximate solutions of mul-

tiperiod portfolio choice problems, in which the optimal portfolio weights at time t are

functions of the preference parameters φ, the state vector zt, the parameters of the data

generating process θ, and perhaps the investment horizon T − t. In the case of a recursive

numerical solution, however, the portfolio weights at time t depend explicitly on the value

function at time t + 1, which in turn depends on the sequence of optimal portfolio weights

at times {t + 1, t + 2, ..., T− 1}. Therefore, the portfolio weight estimates at time t not only

reflect the imprecision of the parameter estimates but also the imprecision of the estimated

portfolio weights for future periods (which themselves reflect the imprecision of the parame-

ter estimates). To capture this recursive dependence of the estimates, express the mapping

from the parameters to the optimal portfolio weights as a set of recursive functions:

x?
t+τ−1 = x(1, φ, zt+τ−1, θ)

x?
t+τ−2 = x(2, φ, zt+τ−2, θ, x

?
t+τ−1)

x?
t+τ−3 = x(3, φ, zt+τ−3, θ, {x?

t+τ−1, x
?
t+τ−2})

· · ·
x?

t = x(τ, φ, zt, θ, {x?
t+τ−1, ..., x

?
t+1).

(3.11)

In order to compute the asymptotic standard errors of the estimates x̂?
t we also need to

account for the estimation error in the preceding portfolio estimates {x̂?
s}T−1

s=t+1. This is

accomplished by including in the derivatives x4(·) in equation (3.2), also the terms:

T−1∑
s=t+1

∂x(t, φ, zt, θ, {x?
s}T−1

s=t+1)

∂x?
s

∂x?
s

∂θ
. (3.12)

Intuitively, the longer the investment horizon, the more imprecise are the estimates of the

optimal portfolio weights, since the estimation error in the sequence of optimal portfolio

weights accumulates through the recursivety of the solution.

Bayesian Estimation

There is nothing inherently frequentist about the plug-in estimation. Inferences about opti-

mal portfolio weights can be drawn equally well from a Bayesian perspective. Starting with a

posterior distribution of the parameters p(θ|YT ), use the mapping (3.1) or (3.11) to compute

the posterior distribution of the portfolio weights p(x?
t |YT ) and then draw inferences about

x?
t using the moments of this posterior distribution.
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Consider again the mean-variance problem. Assuming normally distributed returns and

uninformative priors, the posterior of µ conditional on Σ−1, p(µ|Σ−1, YT ), is Gaussian with

mean µ̂ and covariance matrix Σ/T . The marginal posterior of Σ−1, p(Σ−1|YT ), is a Wishard

distribution with mean Σ̄−1 = (T−N)Ŝ−1 and T−N degrees of freedom.14 It follows that

the posterior of the optimal portfolio weights x? = (1/γ)Σ−1µ, which can be computed from

p(µ, Σ−1|YT ) ≡ p(µ|Σ−1, YT ) p(Σ−1|YT ), has a mean of (1/γ)Σ̄−1µ̂.15 As is often the case with

uninformative priors, the posterior means, which are the Bayesian estimates for quadratic

loss, coincide with frequentist estimates (except for the difference in degrees of freedom).

Economic Loss

How severe is the statistical error of the plug-in estimates in an economic sense? One way

to answer this question is to measure the economic loss from using the plug-in estimates as

opposed to the truly optimal portfolio weights. An intuitive measure of this economic loss

is the difference in certainty equivalents. In the mean-variance problem (2.8), for example,

the certainty equivalent of the true portfolio weights x? is:

CE = x?′µ− γ

2
x?′Σx? (3.13)

and the certainty equivalent of the plug-in estimates x̂? is:

ĈE = x̂?′µ− γ

2
x̂?′Σx̂?. (3.14)

The certainty equivalent loss is defined as the expected difference between the two:

CE loss = CE− E
[
ĈE

]
, (3.15)

where the expectation is taken with respect to the statistical error of the plug-in estimates

(the certainty equivalents already capture the return uncertainty). Cho (2004) shows that

this certainty equivalent loss can be approximated by:

CE− E
[
ĈE

] ' γ

2
× tr

[
cov[x̂?]Σ

]
. (3.16)

The certainty equivalent loss depends on the level of risk aversion, the covariance matrix

of the plug-in estimates, and the return covariance matrix. Intuitively, the consistency of

the plug-in estimator implies that on average the two portfolio policies generate the same

14See Box and Tiao (1973) for a review of Bayesian statistics.
15Although the posterior of x = (1/γ)Σ−1µ is not particularly tractable, its mean can be easily computed

using the law of iterated expectations E[Σ−1µ] = E
[
E[Σ−1µ|Σ]

]
= E

[
Σ−1E[µ|Σ]

]
= E[Σ−1]µ̂ = Σ̄−1µ̂.
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mean return, so the first terms of the certainty equivalents cancel out. The statistical error

of the plug-in estimates introduces additional uncertainty in the portfolio return, referred

to as parameter uncertainty, which is penalized by the utility function the same way as the

uncertainty inherent in the optimal portfolio returns.

For the mean-variance example with a single risky asset above:

CE loss ' γ

2
× var[x̂?]σ2. (3.17)

Plugging in the numbers from the example, the certainty equivalent of the optimal portfolio

is CE = 0.533 × 0.06 − 2.5 × 0.5332 × 0.152 = 1.6% (the investor is indifferent between the

risky portfolio returns and a certain return equal to the risk-free rate plus 1.6%) and the

(asymptotic) certainty equivalent loss due to statistical error under normality is CE loss =

2.5×0.142×0.152 = 0.11%. Notice that, although the standard error of the plug-in portfolio

weights is the magnitude as the portfolio weight itself, the certainty equivalent loss is an

order of magnitude smaller. This illustrates the point made in a more general context by

Cochrane (1989), that for standard preferences first-order deviations from optimal decision

rules tend to have only second-order utility consequences.

Given an expression for the economic loss due to parameter uncertainty, we can search

for variants of the plug-in estimator that perform better in terms of their potential economic

losses. This task is taken on by Kan and Zhou (2004), who consider estimators of the

form ŵ? = c × Σ̂−1µ̂ and solve for an “optimal” constant c. Optimality here is defined as

the resulting estimator being admissible, which means that no other value of c generates a

smaller economic loss for some values of the true µ and Σ. Their analysis can naturally be

extended to estimators that have different functional forms.

3.1.2 Finite Sample Properties

Although asymptotic results are useful to characterize the statistical uncertainty of plug-in

estimates, the real issue, especially for someone considering to use plug-in estimates in real-

life applications, is finite-sample performance. Unfortunately, there is a long line of research

documenting the short-comings of plug-in estimates, especially in the context of large-scale

mean-variance problems (e.g., Jobson and Korkie (1980, 1981), Michaud (1989), Best and

Grauer (1991), Chopra and Ziemba (1993)). The general conclusions from these papers is

that plug-in estimates are extremely imprecise and that, even in relatively large samples, the

asymptotic approximations above are quite unreliable. Moreover, the precision of plug-in

estimates deteriorates drastically with the number of assets held in the portfolio. Intuitively,
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this is because, as the number of assets increases, the number of unique elements of the

return covariance matrix increases at a quadratic rate. For instance, in the realistic case of

500 assets the covariance matrix involves more than 125, 000 unique elements, which means

that for a post-war sample of about 700 monthly returns we have less than three degrees

of freedom per parameter (500 × 600 = 350, 000 observations and 125, 000 parameters). I

first illustrate the poor finite-sample properties of plug-in estimates through a simulation

experiment and then discuss a variety of ways of dealing with this problem in practice.

Jobson-Korkie Experiment

Jobson and Korkie (1980) were among the first to document the finite-sample properties

of plug-in estimates. The following simulation experiment replicates their main finding.

Consider 10 industry-sorted portfolios. To address the question of how reliable plug-in

estimates of mean-variance efficient portfolio weights are for a given sample size, take the

historical sample moments of the portfolios to be the truth and simulate independent sets

of 250 hypothetical return samples of different sample sizes from a normal distribution with

the true moments. For each hypothetical sample, compute again plug-in estimates of the

mean-variance frontier and then evaluate how close these estimates come to the true frontier.

Figures 4 and 5 illustrate the results graphically, for the unconstrained and constrained (non-

negative weights) case, respectively. Each figure shows as solid line the true mean-variance

frontier and as dotted lines the mean-variance trade-off, evaluated using the true moments,

of the 250 plug-in estimates for samples of 25, 50, 100, and 150 monthly returns.

The results of this experiment are striking. The mean-variance trade-off achieved by

the plug-in estimates are extremely volatile and on average considerably inferior to the

true mean-variance frontier. Furthermore, increasing the sample size, for example from

50 to 150, does not substantially reduce the sampling variability of the plug-in estimates.

Comparing the constrained and unconstrained results, it is clear that constraints help reduce

the sampling error, but clearly not to a point where one can trust the plug-in estimates, even

for a sample as large as 150 months (more than 10 years of data).

To get a sense for the economic loss due to the statistical error, Figure 6 shows histograms

of the Sharpe ratio, again evaluated using the true moments, of the estimated unconstrained

and constrained tangency portfolios for 25 and 150 observations. As a reference, the figure

also shows as vertical lines the Sharpe ratios of the true tangency portfolio (0.61 and 0.52

for the unconstrained and constrained problems, respectively). The results in this figure

are as dramatic as in the previous two figures. The Sharpe ratios of the plug-in estimates

are very volatile and on average considerably lower than the truth. For example, even with
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Figure 4: The solid line in each plot is the unconstrained mean-variance fron-
tier for 10 industry portfolios, taking sample moments as the truth. The dotted
lines show the mean-variance trade-off, evaluated using the true moments, of
250 independent plug-in estimates for 25, 50, 100, and 150 simulated returns.

150 observations, the unconstrained Sharpe ratios have an average of 0.42 with 25th and

75th percentiles of 0.37 and 0.48, respectively. In stark contrast to the asymptotic results

discussed above, the economic loss due to statistical error in finite samples is substantial.

In addition to being very imprecise, plug-in estimates tend to exhibit extreme portfolio

weights, which, at least superficially, contradicts the notion diversification (more on this

point below). For example, in the unconstrained case, the plug-in estimate of the tangency

portfolio based on the historical sample moments allocates 82% to the non-durables industry

and -48% to the manufacturing industry. Furthermore, the extreme portfolio weights tend to

be relatively unstable. Small changes in the inputs (the risk premia and covariance matrix)

result in large changes in the plug-in estimates. Both of these issues have significant practical

implications. Extreme positions are difficult to implement and instability causes unwarranted

turnover, tax liabilities, and transaction costs. Michaud (1989) argues that extreme and

unstable portfolio weights are inherent to mean-variance optimizers because they tend to

assign large positive (negative) weights to securities with large positive (negative) estimation

errors in the risk premium and/or large negative (positive) estimation errors in the volatility.

Mean-variance optimizers therefore act as statistical “error maximizers.”

Motivated by the poor finite-sample property of plug-in estimates, there exists by now

an extensive literature suggesting different, but to some extent complementary, ways of
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Figure 5: The solid line in each plot is the constrained (non-negative portfo-
lio weights) mean-variance frontier for 10 industry portfolios, taking sample
moments as the truth. The dotted lines show the mean-variance trade-off,
evaluated using the true moments, of 250 independent plug-in estimates for
25, 50, 100, and 150 simulated returns.
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Figure 6: The vertical line in each plot represents the Sharpe ratio of the
true unconstrained or constrained (non-negative portfolio weights) tangency
portfolios for 10 industry portfolios, taking sample moments as the truth. The
histograms correspond to the Sharpe ratios, evaluated using the true moments,
of 250 independent plug-in estimates for 25 or 150 simulated returns.
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improving on plug-in estimates for practical applications. These approaches include (i)

shrinkage estimation, (ii) the use of factor models, and (iii) imposing portfolio constraints.

I discuss each of these approaches in turn.

Shrinkage Estimation

The idea of shrinkage estimation is attributed to James and Stein (1961), who noted that

for N ≥ 3 independent normal random variables, the vector of sample means µ̄ is dominated

in terms of joint mean-squared error by a convex combination of the sample means and a

common constant µ0 (see also Efron and Morris (1977)), resulting in the estimator:

µs = δµ0 + (1− δ)µ̄, (3.18)

for 0 < δ < 1. The James-Stein estimator “shrinks” the sample means toward a common

value, which is often chosen to be the grand mean across all variables. The estimator thereby

reduces the extreme estimation errors that may occur in the cross-section of individual means,

resulting in a lower overall variance of the estimators that more than compensates for the

introduction of small biases. The optimal trade-off between bias and variance is achieved by

an optimal shrinkage factor δ?, given for mean-squared error loss by:

δ? = min

[
1,

(N − 2)/T

(µ̄− µ0)′Σ−1(µ̄− µ0)

]
. (3.19)

Intuitively, the optimal shrinkage factor increases in the number of means N , decreases in

the sample size T (which determines the precision of the sample means), and decreases in

the dispersion of the sample means µ̄ from the shrinkage target µ0.

Shrinkage estimation for risk premia has been applied to portfolio choice problems by

Jobson, Korkie, and Ratti (1979), Jobson and Korkie (1981), Frost and Savarino (1986), and

Jorion (1986), among others. Jorion shows theoretically and in a simulation study that the

optimality of the shrinkage estimator in the mean-squared error loss context considered by

James and Stein (1961) carries over to estimating risk premia in the portfolio choice context.

Plug-in portfolio weight estimates constructed with shrunk sample means dominate, in terms

of expected utility, plug-in estimates constructed with the usual sample means.

To illustrate the potential benefits of shrinkage estimation, consider again the mean-

variance example with 10 industry portfolios. Table 2 reports the average Sharpe ratios,

evaluated using the true moments, of the 250 plug-in estimates of the unconstrained tangency

portfolios for different sample sizes with and without shrinkage. To isolate the effect of

statistical error in sample means, the table shows results for both a known and unknown
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Known Σ Unknown Σ

Sample Sample
T Truth Means Shrinkage Means Shrinkage
25 0.624 0.190 0.428 0.169 0.270
50 0.624 0.236 0.446 0.223 0.371

100 0.624 0.313 0.477 0.298 0.443
150 0.624 0.362 0.495 0.348 0.473
250 0.624 0.418 0.512 0.411 0.501

Table 2: Average Sharpe ratios, evaluated using the true moments, of plug-in
estimates with and without shrinkage of the unconstrained tangency portfolio
for 10 industry portfolios with known and unknown covariance matrix. The
results are based on 250 simulated samples of size T .

covariance matrix. The improvement from using shrinkage is considerable. For example,

with 50 observations, the average Sharpe ratio without shrinkage is 0.24 or 0.22, depending

on whether the covariance matrix is know or unknown, compared to the Sharpe ratio of the

true tangency portfolio of 0.62. With shrinkage, in contrast, the average Sharpe ratio is 0.45

with known covariance matrix (87% improvement) and 0.37 with unknown covariance matrix

(63% improvement). The average shrinkage factor with a known covariance matrix ranges

from 0.78 for T = 25 to 0.71 for T = 250. This means that the individual sample means are

shrunk about two-thirds toward a common mean across all portfolios. The reason for why

shrinkage estimation is in relative terms less effective with an unknown covariance matrix

is that the optimal shrinkage factor in equation (3.19) is evaluated with a noisy estimate of

the covariance matrix, which, due to the non-linearity of optimal shrinkage factor, results

in a less shrinkage overall. In particular, the average shrinkage factor with an unknown

covariance matrix is 0.51 for T = 25, 0.72 for T = 100, and 0.69 for T = 250.

Shrinkage estimation can also be applied to covariance matrices. In the portfolio choice

context, Frost and Savarino (1986) and Ledoit and Wolf (2003a,2003b) propose return covari-

ance matrix estimators that are convex combinations of the usual sample covariance matrix

Σ̂ and a shrinkage target S (or its estimate Ŝ):

Σ̂s = δŜ + (1− δ)Σ̂. (3.20)

Sensible shrinkage targets include an identity matrix, the covariance matrix corresponding

to a single- or multifactor model, or a covariance matrix with equal correlations.

Ledoit and Wolf (2003b) derive the following approximate expression for the optimal
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shrinkage factor assuming mean-squared error loss:

δ? ' 1

T

A−B

C
, (3.21)

with

A =
N∑

i=1

N∑
j=1

asy var
[√

T σ̂i,j

]

B =
N∑

i=1

N∑
j=1

asy cov
[√

T σ̂i,j,
√

T ŝi,j

]

C =
N∑

i=1

N∑
j=1

(
σi,j − si,j

)2
.

(3.22)

The optimal shrinkage factor reflects the usual bias versus variance trade-off. It decreases in

the sample size T , increases in the imprecision of Σ̂ (through A), decreases in the covariance

of the errors in estimates of Σ̂ and Ŝ (through B), and decreases in the bias of S (through C).

Ledoit and Wolf (2003b) also describe how to consistently estimate the asymptotic second

moments needed to evaluate the optimal shrinkage factor in practice. Finally, they show

that, besides reducing sampling error, shrinkage to a positive definite target guarantees that

the resulting estimate is also positive definite, even when the sample covariance matrix itself

is singular (when N > T ). This makes shrinkage a particularly practical statistical tool for

constructing large-scale equity portfolios.

The idea of shrinkage estimation can in principle also be applied directly to the plug-in

estimates of the optimal portfolio weights, resulting in an estimator of the form:

ŵ?
s = δw0 + (1− δ)ŵ?, (3.23)

for some sensible shrinkage target w0. There are several potential advantages of shrinking

the plug-in estimates, compared to shrinking their inputs. First, it may be easier to specify

ex-ante sensible shrinkage targets, such as equal weights 1/N or observed relative market

capitalization weights in a benchmark portfolio. Second, shrinking the plug-in estimates

may be more effective because it explicitly links first and second moments. It is possible, for

example, to shrink both first and second moments toward zero, thinking that the statistical

error has been reduced, but leave the plug-in portfolio weights unchanged. Third, shrinkage

of the plug-in estimates can be more naturally combined with an economic loss function.

Specifically, the optimal shrinkage factor could be chosen to maximize the expected utility
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from using the shrunk plug-in estimates, as opposed to minimize its mean-squared error.

Whether any of these advantages are materialized in practice remains to be seen.

Any form of shrinkage estimation involves seemingly ad-hoc choices of the shrinkage target

and the degree of shrinkage (or equivalently the loss function which determines the optimal

degree of shrinkage). Both of these issues are naturally resolved in a Bayesian framework,

where the location of the prior beliefs can be interpreted as the shrinkage target and the

variability of the prior beliefs relative to the information contained in the data automatically

determines how much the estimates are shrunk toward the prior. I will return to the Bayesian

interpretation of shrinkage and the choice of priors in Section 3.2.

Factor Models

The second approach to reducing the statistical error of the plug-in estimates is to impose

a factor structure for the covariation among assets to reduce the number of free parameters

of the covariance matrix. Sharpe (1963) first proposed using in the mean-variance problem

the covariance matrix implied by a single-factor market model:

ri,t = αi + βirm,t + εi,t, (3.24)

where the residuals εi,t are assumed to be uncorrelated across assets. Stacking the N market

betas βi into a vector β, the covariance matrix implied by this singe-factor model is:

Σ = σ2
mββ′ + Σε, (3.25)

where Σε is a diagonal residual covariance matrix with non-zero elements σ2
ε,i = var[εi,t]. The

advantage of this approach is that it reduces the dimensionality of the portfolio problem to

3N+1 terms ({αi, βi, σ
2
ε,i}N

i=1 and σ2
m). The drawback, in exchange, is that a single factor may

not capture all of the covariation among assets, leading not only to a biased but potentially

systematically biased estimate of the return covariance matrix.

The obvious way to overcome this drawback is to increase the number of factors capturing

the covariation among assets. In a more general K-factor model:

ri,t = αi + β′ift + εi,t, (3.26)

where βi is now a vector of factor loadings, ft is a vector a factor realizations (which still

need to be specified), and the residuals εi,t are again assumed to be uncorrelated across asset.
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The implied return covariance matrix is:

Σ = BΣfB
′ + Σε, (3.27)

where B denotes the N ×K matrix of stacked factor loadings, Σf is the covariance matrix

of the factors, and Σε is a diagonal residual covariance matrix. If the factors are correlated,

the portfolio problem is reduced to K(K + 1)/2 + N(K + 2) terms. If the factors are

uncorrelated, which is a common assumption implying that Σf is also diagonal, the problem

is further reduced to K + N(K + 2) terms. To illustrate the degree of dimension reduction

achieved by multifactor models, consider again the case of 500 assets. With five factors,

there are 3515 coefficients to estimate if the factors are correlated, as opposed to 125,000 in

the case without factors. This translates into a more than 33-fold increase in the degrees of

freedom (from less than 3 to more than 99).

The practical difficulty with implementing a multifactor model is the choice of common

factors. There are essentially three ways to approach this problem. First, the choice of

factors can be based on economic theory. Examples include using the market or aggregate

wealth portfolio, as implied by the CAPM, which results in the approach of Sharpe (1963),

or using multiple intertemporal hedge portfolios that are maximally correlated with changes

in the aggregate investment opportunity set, as implied by Merton’s (1973) ICAPM. Second,

the choice of factors can be based on empirical work, including, for example, macroeconomic

factors (e.g., Chen, Roll, and Ross (1986)), industry factors, firm characteristic-based factors

(e.g., Fama and French (1993)), and combinations thereof (e.g., BARA’s equity risk models).

Third, the factors can be extracted directly from returns using a statistical procedure such

as factor analysis or principal components analysis (e.g., Connor and Korajczyk (1988)).

Moving from theoretical factors, to empirical factors, to statistical factors, we capture, by

construction, increasingly more of the covariation among assets. In exchange, the factors

become more difficult to interpret, which raises concerns about data-mining.

Chan, Karceski, and Lakonishok (1999) study the performance of different factor model

specifications in a realistic rolling-sample portfolio choice problem. Their results show that

factor models clearly improve the performance of the plug-in estimates. However, no clear

favorite specification emerges, both in terms of the number and the choice of factors. A simple

CAPM-based single-factor model performs only marginally worse than a high-dimensional

model with industry and characteristic-based factors.

Portfolio Constraints

The third approach to reducing the statistical error inherent in plug-in estimation is to im-
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pose constraints on the portfolio weights. It is clear from comparing the results in figures 4

and 5 that imposing portfolio constraints helps. Frost and Savarino (1988) confirm this

impression more scientifically by demonstrating that portfolio constraints truncate the ex-

treme portfolio weights and thereby improve the performance of the estimates. Their results

suggest that, consistent with Michaud’s (1986) view of optimizers as error maximizers, the

extreme portfolio weights that being truncated are associated with estimation error.

There are numerous ways of constraining portfolio weights. The most popular constraints

considered in the academic literature are constraints that limit short-selling and constraints

that limit the amount of borrowing to invest in risky assets. While these constraints are

obviously also very relevant in practice, realistic investment problems are subject to a host

of other constraints, such as constraints on the maximum position in a single security, on

the maximum exposure to a given industry or economic sector, on the liquidity of a security,

or on the risk characteristics of a security. In addition, it is common practice to perform an

initial screening of the universe of all securities to obtain a smaller and more manageable set

of securities. These initial screens can be based on firm characteristics, including accounting

and risk measures, liquidity measures, transaction cost measures, or even return forecasts.

Although portfolio constraints are an integral part of the investment process in practice,

Green and Hollifield (1992) argue that, from a theoretical perspective, extreme portfolio

weights do not necessarily imply that a portfolio is undiversified. The intuition of their

argument is as follows. Suppose returns are generated by a single-factor model and therefore

contain both of systematic and idiosyncratic risk. The aim is to minimize both sources of risk

through diversification. Instead of using a mean-variance optimizer, consider an equivalent

but more transparent two step procedure in which we first diversify away idiosyncratic risk

and then diversify away systematic risk. In the first step, sort stocks based on their factor

loading and form equal-weighted portfolios with high factor loadings and with low factor

loadings. With a large number of stocks, each of these portfolios will be well-diversified

and therefore only exposed to systematic risk. In the second step, take partially offsetting

positions in the systematic risk portfolios to eliminate, as much as possible given the adding-

up constraint on the overall portfolio weights, the systematic risk exposure. Although the

outcome is a portfolio that is well diversified in terms of both idiosyncratic and systematic

risk, Green and Hollifield show that the second step can involve extreme long-short positions.

The implication of this argument is that, contrary to popular belief and common practice,

portfolio constraints may actually hurt the performance of plug-in estimates.

Relating Shrinkage Estimation, Factor Models, and Portfolio Constraints

38



The argument of Green and Hollifield (1992) creates tension between economic theory and the

empirical fact that imposing portfolio constraints indeed improves the performance of plug-

in estimates in practice. This tension is resolved by Jagannathan and Ma (2003), who show

that certain constraints on the portfolio weights can be interpreted as a form of shrinkage

estimation. Since shrinkage improves the finite-sample properties of plug-in estimates, it is

no longer puzzling that constraints also help, even if they are not theoretically justified. As

with all forms of shrinkage estimation, constrained plug-in estimates are somewhat biased

but much less variable than unconstrained plug-in estimates.

Specifically, for the problem of finding a global minimum variance portfolio (in Figure 1)

subject to short-sale constraints xt ≥ 0 and position limits xt ≤ x̄, the constrained portfolio

weights x+
t are mathematically equivalent to the unconstrained portfolio weights for the

adjusted covariance matrix:

Σ̃ = Σ + (δι′ + ιδ′)− (λι′ + ι′λ), (3.28)

where λ is the vector a lagrange multipliers for the short-sale constraints and δ is the vector

of lagrange multipliers for the position limits. Each lagrange multiplier takes on a positive

value whenever the corresponding constraint is binding and is equal to zero otherwise. To

understand better how equation (3.28) amounts to shrinkage, suppose the position limit

constraints are not binding but the short-sale constraint is binding for stock i, so that δ = 0

and λi > 0. The variance of stock i is reduced to σ̃i,i = σi,i − 2λi and all covariance are

reduced to σ̃i,j = σi,j − λi − λj. Since stocks with negative weights in minimum variance

portfolios tend to have large positive covariances with other stocks, short-sale constraints

effectively shrink these positive covariances toward zero. Analogously, suppose the short-sale

constraints are not binding but the position limit constraint is binding for stock i, so that

λ = 0 and δi > 0. In that case, the variance of stock i is increased to σ̃i,i = σi,i + 2δi and the

covariances are all increased to σ̃i,j = σi,j + δi + δj. Since stocks with large positive weights

in minimum variance portfolios tend to have large negative covariances with other stocks,

position limit constraints effectively shrink these negative covariances toward zero.

A similar result holds for the constrained mean-variance problem. The constrained mean-

variance efficient portfolio weights x+
t are mathematically equivalent to the unconstrained

portfolio weights for the adjusted mean vector:

µ̃ = µ +
1

λ0

λ− 1

λ0

δ (3.29)
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and adjusted target return:

˜̄µ = µ̄ +
1

λ0

δ′x̄, (3.30)

where λ0 > 0 is the lagrange multiplier for the expected return constraint x′tµ = µ̄, which

is always binding. If the position limit constraints are not binding but the short-sale con-

straint is binding for stock i, the expected return on stock i is increased to µ̃i = µi + λi/λ0.

Since stocks with negative weights in mean-variance efficient portfolios tend to have neg-

ative expected returns, the short-sale constraints shrink the expected return toward zero.

Analogously, if the short-sale constrains are not binding but the position limit constraint is

binding for stock i, the expected return on stock i is decreased to µ̃i = µi − δi/λ0. Since

stocks with large positive weights tend to have large positive expected returns, position limit

constraints also shrink the expected return toward zero.

3.2 Decision Theory

In the second traditional econometric approach, decision theory, the econometrician takes

on the role of the investor by choosing portfolio weights that are optimal with respect to

his or her subjective belief about the true return distribution. In the presence of statistical

uncertainty about the parameters or even about the parameterization of the data generating

process, this subjective return distribution may be quite different from the results of plugging

point estimates in the data generating process. As a result, the econometrician’s optimal

portfolio weights can also be quite different from the plug-in estimates described above.

3.2.1 Parameter Uncertainty

Consider, for illustrative purposes, a single-period or myopic portfolio choice with iid returns.

We can write the expected utility maximization more explicitly as:

max
xt

∫
u(x′trt+1 + Rf ) p(rt+1|θ) drt+1, (3.31)

where p(rt+1|θ) denotes the true return distribution parameterized by θ. Until now, it was

implicitly assumed that this problem is well posed, in the sense that the investor has all

information required to solve it. However, suppose instead that the investor knows the

parametric form of the return distribution but not the true parameter values, which, of

course, is far more realistic. In that case, the problem cannot be solved as it is because the

investor does not know for which parameter values θ to maximize the expected utility.
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There are at least three ways for the investor to proceed. First, the investor can naively

use estimates of the parameters in place of the true parameter values, analogous to the

plug-in estimation approach (except now it is the investor who needs to make a decision,

not an econometrician drawing inferences, relying on point estimates). The resulting port-

folio weights are optimal only if the estimates happen to coincide with the true values, a

zero-probability event in finite samples, and suboptimal otherwise. Second, the investor can

consider the parameter values that correspond to the worst case outcome under some pre-

specified set of possible parameter values, leading to extremely conservative portfolio weights

that are robust, as opposed to optimal, with respect to the uncertainty about the parameters

(an decision theoretic approach called robust control). Third, the investor can eliminate the

dependence of the optimization problem on the unknown parameters by replacing the true

return distribution with a subjective distribution that depends only on the data the investor

observes and on personal ex-ante beliefs the investor may have had about the unknown

parameters before examining the data. The resulting portfolio weights are optimal with

respect to this subjective return distribution but suboptimal with respect to the true return

distribution. However, this suboptimality is irrelevant, in some sense, because the truth is

never revealed anyway. To the extent that the subjective return distribution incorporates

all of the available information (as oppose to just a point estimate or worst case outcome),

this third approach is to many the most appealing.

Zellner and Chetty (1965), Klein and Bawa (1976), and Brown (1978) were among the

first to advocate using subjective return distributions in portfolio choice problems. Given

the data YT and a prior belief about of the parameters p0(θ), the posterior distribution of

the parameters is given by Bayes’ theorem as:

p(θ|YT ) =
p(YT |θ) p0(θ)

p(YT )
∝ p(YT |θ) p0(θ), (3.32)

where the distribution of the data conditional on the parameters can also be interpreted as

the likelihood function L(θ|YT ). This posterior distribution can then be used to integrate

out the unknown parameters from the return distribution to obtain the investor’s subjective

(since it involves subjective priors) return distribution:

p(rt+1|YT ) =

∫
p(rt+1|θ)p(θ|YT ) dθ. (3.33)

Finally, we simply replace the true return distribution in the expected utility maximization

with this subjective return distribution and solve for the optimal portfolio weights.
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Formally, the investor solves the problem:

max
xt

∫
u(x′trt+1 + Rf ) p(rt+1|YT ) drt+1, (3.34)

which can we can rewrite, using the construction of the posterior, as:

max
xt

∫ [∫
u(x′trt+1 + Rf ) p(rt+1|θ) drt+1

]
p(θ|YT ) dθ. (3.35)

Comparing equations (3.31) and (3.35), it is now clear how the investor overcomes the issue

of not knowing the true parameter values. Rather than solving the optimization problem for

a single choice of parameter values, the investor effectively solves an average problem over

all possible set of parameter values, where the expected utility of any given set of parameter

values, the expression in brackets above, is weighted by the investor’s subjective probability

of these parameter values corresponding to the truth.

Uninformative Priors

The choice of prior is critical in this Bayesian approach. Priors are either informative or

uninformative. Uninformative priors contain little if any information about the parameters

and lead to results that are comparable, but not identical in finite samples, to plug-in esti-

mates. Consider the simplest possible example of a single iid normal return with constant

mean µ and volatility σ. Assume initially that the volatility is known. Given a standard

uninformative prior for the mean, p(µ) ∝ c, the posterior distribution of the mean is:

p(µ|σ, YT ) = N
[
µ̂, σ2/T

]
, (3.36)

where µ̂ is the usual sample mean. This posterior distribution of the mean then implies the

following posterior return distribution:

p(rT+1|σ, YT ) =

∫
p(rT+1|µ, σ)p(µ|σ, YT )dµ = N

[
µ̂, σ2 + σ2/T

]
. (3.37)

Comparing this posterior return distribution to the plug-in estimate N[µ̂, σ2] illustrates one

of the effects of parameter uncertainty. In the Bayesian portfolio portfolio choice problem,

the variance of returns is inflated because, intuitively, returns differ from the sample mean

for two reasons. Returns have a known variance around the unknown true mean of σ2 and

the sample mean is a noisy estimate of the true mean with a variance of σ2/T . The posterior

variance of returns is therefore σ2 + σ2/T .
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Relaxing the assumption of a known volatility, an uninformative prior of the form p(µ, ln σ) =

c leads to the joint posterior distribution of the parameters:

p(µ, σ|YT ) ∝ 1

σN+1
exp

{
−N(µ− µ̂)2

2σ2
− (N − 1)σ̂2

2σ2

}
, (3.38)

which, in turn, implies the following posterior return distribution:

p(rT+1|YT ) =

∫ ∫
p(rT+1|µ, σ)p(µ, σ|YT ) dµ dσ = t

[
µ̂, σ̂2 + σ̂2/T, N − 1

]
, (3.39)

where t[m, s2, v] denotes a Student-t distribution with mean m, variance s2, and v degrees of

freedom. The mean of the posterior distribution is again the sample mean and the variance

is analogous to the case with a known volatility, except with sample estimates. The only

difference between the posteriors (3.37) and (3.39) is the distributional form. Specifically,

since the t distribution has fatter tails than the normal distribution, especially for small

degrees of freedom, parameter uncertainty about the volatility causes the tails of the pos-

terior return distribution to fatten, relative to the case with a known volatility. Intuitively,

the posterior return distribution turns into a mixture of normal distributions, each with a

different volatility, as the uncertainty about the volatility is averaged out.

Although the above discussion is fairly simplistic, in that it only deals with a single

risky asset and iid returns, the basic intuition extends directly to cases with multiple assets

and with more complicated return models. In general, uncertainty about unconditional

and/or conditional first moments tends to increase the posterior variance of returns, and

uncertainty about unconditional and/or conditional second moments tends to fatten the

tails of the posterior return distribution.

Equations (3.37) and (3.39) illustrate that there are differences between the Bayesian

portfolio choice and plug-in estimates. However, it is important to acknowledge that, at least

in this simple iid example, these differences are in practice a small-sample phenomenon. For

example, suppose the volatility is known to be 18%. With only 12 observations, the posterior

volatility of returns in equation (3.37) is equal to
√

(1 + 1/12)× 18% = 18.75%. Parameter

uncertainty increase the return volatility by 4%. With a more realistic sample size of 120

observations, however, the posterior volatility of returns is
√

1 + 1/120 × 18% = 18.07%,

an increase of a negligible 0.4%. Similarly, in the case with an unknown volatility. The

5% critical value of the t distribution with 11 degrees of freedom (for T = 12) equals 2.18,

considerably larger than 1.96 under normality. However, with 119 degrees of freedom, the

critical value is 1.97, which means that the posterior distribution is virtually Gaussian (and
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in fact identical to its plug-in counterpart).

Guided by the long-held belief that financial markets are efficient and returns therefore

unpredictable, the initial papers on parameter uncertainty were formulated in the context of

iid normal returns. Following the relatively recent evidence of return predictability, Kandel

and Stambaugh (1996) and Barberis (2000) reexamine the role of parameter uncertainty

when returns are predictable by the dividend yield in the context of the VAR model (2.16).

In particular, Barberis (2000) documents that, even in moderate size sample, parameter

uncertainty can lead to substantial differences in the optimal allocation to stocks in a long-

horizon portfolio choice problem. The intuition for this result is the following. As the hori-

zon increases, the variance of returns around the true conditional mean increases linearly,

since returns are conditionally uncorrelated. The variance of the estimated conditional mean

around the true conditional mean, however, increases more than linearly, because the estima-

tion error is the same in every future time period (ignoring the important issue of learning).

As a result, the contribution of parameter uncertainty to the posterior variance of returns

increases in relative terms as the return horizon increases.

Informative Priors

Most applications of Bayesian statistics in finance employ uninformative priors, with the

reasoning that empirical results with uninformative priors are most comparable to results

obtained through classical statistics and therefore are easier to relate to the literature. In

the context of an investor’s portfolio choice problem, however, the main advantage of the

Bayesian approach is the ability to incorporate subjective information through informative

priors. Since portfolio choice problems are by nature subjective decision problems, not

objective inference problems, there is no need to facilitate comparison.

The difficulty with using informative priors lies in maintaining analytic tractability of

the posterior distributions. For this reason, the literature deals almost exclusively with

so-called conjugate priors, for which the conditional posteriors are members of the same

distributional class as the priors. For example, the most common conjugate prior problem

involves a Gaussian likelihood function, a Gaussian prior for first moments, and an inverse

gamma (or inverse Whishard in the multivariate case) prior for second moments. With

this particular combination, the conditional posteriors of the first and second moments are

once again Gaussian and inverse gamma, respectively. Conjugate priors are particularly

convenient in problems that involve updating of previously formed posteriors with new data.

In such problems, the old posterior becomes the new prior, which is then combined with the

likelihood function evaluated at the new data. With conjugate priors, the updated posterior
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has the same distributional form as the old posterior.

To illustrate the role of informative priors and the similarities to classical shrinkage

estimation, consider again the case of a single risky asset with iid normal returns and a

known volatility. Assume that the investor has a normally distributed prior belief about µ

centered at a prior mean of µ̄ with a variance of τ 2:

p(µ) = N[µ̄, τ 2]. (3.40)

Due to the conjugate structure, combining this prior with the likelihood function yields the

posterior distribution:

p(µ|σ, YT ) = N

[
τ 2

τ 2 + σ2/T
µ̂ +

σ2/T

τ 2 + σ2/T
µ̄,

(σ2/T )τ 2

σ2/T + τ 2

]
. (3.41)

The posterior mean is simply a relative precision weighted average of the sample and prior

means. The smaller the prior uncertainty τ , the more weight is placed on the prior mean µ̄

and, conversely, the larger T or the smaller σ, both of which imply that the sample mean is

more precisely estimated, the more weight is placed on the sample mean µ̂. Intuitively, the

posterior mean shrinks the sample mean toward the prior mean, with the shrinkage factor

depending on the relative precisions of the sample and prior means. The posterior variance

is lower than the variance of the sample mean by a factor of τ 2/(σ2/T + τ 2), reflecting the

fact that information is added through the informative prior. Finally, given the posterior of

the mean, the posterior return distribution is obtained analogous to equation (3.37):

p(rT+1|σ, YT ) =

∫
p(rT+1|µ, σ)p(µ|σ, YT )dµ

= N

[
τ 2

τ 2 + σ2/T
µ̂ +

σ2/T

τ 2 + σ2/T
µ̄

︸ ︷︷ ︸
E[µ|σ,YT ]

, σ2 +
(σ2/T )τ 2

σ2/T + τ 2

︸ ︷︷ ︸
var[µ|σ,YT ]

]
. (3.42)

There are many ways of coming up with a subjective guess for the prior mean µ̄. One

approach considered in the statistics literature is to take a preliminary look at the data and

simply estimate the prior by maximum likelihood. Frost and Savarino (1986) apply this

so-called empirical Bayes approach to the mean-variance problem. Imposing a prior belief

of equal means across assets and estimating this grand mean from the data, the resulting

posterior mean is remarkably similar to the James-Stein shrinkage estimator.
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3.2.2 Incorporating Economic Views and Models

Arguably a more intuitive and certainly a more popular way of specifying a prior in the

portfolio choice context is to rely on the theoretical implications of an economic model. The

most famous example of this approach is Black and Litterman (1992), who use as prior the

risk premia implied by mean-variance preferences and market equilibrium. Before elaborating

on their model and two other examples of incorporating economic models, I describe a more

general framework for combining two sources of information about expected returns, through

Bayes theorem, into a single posterior return distribution.

Mixed Estimation

Mixed estimation was first developed by Theil and Goldberger (1961) as a way to update the

Bayesian inferences drawn from old data with the information contained in a set of new data.

It applies more generally, however, to the problem of combining information from two data

sources into a single posterior distribution. The following description of mixed estimation

is tailored to a return forecasting problem and follows closely the econometric framework

underlying the Black-Litterman model (GSAM Quantitative Strategies Group (2000)). A

very similar setup is described by Scowcroft and Sefton (2003).

Assume excess returns are iid normal:

rt+1 ∼ MVN[µ, Σ]. (3.43)

The investor starts with a set of benchmark beliefs about the risk premia:

p(µ) = MVN[µ̄, Λ]. (3.44)

which can be based on theoretical predictions, previous empirical analysis, or dated forecasts.

In addition to these benchmark beliefs, the investor has a set of new views or forecasts v

about a subset of K ≤ N linear combinations of returns P rt+1, where P is a K ×N matrix

selecting and combining returns into portfolios for which the investor is able to express views.

The new views are assumed to be unbiased but imprecise, with distribution:

p(v|µ) = MVN[Pµ, Ω]. (3.45)

Besides the benchmark beliefs, the estimator requires three inputs: The portfolio selection

matrix P , the portfolio return forecasts v, and the forecast error covariance matrix Ω.

To demonstrate the flexibility of this specification, suppose there are three assets. The
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investor somehow forecasts the risk premium of the first two assets to be 5% and 15%, but,

for whatever reason, is unable or unwilling to express a view on the risk premium of the

third asset. This scenario corresponds to:

P =

[
1 0 0

0 1 0

]
and v =

[
0.05

0.15

]
. (3.46)

If instead of expressing views on the levels of the risk premia, the investor can only forecast

the difference between the risk premia to be 10%, the matrices are:

P =
[

1 −1 0
]

and v =
[
−0.10

]
. (3.47)

Once the views have been formalized, the investor also needs to specify their accuracy and

correlations through the choice of Ω. In the first scenario, for instance, the investor might be

highly confident in the forecast of the first risk premium, with a 1% forecasts error volatility,

but less certain about the forecast of the second risk premium, with a 10% forecast error

volatility. Assuming further that the two forecasts are obtained independently, the covariance

matrix of the forecast errors is:

Ω =

[
0.012 0

0 0.102

]
. (3.48)

The off-diagonal elements of Ω capture correlations between the forecasts. Specifically, high

confidence in the forecast of µ1 − µ2 is intuitively equivalent to very low confidence in the

forecasts of µ1 and µ2, but with a high correlation between the two forecast errors.

Combining equation (3.43) and (3.45) using Bayes’ theorem:

p(µ|v) ∝ p(v|µ) p(µ)

= MVN
[
E[µ|v], var[µ, v]

]
,

(3.49)

where the posterior moments of µ are given by:

E[µ|v] =
[
Λ−1 + P ′ΩP

]−1[
Λ−1µ̄ + P ′Ω−1v

]

var[µ|v] =
[
Λ−1 + P ′ΩP

]−1
.

(3.50)

As in the more general case of informative priors, the posterior mean is simply a relative pre-

cision weighted average of the benchmark means µ̄ and the forecasts v (a form of shrinkage).

The advantage of this particular mixed estimation setup is the ability to input forecasts of
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subsets and linear combinations of the risk premia. This is particularly relevant in real-life

applications where forecasting the returns on every security in the investable universe (e.g.,

AMEX, NASDAQ, and NYSE) is practically impossible.

Black-Litterman Model

The Black and Litterman (1992) model is an application of this mixed estimation approach

using economically motivated benchmark beliefs p(µ) and proprietary forecasts v (obtained

through empirical studies, security analysis, or other forecasting techniques). The benchmark

beliefs are obtained by inferring the risk premia that would induce a mean-variance investor

to hold all assets in proportion to their observed market capitalizations. Since such risk

premia clear the market by setting the supply of shares equal to demand at the current

price, they are labeled equilibrium risk premia.

More specifically, the equilibrium risk premia are calculated by reversing the inputs and

outputs of the mean-variance optimization problem. In the mean-variance problem (2.8),

the inputs are the mean vector µ and covariance matrix Σ. The output is the vector of

optimal portfolio weights x? = (1/γ)Σ−1µ. Now suppose that the market as a whole acts

as a mean-variance optimizer, then, in equilibrium, the risk premia and covariance matrix

must be such that the corresponding optimal portfolio weights equal the observed market

capitalization weights, denoted x?
mkt. Assuming a known covariance matrix, the relationship

between the market capitalization weights and the equilibrium risk premia µequil is therefore

given by x?
mkt = (1/γ)Σ−1µequil. Solving for the equilibrium risk premia:

µequil = γΣ x?
mkt. (3.51)

The inputs to this calculation are the market capitalization weights, return covariance matrix,

and aggregate risk aversion γ. The output is a vector of implied equilibrium risk premia.

Black and Litterman (1992) center the benchmark beliefs at these equilibrium risk premia

and assume a precision matrix Λ proportional to the return covariance matrix Σ:

p(µ) = MVN[µequil, λΣ]. (3.52)

The constant λ measures the strength of the investor’s belief in equilibrium. For instance,

a value of λ = 1/T places the benchmark beliefs on equal footing with sample means.

Combining the benchmark beliefs with proprietary views v results in a posterior distribution
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for the risk premia with the following moments:

E[µ|v] =
[
(λΣ)−1 + P ′Ω−1P

]−1 [
(λΣ)−1µequil + P ′Ω−1v

]

=
[
(λΣ)−1 + P ′Ω−1P

]−1
[γ

λ
x?

mkt + P ′Ω−1v
]

var[µ|v] =
[
(λΣ)−1 + P ′Ω−1P

]−1
,

(3.53)

where the second line for the posterior mean, which follows from substituting equation (3.51)

into the first line, makes clear the dependence of the mixed estimator on the observed market

capitalization weights. Finally, the posterior return distribution is given by:

p(rT+1|v) = MVN
[
E[µ|v],

[
Σ−1 + var[µ|v]−1

]−1
]
. (3.54)

The idea of implied equilibrium risk premia is best illustrated through an example. Table

3 presents descriptive statistics for the returns on six size and book-to-market sorted stock

portfolios. Table 4 shows in the third column the corresponding market capitalization weights

for December 2003 and in the next four columns the equilibrium risk premia implied by the

covariance matrix from Table 3 and relative risk aversion ranging from γ = 1 to γ = 7.5.

For comparison, the last column repeats the sample risk premia from Table 3.

The results in the second table illustrate two important features of the implied equilibrium

risk premia. First, the levels of the risk premia depend on the level of risk aversion, which

therefore needs to be calibrated before using the results in the mixed estimator. One way

to calibrate γ is to set the implied Sharpe ratio of the market portfolio to a sensible level.

For instance, with γ = 5 the annualize Sharpe ratio of the market portfolio is 0.78, which

is reasonable given historical data on the market index. The second striking result in the

table is that the implied equilibrium risk premia are quite different from the empirical risk

premia, in particular for the small and low book-to-market portfolio. In fact, the two sets of

risk premia are negatively correlated in the cross-section (a correlation coefficient of -0.83).

A mixed estimator that places equal weights on the equilibrium risk premia and the sample

risk premia, which corresponds to using λ = 1/T and historical moments for v, therefore

generates return forecasts which are substantially less variable in the cross-section than either

the equilibrium risk premia or the sample risk premia.

Return Forecasting with a Belief in Market Efficiency

Another interesting example of incorporating economic views is the problem of forecasting

returns with an prior belief in market efficiency (i.e., no return predictability), studied by
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Book to Risk
Size market premia Volatility Correlations

Small Low 5.61% 24.56% 1
Small Medium 12.75% 17.01% 0.926 1
Small High 14.36% 16.46% 0.859 0.966 1
Big Low 9.72% 17.07% 0.784 0.763 0.711 1
Big Medium 10.59% 15.05% 0.643 0.768 0.763 0.847 1
Big High 10.44% 13.89% 0.555 0.698 0.735 0.753 0.913

Table 3: Descriptive statistics of six portfolios of all AMEX, NASDAQ and
NYSE stocks sorted by their market capitalization and book-to-market ratio.
Monthly data from January 1983 through December 2003.

Book to Market Equilibrium risk premia Historical
Size market weight γ = 1 γ = 2.5 γ = 5 γ = 7.5 risk premia

Small Low 2.89% 3.07% 7.69% 15.37% 23.06% 5.61%
Small Medium 3.89% 2.21% 5.52% 11.03% 16.55% 12.75%
Small High 2.21% 2.04% 5.11% 10.22% 15.33% 14.36%
Big Low 59.07% 2.62% 6.55% 13.10% 19.64% 9.72%
Big Medium 23.26% 2.18% 5.44% 10.88% 16.32% 10.59%
Big High 8.60% 1.97% 4.91% 9.83% 14.74% 10.44%

Table 4: Equilibrium risk premia implied by market capitalization weights of
six portfolios of all AMEX, NASDAQ and NYSE stocks sorted by their market
capitalization and book-to-market ratio on December 2003 and mean-variance
preferences with different levels of risk aversion.
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Kandel and Stambaugh (1996) as well as Connor (1997). Consider the regression:

rt+1 = a + b zt + εt+1, (3.55)

where εt+1 ∼ N[0, σ2
ε ] and zt is assumed exogenous with zero mean and a variance of σ2

z . Using

a standard OLS approach, the one-period ahead return forecast is given by â + b̂ zT , with

b̂ols = σ̂z,r/σ̂
2
z . Unfortunately, this forecast tends to be very noisy because the regression

usually has an R2 around 1% and a t-statistic of the slope coefficient close to two. The

potential for large estimation error renders the forecast practically useless, particularly when

the forecast is used as an input to an error maximizing portfolio optimizer.

Kandel and Stambaugh (1996) and Connor (1997) recommend imposing an informative

prior centered on the economic notion of (weak form) market efficiency, which implies that

the slope coefficient should be zero. Specifically, using the prior p(b) = N[0, σ2
b ] in a standard

Bayesian regression setup yields a posterior of the slope coefficient with a mean of:

b̂Bayes =

[
T σ̂2

z/σ̂
2
ε

(T σ̂2
z/σ̂

2
ε) + (1/σ2

b )

]
b̂ols. (3.56)

As expected, the OLS estimate is shrunk toward the prior mean of zero, with a shrinkage

factor that depends on the relative precisions of the OLS estimate and the prior mean. The

critical ingredient of this approach is obviously the prior variance σ2
b .

Since it is difficult to specify a sensible value for this prior variance ex-ante, especially

without knowing σ2
r and σ2

z , Connor (1997) reformulates the problem in a more intuitive and

practical way. Define:

ρ = E

[
R2

1−R2

]
, (3.57)

which, for the low values of R2 we observe in practice, is approximately equal to the expected

degree of predictability E[R2]. Equation (3.56) can then be rewritten as:

b̂Bayes =

[
T

T + (1/ρ)

]
b̂ols, (3.58)

where the degree of shrinkage toward zero depends only on the sample size T and on the

expected degree of predictability ρ.

The appealing feature of the alternative formulation (3.58) is that the shrinkage factor

applies generically to any returns forecasting regression with a prior belief in market efficiency

(or a regression slope of zero). Table 5 evaluates the shrinkage factor for different sample

sizes and expected degrees of predictability. The extend of shrinkage toward zero is striking.
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ρ ' E[R2] T = 24 T = 48 T = 60 T = 120
0.50% 0.11 0.19 0.23 0.38
0.75% 0.15 0.26 0.31 0.47
1.00% 0.19 0.32 0.38 0.55
2.00% 0.32 0.49 0.55 0.71
3.00% 0.42 0.59 0.64 0.78

Table 5: Shrinkage factor for the slope coefficient of a univariate return fore-
cast regression with belief in market efficiency for different sample sizes and
expected degrees of return predictability.

With a realistic expected R2 of 1% and a sample size between five and ten years, the OLS

estimate is shrunk roughly half-way toward zero (62% for T = 60 and 45% for T = 120).

Connor (1997) further shows that in the case of a multivariate return forecast regression

rt+1 = b ′zt + εt+1, the shrinkage factor applied to each slope coefficient is also given by

equation (3.58), except that the expected degree of return predictability ρ is replaced by a

“marginal” counterpart ρi. This marginal expected degree of return predictability simply

measures the marginal contribution of variable i to the expected regression R2. For example,

suppose the expected R2 of a regression with three predictors is 1% and T = 60. If each

variable contributes equally to the overall predictability, ρi = 0.33% and each slope coefficient

is shrunk about 84% toward zero. In contrast, if the first variable accounts for 2/3 of the

overall predictability, its slope coefficient is only shrunk 71% toward zero.

Cross-Sectional Portfolio Choice with a Belief in an Asset Pricing Model

The third example of incorporation economic beliefs, this time originating from an equilib-

rium asset pricing models, is formulated by Pastor (2000). Suppose returns are generated

by a single-factor model:

ri,t+1 = αi + βi rm,t+1 + εi,t+1 (3.59)

with uncorrelated residuals εi,t+1 ∼ N[0, σ2
ε ]. The theoretical prediction of the CAPM is

that differences in expected returns in the cross-section are fully captured by differences in

market betas and that αi = 0, for all stocks i. Therefore, an investor’s ex-ante belief in the

CAPM can be captured through an informative prior for the stacked intercepts α:

p(α) = MVN[0, σαI]. (3.60)

This prior is centered at zero, the theoretical prediction of the CAPM, with a dispersion σα

measuring the strength of the investor’s belief in the equilibrium model.
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Combining the informative prior (3.60) with uninformative priors for the market betas

and residual variances, the resulting posterior distribution has the following means:

E[α|YT ] = (1− δ)α̂ols

E[β|YT ] = β̂ols + ξ
(3.61)

Intuitively, the intercepts are shrunk toward zero with the shrinkage factor δ depending, as

usual, on T , σ2
m, σ2

ε , and σ2
α. However, the problem is somewhat more complicated because,

as the intercepts are shrunk toward zero, the market betas also change by ξ to better fit the

cross-sectional differences in expected returns. Pastor (2000) provides expressions for δ and

ξ and also considers the case of multi-factor asset pricing models. Further extensions and

applications are pursued by Pastor and Stambaugh (2000,2002) and Avramov (2004)

3.2.3 Model Uncertainty

The idea of dealing with parameter uncertainty by averaging the return distribution over

plausible parameter values can be naturally extended to dealing with model uncertainty

by averaging over plausible model specifications. Define a model Mj as being a particular

specification of the conditional return distribution and consider a finite set of J models

containing the true model M ∈ {M1,M2, . . . , MJ}. For any model j, the return distribution

is p(rt+1|Mj, θj), where the parameter vector θj can have different dimensions across models.

Analogous to parameter uncertainty, the problem of model uncertainty is that the investor

does not know which of the models to employ in the portfolio choice problem.

Assume the investor can express a prior belief about each model j being the true data

generator, p(Mj), as well as a prior belief about the parameters of each model, p(θj|Mj).

Combining these priors and the likelihood function, p(YT |Mj, θj), Bayes’ theorem implies for

each model the following posterior model probability:

p(Mj|YT ) =
p(YT |Mj) p(Mj)∑J
j=1 p(YT |Mj) p(Mj)

, (3.62)

where

p(YT |Mj) =

∫
p(YT |Mj, θj) p(θj|Mk) dθj (3.63)

denotes the marginal likelihood of model j after integrating out the parameters θj.

The posterior model probabilities serve a number of purposes. First, they help charac-

terize the degree of model uncertainty. For instance, suppose there are five plausible models.
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Model uncertainty is obviously more prevalent when each model has a posterior probability

of 20%, than when one model dominates with a posterior probability of 90%. Second, the

posterior model probabilities can be used to select a model with highest posterior probabil-

ity, or to eliminate models with negligible probabilities from the set of all models, thereby

reducing the inherently high dimensionality of model uncertainty. Third, the posterior model

probabilities can be used to construct a predictive return distribution by averaging across all

models according to their posterior probabilities. This so-called model averaging approach

is particularly useful when the degree of model uncertainty is too high for the investor to

confidently single out a model as being the true data generator. Model averaging is analo-

gous to averaging the return distribution over all parameter values according to the posterior

distribution of the parameters (as in equation (3.35)).

Formally, we construct the following posterior probability weighted average return dis-

tribution:

p(rT+1|YT ) =
J∑

j=1

p(rT+1|YT ,Mj) p(Mj|YT ), (3.64)

where

p(rT+1|YT ,Mj) =

∫
p(rt+1|Mj, θj) p(θj, YT , Mj) dθj (3.65)

denotes the marginal return distribution after integrating out the parameters θj. An ex-

tremely convenient property of this averaged predictive return distribution is that, due to

the linearity of the average, all non-central moments are also model-averaged:

E
[
rq
T+1

∣∣YT

]
=

J∑
j=1

E
[
rq
T+1

∣∣YT ,Mj

]
p(Mj|YT ), (3.66)

for any order q. Equation (3.66) can be used to construct (subjective) mean-variance efficient

portfolio weights using as inputs the posterior return moments implied by each model as well

as the posterior model probabilities.

Although intuitive and theoretically elegant, the practical implementation of model aver-

aging is less straightforward, both from a computational and conceptual perspective. There

are at least two computational issues. First, the marginal distributions (3.63) and (3.65) are

typically analytically intractable and need to be evaluated numerically. Second, even in the

context of linear regression models, which are most common in practice, the model space

with K regressors contains 2K permutations, for which the marginal distributions have to

be evaluated (numerically). With 15 regressors, a relatively modest number, there are over

32000 models to consider. Both of these issues can be overcome, with some effort, using the
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Markov chain Monte Carlo (MCMC) approach of George and McCulloch (1993).

The conceptual difficulties lie in the choice of the model set and the choice of the model

priors, which are intimately related issues. By having to specify ex-ante the list of all plausible

models, the investor explicitly rules out all non-included models (by essentially setting the

prior probabilities of those models to zero). Given the existing disagreement about return

modeling in the literature, it is hard to imagine that any model can be ruled out ex-ante

with certainty. As for the form of the priors, an obvious choice is an uninformative prior

assigning equal probabilities to all models. However, such uniform prior may actually be

surprisingly informative about certain subsets of models. For example, consider a linear

forecasting regression framework with K regressors. Only one of the 2K models does not

include any forecasters and is therefore consistent with the notion of market efficiency. The

remaining models all exhibit some violation of market efficiency. With equal priors of 1/2K

for each model, the implied prior odds against market efficiency are an overwhelming (2K−1)

to one. An economically more intuitive prior might assign a probability of 1/2 to the no-

predictability case and distribute the remaining probability of 1/2 evenly across all other

model. Unfortunately, even this approach does not fully resolve the issue. Suppose that

two-thirds of the K predictors are (highly correlated) price-scaled variables (e.g., dividend

yield, earnings yield, book-to-market) and one-third are (highly correlated) interest rate

variables (e.g., short rate, long rate). In that case, an evenly distributed prior across all

models with predictability assigns odds of 3:2 in favor of predictability due to price-scaled

variables as opposed to interest rate variables. The point of this example is to illustrate that

the choice of model priors is a tricky issue that requires careful economic reasoning.

There have been a number of recent applications of model averaging to portfolio choice.

Specifically, Avramov (2002) and Cremers (2002) both consider model uncertainty in linear

return forecasting models. Tu and Zhou (2003) considers uncertainty about the shape of the

return distribution in cross-sectional applications, and Nigmatullin (2003) introduces model

uncertainty in the non-parametric approach of Aı̈t-Sahalia and Brandt (2001) (discussed

further below). The fundamental conclusion of all of these papers is that model uncertainty

contributes considerably to the subjective uncertainty faced by an investor. For example,

Avramov (2002) demonstrates that the contribution of model uncertainty to the posterior

variance of returns is as large or even larger than the contribution of parameter uncertainty

discussed above. It is clear from this recent literature that model uncertainty is an important

econometric aspect of portfolio choice.
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4 Alternative Econometric Approach

The traditional econometric approach is fundamentally a two-step procedure. In the first

step the econometrician or investor models and draws inferences about the data generating

process (either through plug-in estimation or by forming a subjective belief) in order to

ultimately, in the second step, solve for the optimal portfolio weights. The majority of my

own research on portfolio choice has focused on ways to skip the first step of modeling returns

and directly draw inferences about the optimal portfolio weights from the data.

Besides the obvious fact that the optimal portfolio weights are the ultimate object of in-

terest, there are at least three other benefits from focusing directly on the portfolio weights.

First, the return modeling step is without doubt the Archilles’ heel of the traditional econo-

metric approach. There is vast disagreement even among finance academicians on how to

best model returns, and the documented empirical relationships between economic state vari-

ables (forecasters) and return moments are usually quite tenuous. Combined, this leads to

substantial risk of severe model mispecification and estimation error, which are subsequently

accentuated by the portfolio optimizer in the second step of the procedure. The intuition

underlying my research is that optimal portfolio weights are easier to model and estimate

than conditional return distributions. A second but related benefit of focusing on the port-

folio weights is dimension reduction. Consider once again an unconditional mean-variance

problem with 500 assets. The return modeling step involves more than 125,000 parame-

ters, but the end-result of the two-step procedure are only 500 optimal portfolio weights.

Focusing directly on the optimal portfolio weights therefore reduced considerably the room

for model mispecification and estimation error. Third, drawing inferences about optimal

portfolio weights lends itself naturally to using an expected utility-based loss function in a

classical setting, as opposed to the obviously inconsistent practice of using standard squared

error loss to estimate the return model in the first step and then switching to an expected

utility function to solve for the optimal portfolio weights in the second step.

4.1 Parametric Portfolio Weights

The simplest way to directly estimate optimal portfolio weights is to parameterize the port-

folio weights as functions of observable quantities (economic state variables and/or firm

characteristics) and then solve for the parameters that maximize expected utility. This idea

is developed in the context of single and multiperiod market timing problems in Brandt and

Santa-Clara (2003) and in the context of a large cross-sectional portfolio choice problem in

Brandt, Santa-Clara, and Valkanov (2004). Since the implementations in these two papers
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are somewhat different, yet complimentary, I explain each in turn.

4.1.1 Conditional Portfolio Choice by Augmenting the Asset Space

In Brandt and Santa-Clara (2003), we solve a market timing problem with parameterized

portfolio weights of the form xt = θzt. We demonstrate that solving a conditional problem

with parameterized portfolio weights is mathematically equivalent to solving an uncondi-

tional problem with an augmented asset space that includes naively managed zero-investment

portfolios with excess returns of the form zt times the excess return of each basis asset. This

makes implementing our approach to dynamic portfolio choice no more difficult than imple-

menting the standard Markowitz problem.

Consider first a single-period mean-variance problem. Assuming that the optimal portfo-

lio weights are linear functions of K state variables zt (which generally include a constant):

xt = θzt, (4.1)

where θ is a N ×K matrix of coefficients, the investor’s conditional optimization problem is:

max
θ

Et

[
(θzt)

′rt+1

]− γ

2
vart

[
(θzt)

′rt+1

]
. (4.2)

We use the following result from linear algebra:

(θzt)
′rt+1 = z′tθ

′rt+1 = vec(θ)′(zt ⊗ rt+1), (4.3)

where vec(θ) stacks the columns of θ and ⊗ denotes a Kronecker product, and define:

x̃ = vec(θ)

r̃t+1 = zt ⊗ rt+1 .
(4.4)

The investor’s conditional problem can then be written as:

max
x̃

Et

[
x̃′r̃t+1

]− γ

2
vart

[
x̃′r̃t+1

]
. (4.5)

Since the same x̃ maximizes the conditional mean-variance tradeoff at all dates t (hence no

time-subscript), it also maximizes the unconditional mean-variance tradeoff:

max
x̃

E
[
x̃′r̃t+1

]− γ

2
var

[
x̃′r̃t+1

]
, (4.6)
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which corresponds simply to the problem of finding the unconditional mean-variance optimal

portfolio weights x̃ for the expanded set of N ×K assets with returns r̃t+1. The expanded

set of assets can be interpreted as managed portfolios, each of which invests in a single basis

asset an amount proportional to the value of one of the state variables. We therefore label

these expanded set of assets “conditional portfolios.” Given the solution to the unconditional

mean-variance problem:

x̃? =
1

γ
var[r̃t+1]

−1 E[rt+1], (4.7)

we recover the conditional weight invested in each of the basis assets at any time t by simply

adding up the corresponding products of elements of x̃? and zt in equation (4.1).

The idea of augmenting the asset space with naively managed portfolios extends to the

multiperiod case. For example, consider a two-period mean-variance problem:

max Et

[
rp,t→t+2

]− γ

2
vart

[
rp,t→t+2

]
, (4.8)

where rp,t→t+2 denotes the excess portfolio return of a two-period investment strategy:

rp,t→t+2 = (Rf
t + x′trt+1)(R

f
t+1 + x′t+1rt+2)−Rf

t R
f
t+1

= x′t(R
f
t+1rt+1) + x′t+1(R

f
t rt+2) + (x′trt+1)(x

′
t+1rt+2).

(4.9)

The first line of this equation shows that rp,t→t+2 is a two-period excess return. The investor

borrows a dollar at date t and allocates it to the risky and risk-free assets according to

the first-period portfolio weights xt. At t + 1, the one-dollar investment results in (Rf
t +

x>t rt+1) dollars, which the investor then allocates again to the risky and risk-free assets

according to the second-period portfolio weights xt+1. Finally, at t + 2, the investor has

(Rf
t +x>t rt+1)(R

f
t+1 +x>t+1rt+2) dollars but pays Rf

t R
f
t+1 dollars for the principal and interest

of the one-dollar loan. The second line of the equation decomposes the two-period excess

return into three terms. The first two terms have a natural interpretation as the excess

return of investing in the risk-free rate in the first (second) period and in the risky asset in

the second (first) period. The third term captures the effect of compounding. Comparing

the first two terms to the third, the latter is two orders of magnitude smaller than the former.

The return (x>t rt+1)(x
>
t+1rt+2) is a product of two single-period excess returns, which means

that its units are of the order of 1/100th of a percent per year. The returns on the first two

portfolios, in contrast, are products of a gross return (Rf
t or Rf

t+1) and an excess return (rt+1

or rt+2), so their units are likely to be percent per year. Given that the compounding term

is orders of magnitude smaller, we suggest to ignore it.

Without the compounding term, the two-period problem involves simply a choice between
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two intertemporal portfolios, one that holds the risky asset in the first period only and the

other that holds the risky asset in the second period only. Using these two intertemporal

portfolios, which we label “timing portfolios,” we can solve the dynamic problem as a static

mean-variance optimization. The solution is:

x̃? =
1

γ
var[r̃t→t+2]

−1 E[r̃t→t+2], (4.10)

with r̃t→t+2 = [Rf
t+1rt+1, R

f
t rt+2]. The first N elements of x̃, corresponding to Rf

t+1rt+1,

represents the fraction of wealth invested in the risky assets in the first period, and the

remaining elements, corresponding to Rf
t rt+2, are for the risky assets in the second period.

In a general H-period problem, we proceed in exactly the same way. We construct a set

of timing portfolios:

r̃t→t+H =

{ H−1∏

i=0
i 6=j

Rf
t+irt+j+1

}H−1

j=0

, (4.11)

where each term represents a portfolio that invests in risky assets in period t + j and in the

risk-free rate in all other periods t + i, with i 6= j, and obtain the mean-variance solution:

x̃? =
1

γ
var[r̃t→t+H ]−1 E[r̃t→t+H ] (4.12)

In addition, we can naturally combine the ideas of conditional and timing portfolios. For this,

we simply replace the risky returns rt+j+1 in equation (4.11) with the conditional portfolio

returns zt+j ⊗ rt+j+1. The resulting optimal portfolio weights then provide the optimal

allocations to the conditional portfolios at each date t + j.

The critical property of the solutions (4.7) and (4.12) is that they depend only on the

unconditional moments of the expanded set of assets and therefore do not require any as-

sumptions about the conditional joint distribution of the returns and state variables (besides

that the unconditional moments exist). In particular, the solutions do not require any as-

sumptions about how the conditional moments of returns depends on the state variables or

how the state variables evolve through time. Furthermore, the state variables can predict

time-variation in the first, second, and, if we consider more general utility functions, even

higher-order moments of returns. Notice also that the assumption that the optimal portfolio

weights are linear functions of the state variables is innocuous because zt can include non-

linear transformations of a set of more basic state variables yt. The linear portfolio weights

can be interpreted as more general portfolio weight functions xt = g(yt) for any g(·) that

can be spanned by a polynomial expansion in the more basic state variables yt.
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The obvious appeal of our approach is its simplicity and the fact that all of the statis-

tical techniques designed for the static mean-variance problem can be applied directly to

the single- and multiperiod market timing problems. Naturally, this simplicity comes with

drawbacks that are discussed and evaluated carefully in Brandt and Santa-Clara (2003).

We also demonstrate in the paper how our parametric portfolio weights relate to the more

traditional approach of modeling returns and state variables with a VAR in logs (equation

(2.16)). Finally, we provide an extensive empirical application.

4.1.2 Large-Scale Portfolio Choice with Parametric Weights

Our approach in Brandt, Santa-Clara, and Valkanov (2004) is similar, in that we parameter-

ize the optimal portfolio weights, but is geared toward large-scale cross-sectional applications.

Suppose that at each date t there are large number of Nt stocks in the investable universe.

Each stock i has an excess return of ri,t+1 from date t to t + 1 and a vector of characteristics

yi,t observed at date t. For example, the characteristics could be the market beta of the

stock, the market capitalization of the stock, the book-to-market ratio of the stock, and the

lagged twelve-month return on the stock. The investor’s problem is to choose the portfolio

weights xi,t to maximize the expected utility of the portfolio return rp,t+1 =
∑Nt

i=1 xi,tri,t+1.

We parameterize the optimal portfolio weights as a function of the characteristics:

xi,t = x̄i,t +
1

Nt

θ′ŷi,t (4.13)

where x̄i,t is the weight of stock i in a benchmark portfolio, θ is a vector of coefficients

to be estimated, and ŷi,t are the characteristics of stock i standardized cross-sectionally to

have a zero mean and unit standard deviation across all stocks at date t. This particular

parameterization captures the idea of active portfolio management relative to a performance

benchmark. The intercept is the weight in the benchmark portfolio and the term θ′ŷi,t

represents the deviations of the optimal portfolio from the benchmark. The characteristics

are standardized for two reasons. First, the cross-sectional distribution of ŷi,t is stationary

through time, while that of yi,t can be non-stationary (depending on the characteristic).

Second, the standardization implies that the cross-sectional average of θ′ŷi,t is zero, which

means that the deviations of the optimal portfolio weights from the benchmark weights sum

to zero, and that the optimal portfolio weights always sum to one. Finally, the term 1/Nt is a

normalization that allows the portfolio weight function to be applied to an arbitrary number

of stocks. Without this normalization, doubling the number of stocks without otherwise

changing the cross-sectional distribution of the characteristics results in twice as aggressive
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allocations, although the investment opportunities are fundamentally unchanged.

The most important aspect of our parameterization is that the coefficients θ do not vary

across assets or through time. Constant coefficients across assets implies that the portfolio

policy only cares about the characteristics of the stocks, not the stocks themselves. The

underlying economic idea is that the characteristics fully describe the stock for investment

purposes. Constant coefficients through time means that the coefficients that maximize the

investor’s conditional expected utility at a given date are the same for all dates and therefore

also maximize the investor’s unconditional expected utility. This allows us to estimate θ by

maximizing the sample analogue of the unconditional expected utility:

max
θ

1

T

T−1∑
t=0

u(rp,t+1) =
1

T

T−1∑
t=0

u

(
Nt∑
i=1

xi,tri,t+1

)

=
1

T

T−1∑
t=0

u

(
Nt∑
i=1

(
x̄i,t +

1

Nt

θ′ŷi,t

)
ri,t+1

)
,

(4.14)

for some prespecified utility function (e.g., mean-variance, quadratic, or CRRA utility).

Our approach has several practical advantages. First, it allows us to optimize a portfolio

with a very large number of stocks, as long as the dimensionality of the parameter vector is

kept reasonably low. Second, but related, the optimal portfolio weights are less prone to error

maximization and over-fitting because we optimize the entire portfolio by choosing only a few

parameters. The optimized portfolio weights tend to be far less extreme than the portfolio

weights resulting from a more standard plug-in approach. Third, our approach implicitly

takes into account the dependence of expected returns, variances, covariances and higher-

order moments on the stock characteristics, to the extent that cross-sectional differences in

these moments affect the expected utility of the portfolio returns.

We develop several extensions of our parametric portfolio weights approach in Brandt,

Santa-Clara, and Valkanov (2004), including parameterizations that restrict the optimal

portfolio weights to be non-negative and non-linear parameterizations that allow for inter-

actions between characteristics (e.g., small stocks with high momentum). We also show how

the idea of cross-sectionally parameterizing the optimal portfolio weights can be combined

naturally with the idea of parametric market timing described above. In particular, to allow

the impact of the characterstics on the optimal portfolio weights to vary through time as a

function of the macroeconomic predictors zt, we suggest the parameterization:

xi,t = x̄i,t +
1

Nt

θ′ (zt ⊗ ŷi,t) (4.15)
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where ⊗ again denotes the Kronecker product of two vectors. As in the pure market timing

case, the optimization problem can then be rewritten as a cross-sectionally parameterized

portfolio choice for an augmented asset space with naively managed portfolios.

4.1.3 Nonparametric Portfolio Weights

While parameterized portfolio weights overcome the dependence on return models, they still

suffer from potential mispecification of the portfolio weight function. In Brandt (1999), I

develop a nonparametric approach for estimating the optimal portfolio weights without ex-

plicitly modeling returns or portfolio weights, which can be used as a mispecification check.

The idea of my nonparametric approach is to estimate the optimal portfolio weights from

sample analogues of the first-order conditions or Euler equations (2.12). These Euler equa-

tions involve conditional expectations that cannot be conditioned down to unconditional

expectations, since the portfolio weights solving the Euler equations are generally differ-

ent across economic states and dates. Instead, I replace the conditional expectations with

nonparametric regressions and then solve for the portfolio weights that satisfy the resulting

sample analogues of the conditional Euler equations.

Consider a single-period portfolio choice. The optimal portfolio weights xt are charac-

terized by the conditional Euler equations Et[u
′(xt

′rt+1 + Rf
t )rt+1] = 0. Suppose the returns

are iid so that the optimal portfolio weights are the same across all states. In that case,

we can take unconditional expectations of the conditional Euler equations to obtain a set of

unconditional Euler equations that characterize the optimal unconditional portfolio weights

xt ≡ x. Replacing these unconditional expectations with sample averages in the spirit of

method of moments estimation yields the estimator:

x̂ =

{
x :

1

T

T∑
t=1

u′
(
x′rt+1 + Rf

t

)
rt+1 = 0

}
. (4.16)

The same logic applies to a time-varying return distribution, except that the Euler equations

cannot be conditioned down because the optimal portfolio weights depend on the macroe-

conomic state variables zt (and/or firm characteristics yi,t). Instead, we can directly replace

the conditional expectations with sample analogues, where the sample analogue of a condi-

tional expectation is a locally weighted (in state-space) sample average. For a given state

realization zt = z, the resulting estimator of the optimal portfolio weights is:

x̂(z) =

{
x :

1

ThK
T

T∑
t=1

ω
(zt − z

hT

)
u′

(
x′rt+1 + Rf

t

)
rt+1 = 0

}
, (4.17)
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Where ω(·) is a kernel function that weights marginal utility realizations according to how

similar the associated zt is to the value z on which the expectations are conditioned, and

hT denotes a sequence of kernel bandwidths that tends to zero as T increases.16 (The factor

ThK
T assures that the weighted average is not degenerate.) Applying equation (4.17) to all

values of z, one value at a time, recovers state-by-state the optimal portfolio weights.

To better understand this estimator, we can interpret it in a more standard nonpara-

metric regression framework. For any portfolio weights x, the weighted average represents

a kernel regression of the marginal utility realizations on the state variables. With optimal

bandwidths, this kernel regression is consistent, in that:

1

ThK
T

T∑
t=1

ω
(zt − z

hT

)
u′

(
x′rt+1 + Rf

t

)
rt+1

T→∞−→ E
[
u′

(
x′rt+1 + Rf

t

)
rt+1

∣∣∣zt = z
]
. (4.18)

It follows that the portfolios weights that set to zero the nonparametric regressions converge

to the portfolio weights that set to zero the corresponding conditional expectations.

The estimator is developed in greater detail and for a more general multiperiod portfolio

choice problem with intermediate consumption in Brandt (1999). I also discuss the optimal

bandwidth choice, derive the asymptotics of the estimator (with optimal bandwidths, it is

consistent and asymptotically Gaussian with a convergence rate of
√

ThK
T ), and examine

its finite sample properties through Monte Carlo experiments. In Brandt (2003), I locally

parameterize the portfolio weights to further improve the finite sample properties (in the

spirit of the local polynomial regression approach of Fan (1993)).

Kernel regressions are not the only way to nonparametrically estimate optimal portfolio

weights from conditional Euler equations. Another way is to flexibly parameterize the port-

folio weights with polynomial expansions, condition down the Euler equations, and estimate

the polynomial coefficients using a standard method of moments approach. Yet another way

is to flexibly parameterize the conditional expectations and construct sample analogues of

the conditional Euler equations through polynomial regressions. Irrespective of the method,

however, all of these estimators are limited in practice by some form of the “curse of di-

mensionality.” For kernel regressions, the curse of dimensionality refers to the fact that the

rate of convergence of the estimator to its asymptotic distribution deteriorates exponentially

with the number of regressors. For polynomial expansion methods, the number of terms in

an expansion of fixed order increases exponentially. Realistically, the curse of dimensionality

16The kernel function must satisfy ω(u)=
∏K

i=1k(ui) with
∫

k(u) du=1,
∫

uk(u) du=0, and
∫

u2k(u) du<∞.
A common choice is a K-variate standard normal density with k(u)=exp{−1/2u2}/√2π. See Härdle (1990)
or Altman (1992) for a more detailed discussion of kernel functions.
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means that we cannot reliably implement nonparametric estimators with more than two

predictors (given the usual quarterly or monthly postwar data).

In Aı̈t-Sahalia and Brandt (2001), we propose an intuitive way to overcome the curse of

dimensionality in a portfolio choice context. Borrowing from the idea of index regressions

(Powell, Stock, and Stoker (1989), we collapse the vector of state variables zt into a single

linear index z′tβ and then implement the kernel regression approach described above with

this univariate index. The index coefficients β are chosen such that the expected utility

loss relative to the original problem is minimized. (Empirically, the expected utility loss

turns out to be negligible in most cases). We interpret the relative magnitude and statistical

significance of each index coefficient as a measure of how important the corresponding state

variable is to the investor’s portfolio choice. We then use this interpretation to single out

the one or two most important predictors for a range of different preferences.
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