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1 Introduction

This paper studies the impact of predictable variation in stock returns on intertemporal

optimal portfolio choice and consumption. We consider a model in which an infinitely lived

investor with utility defined over consumption makes portfolio and consumption decisions

continuously.

Two assets are available, a riskless asset with a constant interest rate, and a risky asset

(“stocks”) whose expected return is time-varying. The realized return on stocks and the state

variable driving changes in expected stock returns follow a joint homoskedastic, continuous-

time vector autoregressive process (VAR). Thus the Sharpe ratio of the risky asset is linear

in the state variable. An important characteristic of our model is that the instantaneous

correlation between stock returns and expected returns need not be perfect; in other words,

markets need not be complete.

To separate the effects of risk aversion from the effects of the investor’s willingness to

substitute consumption intertemporally, we assume that the investor has recursive prefer-

ences. Recursive utility is a generalization of power utility that allows both the coefficient of

relative risk aversion and the elasticity of intertemporal substitution in consumption to be

constant free parameters. We adopt Duffie and Epstein’s (1992a, 1992b) parameterization

of recursive preferences in continuous time.

A discrete-time version of this model has been previously studied by Campbell and
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Viceira (1999), who derive an approximate analytical solution for the optimal portfolio

rule, and show that this rule is linear in the state variable. Because Campbell and Viceira

work in discrete time, no exact portfolio solutions are available in their model except in

the trivial case of unit risk aversion, which implies myopic portfolio choice. By working in

continuous time we show that this model has an exact analytical solution when the elasticity

of intertemporal substitution of consumption equals one, for any value of the coefficient of

relative risk aversion. For elasticities of intertemporal substitution different from one, our

solution is still approximate. The solution is intuitive, and is the limit, as the frequency with

which the investor can rebalance increases, of the discrete-time solution in Campbell and

Viceira.1 However the continuous-time solution is likely to be more appealing and intuitive to

finance theorists who are accustomed to working in continuous time. The solution presented

here extends the continuous-time results of Kim and Omberg (1996), who consider a finite-

horizon model with consumption only at a single terminal date, and of Wachter (2002),

who assumes that innovations to future expected stock returns are perfectly correlated with

unexpected returns.

Campbell and Viceira (1999) calibrate their model to U.S. stock market data for the

postwar period, and find that intertemporal hedging motives greatly increase the average

1Campbell and Viceira (1999) claim that their solution becomes exact in the limit of continuous time

when the elasticity of intertemporal substitution equals one. They base this claim on the fact that they

use an approximation to the investor’s intertemporal budget constraint which becomes exact as the time

interval of their model shrinks.
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demand for stocks by investors whose relative risk aversion coefficients exceed one. We

show that our continuous-time VAR model has a unique correspondence with their discrete-

time VAR model. This allows us to use their discrete-time estimates, appropriately time-

disaggregated, to calibrate our own model. The calibration results show that our model

exhibits similar properties.

The structure of the paper is as follows. Section 2 describes the investment opportu-

nity set, and show how to time-aggregate our continuous-time VAR model for realized and

expected stock returns. Section 3 solves and calibrates the intertemporal consumption and

portfolio choice problem. Section 4 concludes.

2 Investment Opportunity Set

2.1 A continuous-time VAR

We start by assuming that there are two assets available to the investor, a riskless asset with

instantaneous return

dBt

Bt

= rdt, (1)

and a risky asset (“stocks”) whose instantaneous return is given by

dSt
St

= µtdt+ σSd eZS. (2)
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where

dµt = κ (θ − µt) dt+ σµd eZµ. (3)

The shocks to dSt/St and µt are given by d eZS = dZS and d eZµ = ρdZS+
p
1− ρ2dZµ, where

dZS,t and dZµ,t are independent Wiener processes.

Equations (2)—(3) imply that the instantaneous return on stocks (dSt/St) follows a diffu-

sion process whose drift (or instantaneous expected return) µt is mean-reverting and instan-

taneously correlated with the instantaneous return itself, with correlation coefficient equal

to ρ. These equations define in fact a continuous-time vector autoregressive (VAR) process

for the instantaneous return on stocks and its expectation. For convenience, we work with

instantaneous log returns, and rewrite the system as d
¡
logSt +

1
2
σ2St− θt

¢
d (µt − θ)

 =

 0 1

0 −κ


 logSt + 1

2
σ2St− θt

µt − θ

 dt (4)

+

 σS 0

σµρ σµ
p
1− ρ2


 dZS,t

dZµ,t

 ,
where we have applied Itô’s Lemma to equation (2) to obtain the process for the instan-

taneous log return. We show in Section 2.3 that the system (4) is the continuous-time

counterpart of the discrete-time VAR(1) process in Campbell and Viceira (1999).
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2.2 Time-aggregation of the continuous-time VAR

We can write the continuous VAR model (4) in compact form as

dyt = Aytdt+ CdZt, (5)

where the definition of the variables and coefficient matrices is obvious. Note that the

instantaneous variance of dy is given by CC 0:

Var (dy) = CC 0 =

 σ2S ρσSσµ

ρσSσµ σ2µ

 .

Bergstrom (1984) and Campbell and Kyle (1993) show how to derive the discrete-time

process implied by a continuous-time VARwhen we take point observations of the continuous

time process at evenly spaced points {t0, t1..., tn, tn+1, ....}, with ∆t = tn − tn−1. Direct

application of their results shows that the process y in (5) has the following discrete-time

VAR(1) representation:

yptn+∆t = exp {∆tA} yptn + uptn+1, (6)

where

uptn+1 =

Z ∆t

τ=0

exp {(∆t− τ )A}CdZtn+τ , (7)

and

exp {A} = I +

∞X
r=1

Ar

r!
. (8)
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We prove in Appendix A that exp{sA} is equal to

exp (As) =

 1 1
κ
(1− e−κs)

0 e−κs

 . (9)

Thus we can write (6) in matrix form as: log Stn+∆t +
σ2S
2
(tn +∆t)− θ (tn +∆t)

µtn+∆t − θ

 (10)

=

 1 1
κ

¡
1− e−κ∆t

¢
0 e−κ∆t


 log Stn +

σ2S
2
tn − θtn

µtn − θ

+ utn+∆t,

where

utn+∆t =

 uS,tn+∆t

uµ,tn+∆t

 = Z ∆t

0

 1 1
κ

¡
1− e−κ(∆t−τ)¢

0 e−κ(∆t−τ)


 σS 0

ρσµ σµ
p
1− ρ2

 dZtn+τ . (11)

>From equation (11), it follows that the variance-covariance matrix of the innovations

utn+∆t in the discrete-time representation of the continuous-time VAR is given by

Var
¡
uptn+∆t

¢
=

Z ∆t

τ=0

exp {(∆t− τ)A}CC 0 exp {(∆t− τ)A0} dτ (12)

=

Z ∆t

0

 B11 B12

B12 B22

 dτ ,
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where

B11 = σ2S +
2ρσSσµ

κ

¡
1− e−κ(∆t−τ)¢+ σ2µ

κ2
¡
1− e−κ(∆t−τ)¢2 ,

B12 = ρσSσµe
−κ(∆t−τ) +

σ2µ
κ

¡
e−κ(∆t−τ) − e−2κ(∆t−τ)¢ ,

B22 = σ2µe
−2κ(∆t−τ).

Therefore, given values for the parameters of the continuous-time process (4), we can

easily aggregate to any frequency ∆t, by using (10) and (12). The discrete-time representa-

tion is especially useful in recovering the parameters of the continuous-time VAR (4) from

estimates of the equivalent discrete-time VAR (10). We do this in the next section.

2.3 Recovering continuous-time parameters from a discrete-time

VAR

In their analysis of optimal consumption and portfolio choice with time-varying expected

returns, Campbell and Viceira (1999, 2000) assume that the log excess returns on stocks is

described by the following discrete-time VAR(1): ∆ logStn+∆t − rf

xtn+∆t

 =
 0

(1− φ)µ

+
 0 1

0 φ


 ∆ logStn − rf

xtn

+
 εtn+∆t

ηtn+∆t

 , (13)
where rf is the return (assumed constant) on a T-bill with maturity ∆t, and xtn+∆t is the

conditional expected log excess return on stocks.
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We now show that there is pathwise convergence between the continuous-time VAR

given in (4) and the discrete-time VAR given in (13). This implies that no other continuous-

time process can generate (13) when aggregated at any time interval–although there might

be other continuous-time processes whose moments would match the moments generated

by (13) at specific time intervals. To see this, note that we can rewrite the discrete-time

aggregation of y in (10) as follows: ∆ logStn+∆t − r∆t

µtn+∆t

 =


³
θ − σ2S

2
− r
´
∆t− 1

κ

¡
1− e−κ∆t

¢
θ¡

1− e−κ∆t
¢
θ

 (14)

+

 1 1
κ

¡
1− e−κ∆t

¢
0 e−κ∆t


 log Stn +

σ2S
2
tn − θtn

µtn

+
 uS,tn+∆t

uµ,tn+∆t

 .
Using the following linear transformation for the process µt,

vt =

µ
θ − σ2S

2
− r

¶
∆t− 1

κ

¡
1− e−κ∆t

¢
θ +

1

κ

¡
1− e−κ∆t

¢
µt,

we can further rewrite (14) in the same form as (13): ∆ log Stn+∆t − r∆t

vtn+∆t

 =

 0¡
1− e−κ∆t

¢ ³
θ − σ2S

2
− r
´
∆t

 (15)

+

 0 1

0 e−κ∆t


 ∆ log Stn+∆t − r∆t

vtn



+

 1 0

0 1
κ

¡
1− e−κ∆t

¢

 uS,tn+∆t

uµ,tn+∆t

 .
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A simple comparison of the coefficients in (13) and (15) gives us a system of equations that

relate the parameters of the discrete-time VAR process in Campbell and Viceira (1999) to

the parameters of our continuous-time VAR process. For the intercept and slope parameters

we have the following equivalence relations:

rf = r∆t, (16)

µ =

µ
θ − σ2S

2
− r

¶
∆t, (17)

φ = e−κ∆t. (18)

Solving the integral (12) and matching parameters, we obtain the following equivalence

relations for the variance and covariance parameters:

Vartn
¡
ηtn+∆t

¢
=

1

κ2
¡
1− e−κ∆t

¢2
Vartn (uµ,tn+∆t) (19)

=
σ2µ
2κ3

¡
1− e−κ∆t

¢2 ¡
1− e−2κ∆t

¢
,

Covtn
¡
εtn+∆t, ηtn+∆t

¢
=

1

κ

¡
1− e−κ∆t

¢
Covt (uS,tn+∆t, uµ,tn+∆t) (20)

=
ρσSσµ
κ2

¡
1− e−κ∆t

¢2
+

σ2µ
κ3
¡
1− e−κ∆t

¢2
− σ2µ
2κ3

¡
1− e−2κ∆t

¢ ¡
1− e−κ∆t

¢
,

Vartn (εtn+∆t) = Vartn (uS,tn+∆t) (21)

=

µ
σ2S +

2ρσSσµ
κ

+
σ2µ
κ2

¶
∆t− 2ρσSσµ

κ2
¡
1− e−κ∆t

¢
−2σ

2
µ

κ3
¡
1− e−κ∆t

¢
+

σ2µ
2κ3

¡
1− e−2κ∆t

¢
.

The nonlinear system of equations (16)—(21) has a unique solution. That is, there is a
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unique correspondence between the set of parameters that define the continuous time model

(4), and the set of parameters that define the discrete-time model (13). To see this, note that

equations (16) and (18) uniquely relate rf and r, and φ and κ respectively. Given κ, equation

(19) uniquely relates Vartn
¡
ηtn+∆t

¢
and σ2µ; given κ and σ2µ, equation (20) uniquely relates

Covtn
¡
εtn+∆t, ηtn+∆t

¢
and σµS ≡ ρσSσµ; and given κ, σ2µ and σµS, equation (21) uniquely

relates Vartn (εtn+∆t) and σ2S. Finally, given σ2S and r, equation (17) uniquely relates θ and

µ.

Campbell and Viceira (2000) report estimates of the VAR(1) given in (13) based on US

quarterly data for the period 1947.Q1-1995.Q4. Table 1 shows the value of the parameters

of the continuous-time equivalent VAR implied by their estimates.2

3 Intertemporal Portfolio Choice

In this section we solve the intertemporal consumption and portfolio choice problem of an

investor who faces the investment opportunity set described in Section 2. To this end we

use the approximation techniques described in Chacko and Viceira (1999) and Campbell

and Viceira (2002), and show that the solution is invariant to the choice of discrete-time or

2There is an estimation error in Campbell and Viceira (1999) that results in an underestimation of the

degree of predictability in stock returns in their paper. Campbell and Viceira (2000) report correct estimates,

and calibration results based on the corrected estimates.
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continuous-time approximations.

3.1 Assumptions on investment opportunities and preferences

We consider an investor who has only two assets available for investment, a riskless short-

term bond and stocks, and no labor income. Return dynamics are given by (1) and the

bivariate system (2)—(3). These assumptions on investment opportunities imply that the

wealth dynamics for the investor are given by

dWt = rWtdt+ αtWt [(µt − r) dt+ σSdZS]− Ctdt, (22)

where αt is the fraction of wealth invested in stocks, and Ct denotes consumption.

We assume that the investor has recursive preferences over consumption. We use Duffie

and Epstein’s (1992a, b) continuous-time parameterization:

Jt =

Z ∞

t

f (Cs, Js) ds,

where f (Cs, Js) is a normalized aggregator of current consumption and continuation utility

that takes the form

f (C, J) =
β

1− 1
ψ

(1− γ) J

Ã C

((1− γ) J)
1

1−γ

!(1− 1
ψ )

− 1
 . (23)

Here β > 0 is the rate of time preference, γ > 0 is the coefficient of relative risk aversion, and

ψ > 0 is the elasticity of intertemporal substitution. The Duffie-Epstein continuous-time
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preference specification is normalized differently from the Epstein-Zin (1989, 1991) discrete-

time specification–in particular, its value function that is homogeneous of degree (1 − γ)

in wealth, while the Epstein-Zin value function is linearly homogeneous in wealth–but it

generates equivalent decision rules.

There are two interesting special cases of the normalized aggregator (23): ψ = 1/γ and

ψ = 1. The case ψ = 1/γ is interesting because in that case the normalized aggregator (23)

reduces to the standard, additive power utility function–from which log utility obtains by

setting γ = 1. In the second special case, the aggregator f (Cs, Js) takes the following form

as ψ → 1:

f (Cs, Js) = β (1− γ)J

·
log (C)− 1

1− γ
log ((1− γ)J)

¸
. (24)

The case ψ = 1 is important because it allows an exact solution to our dynamic optimization

problem for investors who are more risk averse than an investor with unit coefficient of

relative risk aversion. We now explore this solution, as well as an approximate solution for

investors with ψ 6= 1 in the next section.
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3.2 Bellman equation

Duffie and Epstein (1992a, b) show that the standard Bellman principle of optimality applies

to recursive utility. The Bellman equation for this problem is

0 = sup
{αt,Ct}

{f(Ct, Jt) + JW [Wt (r + αt (µt − r))− Ct] + Jµκ (θ − µt)

+
1

2
JWWW 2

t α
2
tσ
2
S + JWµWtαtρσSσµ +

1

2
Jµµσ

2
µ

¾
, (25)

where f(Ct, Jt) is given in (23) when ψ 6= 1, or (24) when ψ = 1. Jx denotes the partial

derivative of J with respect to x, except Jt, which denotes the value of J at time t.

The first order condition for consumption is given by

Ct = J−ψW [(1− γ) J ]
1−γψ
1−γ βψ, (26)

which reduces to Ct = (J/JW ) (1− γ) β when ψ = 1.

The first order condition for portfolio choice is given by

αt =
−JW

WtJWW

µ
µt − r

σ2S

¶
− JWµ

WtJWW

µ
ρσµ
σS

¶
. (27)

Substitution of the first order conditions (26) and (27) into the Bellman equation (25)

results in the following partial differential equation for the value function J :

0 = f
³
J−ψW {(1− γ)J} 1−γψ1−γ βψ, Jt

´
− JW

n
J−ψW [(1− γ)J ]

1−γψ
1−γ βψ

o
(28)

+JWWtr + Jµκ (θ − µt) +
1

2
Jµµσ

2
µ

−1
2

(
J2W
JWW

(µt − r)2

σ2S
+ 2

JWJWµ

JWW

ρσµ (µt − r)

σS
+

J2Wµ

JWW

ρ2σ2µ

)
.
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Of course, the form of this equation depends on whether we consider the case ψ 6= 1 and

use the normalized aggregator (23), or we consider the case ψ = 1 and use the normalized

aggregator (24). Appendix B shows the partial differential equation that obtains in each

case.

In particular, we show in Appendix B that (28) has an exact analytical solution when

ψ = 1. This solution is

J (Wt, µt) = I (µt)
W 1−γ

t

1− γ
, (29)

with

I (µt) = exp

½
A0 +B0µt +

C0
2
µ2t

¾
, (30)

where A, B, and C are functions of the primitive parameters of the model describing invest-

ment opportunities and preferences.

In the more general case ψ 6= 1, there is no exact analytical solution to (28). However,

we can still find an approximate analytical solution following the methods described in

Campbell and Viceira (2002) and Chacko and Viceira (1999). We start by guessing that the

value function in this case also has the form given in (29), with

I (µt) = H (µt)
−( 1−γ1−ψ) . (31)

Substitution of (31) into the Bellman equation (28) results in an ordinary differential equa-

tion forH(µt). This equation does not have an exact analytical solution in general. However,

we show in Appendix B that taking a loglinear approximation to one of the terms in the
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equation results in a new equation for H(µt) that admits an analytical solution. The form

of this solution is an exponential-quadratic function similar to (30):

H (µt) = exp

½
A1 +B1µt +

C1
2
µ2t

¾
. (32)

The term that we need to approximate in the ordinary differential equation for H(µt)

is βψH(µt)
−1. Substitution of (29) and (32) into the first order condition (26) shows that

this term is simply the optimal consumption-wealth ratio Ct/Wt. Thus this loglinearization

is equivalent to loglinearizing the optimal consumption-wealth ratio around one particular

point of the state space. Campbell and Viceira (2002) and Chacko and Viceira (1999) suggest

approximating this term around the unconditional mean of the log consumption wealth-ratio.

This choice has the advantage that the solution is exact when the log consumption-wealth

ratio is constant, that is when ψ = 1, and accurate if the log consumption-wealth is not

too variable around its mean. It is also interesting to note that the approximation around

ψ = 1 includes, as a special case, the approximation around the exact known solution for a

log-utility investor (γ = ψ ≡ 1) suggested by Kogan and Uppal (2000). Their approximation

is unlikely to be accurate for values of γ far from 1, whereas the approximation used here

can be arbitrarily accurate for any value of γ provided that ψ is sufficiently close to one.

Appendix B provides full details of our solution procedure.
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3.3 Optimal portfolio choice

The optimal portfolio policy of the investor can be found by substituting the solution for

the value function into the first-order condition (27). In the case ψ = 1, substitution of

(29)—(30) into (27) gives

αt =

µ
1

γ

¶
µt − r

σ2S
+

µ
1− 1

γ

¶
σµ
σS

ρ (B0 + C0µt) , (33)

where B0 = −B0/(1− γ) and C0 = −C0/(1− γ).

In the case ψ 6= 1, substitution of the approximate solution (31)—(32) into (27) gives

αt =

µ
1

γ

¶
µt − r

σ2S
+

µ
1− 1

γ

¶
σµ
σS

ρ (B1 + C1µt) , (34)

where B1 = −B1/(1− ψ) and C1 = −C1/(1− ψ). Appendix B shows that B1 and C1 do not

depend on ψ, except through a loglinearization parameter.

Equations (33) and (34) show that the optimal allocation to stocks is a weighted average

(with weights 1/γ and 1 − 1/γ) of two terms, both of them linear in the expected return

on stocks µt. The first term is the myopic portfolio allocation to stocks, and the second

term is the intertemporal hedging demand for stocks. The myopic portfolio allocation is

proportional to (1/γ), so that it approaches zero as we consider increasingly risk averse

investors.

The intertemporal hedging component is proportional to (1− 1/γ), but it also depends
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on γ through B and C. Appendix B shows that this term also approaches zero as γ →∞.3

This result follows from our assumption of a constant instantaneous real interest rate, which

makes the short-term bond riskless at all investment horizons. Campbell and Viceira (2001,

2002) and Campbell, Chan and Viceira (2003) show that, with a time-varying instantaneous

real interest rate, myopic portfolio demand still approaches zero as γ →∞, but intertemporal

hedging demand does not. Instead, the intertemporal hedging portfolio is fully invested in

a real perpetuity or, if that asset is not available, in the combination of available assets that

most closely mimics a real perpetuity.

3.4 Numerical calibration

In this section we use the parameter values given in Table 1 to calibrate the continuous-time

portfolio rule (34), and compare the resulting allocations to those implied by the discrete-

time model of Campbell and Viceira (1999, 2000).4

Table 2 reports mean optimal portfolio allocations (Panel A), and the percentage that the

3Since intertemporal hedging demand is proportional to (1 − 1/γ), one might be tempted to conclude

that it does not approach zero in the limit as γ →∞. However, we need to consider that B0 (or B1) and C0

(or C1) are also functions of γ. Appendix B shows that the limit of the overall expression approaches zero

as γ →∞.
4Appendix B shows that B1 and C1 depend on the loglinearization parameter h1 = E[ct − wt], which

is endogenous. However, one can solve for h1 using the simple numerical recursive algorithm described in

Campbell and Viceira (1999).

17



mean intertemporal hedging portfolio allocation represents over the total mean allocation

(Panel B) for investors with coefficients of relative risk aversion between 0.75 and 40, and

elasticities of intertemporal substitution of consumption between 1/0.75 and 1/40. Note

that the linearity of the optimal portfolio rule (33)—(34) implies that

E [αt] =

µ
1

γ

¶
θ − r

σ2S
+

µ
1− 1

γ

¶
σµ
σS

ρ (Bi + Ciθ) , i = 0, 1, (35)

where the first element of the sum is the mean myopic portfolio allocation, and the second

element is the mean intertemporal hedging portfolio allocation. The numbers in Table

2 support the conclusion of Campbell and Viceira (1999, 2000) that given the historical

behavior of the US stock market, intertemporal hedging motives greatly increase the average

demand for stocks by investors with risk aversion greater than one.. For highly conservative

investors, hedging demand may represent 90% or even more of the total mean demand for

stocks.

The numbers reported in Table 2 are not directly comparable to those in Campbell and

Viceira (2000) because Table 2 assumes that investors can rebalance their portfolios con-

tinuously, while Campbell and Viceira assume that investors rebalance their portfolios at

a quarterly frequency. Campbell and Viceira’s Table III shows that even with quarterly

rebalancing the mean portfolio allocations are fairly close to the continuous-time mean al-

locations.5 But a direct comparison requires that we compute the limit of Campbell and

5For example, for investors with ψ = 1 and coefficients of relative risk aversion identical to those reported

here, Campbell and Viceira (2000) report mean percentage portfolio allocations to stocks equal to {209.36%,
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Viceira’s solution as the frequency of rebalancing increases.

We accomplish this in two steps. First, using the system of equations (16)-(21), we recover

discrete-time parameters at any desired frequency from the continuous-time parameters

shown in Table 1. This ensures that we use parameter values that are mutually consistent

at any frequency. Second, we recompute Campbell and Viceira’s discrete-time solution.

We have conducted this exercise, and found that at a daily rebalancing frequency, the mean

portfolio allocations generated by the Campbell-Viceira model are virtually identical to those

reported in Table 2.6

These results show numerically that Campbell and Viceira’s (1999, 2000) discrete-time

solution converges in the limit to the continuous-time solution. Since the continuous-time

solution is exact when ψ = 1, these results also confirm their claim that their discrete-time

solution is exact for the case ψ = 1 up to a discrete-time approximation to the log return

on wealth.

An analytical proof of this convergence result for general preference parameters is straight-

forward conceptually, but extremely tedious algebraically. Nevertheless, we illustrate here

222.74%, 235.35%, 239.36%, 230.09%, 179.16%, 121.21%, 78.58%}.
6As an example, consider the case of investors with ψ = 1 and coefficients of relative risk aversion

identical to those reported here. The model of Campbell and Viceira (1999) generates mean percentage

portfolio allocations to stocks when investors can rebalance daily equal to {198.19%, 211.31%, 223.84%,

228.06%, 220.43%, 173.67%, 123.69%, 77.77%}.
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how the proof proceeds in the special case of unit relative risk aversion. The model so-

lution in that case is simple enough that we can show in one step how the discrete-time

mean portfolio allocation in Proposition I in Campbell and Viceira (1999) converges to the

continuous-time mean allocation (35). Taking limits as∆t→ 0 on Proposition I of Campbell

and Viceira (1999) with γ = 1, we have

lim
∆t→0E

[αtn,γ=1] = lim
∆t→0

µ+ 1
2
Vartn (εtn+∆t)

Vartn (εtn+∆t)

=

³
θ − σ2S

2
− r
´
+ 1

2

h³
σ2S +

2ρσSσµ
κ

+
σ2µ
κ2

´
− 2ρσSσµ

κ
− σ2µ

κ2

i
³
σ2S +

2ρσSσµ
κ

+
σ2µ
κ2

´
− 2ρσSσµ

κ
− σ2µ

κ2

=
θ − r

σ2S
,

which is the mean portfolio allocation implied by (35) with γ = 1. The second equality

follows from equations (17) and (21). The proof in the general case follows similar steps.

3.5 A pitfall, and its implications for portfolio choice

Anyone used to working with the discrete-time representation of a univariate continuous-

time process will find natural and intuitive the relation between the intercept and slope of the

continuous-time VAR and its discrete-time representation implied by equations (16)—(18).

However, equations (19)—(21) show that the equivalence relation for the variance-covariance

matrix of innovations is less obvious. Using an intuitive extension of the usual matching rules

for a univariate process, one might be tempted to identify variance-covariance parameters
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using the following expressions:

Vartn (εn+1) ≈ σ2S∆t (36)

Covtn
¡
εtn+∆t, ηtn+∆t

¢ ≈ ρσSσµ∆t (37)

Vartn
¡
ηtn+∆t

¢ ≈ σ2µ∆t. (38)

Equations (36)—(38) are very different from the correct equations (19)—(21), although

equation (36) is a first-order Taylor expansion of the correct expression for Vartn(εn+1)

given in (21). The use of equations (36)—(38) is particularly dangerous when ∆t 6= 1, as

might be the case when one is using annualized parameters and quarterly data. In this

case, portfolio allocations based on matching parameters using equations (36)—(38) can be

quite different from allocations based on the correct equations (19)—(21). In our calibration

exercise, incorrectly matched parameters generate intertemporal hedging demands when

∆t = 0.25 that are substantially lower than the correct ones. For example, for investors

with ψ = 1 and γ = 10, 20 and 40, the total mean portfolio allocation is only 32%, 16% and

8%, and the percentage fraction of total portfolio demand due to intertemporal hedging is

only 30%, 32% and 33%; these figures are an order of magnitude lower than those shown in

Table 2.7 Thus a researcher using (36)—(38) to match parameters would wrongly conclude

that empirically intertemporal hedging demands are much less important when investors can

continuously rebalance their portfolios.

7This gross underestimation occurs for all parameter values. A table mimicking Table II, except that it

uses incorrect parameter values, is readily available upon request from the corresponding author.
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4 Conclusion

This paper solves a continuous-time consumption and portfolio choice problem with a con-

stant interest rate and a time-varying equity premium. The model for asset returns is

a continuous-time version of the model studied by Campbell and Viceira (1999). This

model has an exact analytical solution when the investor has unit elasticity of intertemporal

substitution in consumption and an approximate analytical solution otherwise. For calibra-

tion purposes, we also derive the discrete-time VAR representation for asset returns. This

time-aggregation result is necessary to recover the parameters of the model from discrete-

time VAR estimates. We show that intuitive discrete-time representations of univariate

continuous-time processes do not translate immediately to multivariate processes which are

cross-sectionally correlated.

Our calibration results show that our portfolio choice model is the limit, as the frequency

of rebalancing increases, of its discrete-time counterpart. Thus it exhibits similar properties.

In particular, given the historical experience in the US stock market, intertemporal hedging

motives greatly increase the average demand for stocks by investors who are more risk averse

than a logarithmic investor. For highly conservative investors, hedging may represent 90%

or even more of the total mean demand for stocks.

22



5 Appendix A

We find exp(As) by use of an induction proof. We first prove by induction that the matrix

An is given by

An =

 0 (−κ)n−1

0 (−κ)n

 . (39)

To prove this result, assume that An is given by (39). Then An+1 is given by

An+1 = AnA

=

 0 (−κ)n−1

0 (−κ)n


 0 1

0 −κ



=

 0 (−κ)n

0 (−κ)n+1

 ,

which is the desired result.

The matrix exp (As) is given by I + As+ · · · +Ansn/n! + · · · . Equation (39) allows us

to write the exponential matrix as
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exp (As) =

 1 0

0 1

+ 1

n!

∞X
n=1

 0 (−κ)n−1sn

0 (−κ)n sn



=

 1 1
n!

P∞
n=1 (−κ)n−1 sn

0 1
n!

P∞
n=0 (−κs)n



=

 1 1
n!

P∞
n=1 (−κ)n−1 sn

0 exp (−κs)

 .

Now, notice that

d

ds

Ã
1

n!

∞X
n=1

(−κ)n−1 sn
!
=
1

n!

∞X
n=0

(−κs)n = exp (−κs) ,

so that

1

n!

∞X
n=1

(−κ)n−1 sn =

Z
exp (−κs) ds

=
−1
κ
exp (−κs) + C.

Since at s = 0 we have that
¡P∞

n=1 (−κ)n−1 sn
¢
/n! = 0, it follows that for the equation to

hold at s = 0 we must have that C = 1
κ
.

Therefore

1

n!

∞X
n=1

(−κ)n−1 sn = 1

κ
(1− exp (−κs)) , (40)

from which it follows that we can write the matrix exp (As) as

exp (As) =

 1 1
κ
(1− e−κs)

0 e−κs

 . (41)
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6 Appendix B

6.1 Exact analytical solution when ψ = 1

Substitution of (29) and (30) into the Bellman equation (28) leads, after some simplification,

to the following equation:

0 = − 1

1− γ
β

½
A0 +B0µt +

C0
2
µ2t

¾
+ β log β + r − β

+
κ (θ − µt)

1− γ
(B0 + C0µt) +

σ2µ
2 (1− γ)

©
C0 + (B0 + C0µt)

2ª
+
1

2γ

(
(µt − r)2

σ2S
+ 2

ρσµ (µt − r)

σS
(B0 + C0µt) + ρ2σ2µ (B0 + C0µt)

2

)
.

We can now obtain A0, B0 and C0 from the system of recursive equations that results from

collecting terms in µ2t , µt, and constant terms:

0 =
σ2µ
2

µ
1 +

1− γ

γ
ρ2
¶
C20 +

µ
−β
2
− κ+

1− γ

γ

ρσµ
σS

¶
C0 +

1

2σ2S

µ
1− γ

γ

¶
, (42)

0 = κθC0 − 1− γ

γ

r

σ2S
− 1− γ

γ

ρrσµ
σS

C0 (43)

+

µ
−κ− β + σ2µ

µ
1 +

1− γ

γ
ρ2
¶
C0 +

1− γ

γ

ρσµ
σS

¶
B0,

0 = −βA0 + (1− γ) β log β + (1− γ) (r − β) +
r2

2γσ2S
+

σ2µ
2
C0 (44)

+
σ2µ
2

µ
1 +

1− γ

γ
ρ2
¶
B2
0 +

µ
−1− γ

γ

σµ
σS

ρr + κθ

¶
B.

We can solve this system by solving equation (42) and then using the result to solve (43)

and finally solve (44). Equation (42) is a quadratic equation whose only unknown is C0.

Thus it has two roots. Campbell and Viceira (1999) show that only one of them maximizes
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expected utility. This root is the one associated with the positive root of the discriminant

of the equation. This is also the only root that ensures that C0 = 0 when γ = 1, that is, in

the log utility case. This is a necessary condition for intertemporal hedging demand to be

zero, as we know it must in the log utility case.

We can use these results to obtain the optimal portfolio policy of the investor from the

first order condition (27), and the optimal consumption policy from the first order condition

(26). The optimal portfolio policy is given in equation (33) in text. It is easy to see that

the optimal consumption policy is Ct/Wt = β, a constant consumption-wealth ratio equal

to the rate of time preference.

We now show that the intertemporal hedging component of portfolio demand approaches

zero as γ → ∞. First, note that the solution C0 to the quadratic equation (42) has the

following finite limit as γ →∞:

lim
γ→∞

C0 =
1

σµσS
p
(1− ρ2)

.

Similarly, from equation (43) we have that the limit of B0 as γ →∞ is also finite:

lim
γ→∞

B0 = −
r
σ2S
+
³
κθ + ρrσµ

σS

´
limγ→∞C0³

−κ− β − ρσµ
σS
+ σ2µ (1− ρ2) limγ→∞C0

´

= −
r
σ2S
+

κθ+
ρrσµ
σS

σµσS
√
(1−ρ2)µ

−κ− β − ρσµ
σS
+

σµ
√
(1−ρ2)
σS

¶
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Thus

lim
γ→∞

C0 = lim
γ→∞

C0
γ − 1 = 0,

and

lim
γ→∞

B0 = lim
γ→∞

B0
γ − 1 = 0,

which in turn implies that

lim
γ→∞

µ
1− 1

γ

¶
σµ
σS

ρ (B0 + C0µt) = 0.

6.2 Approximate analytical solution when ψ 6= 1

Substitution of (29) and (31) into the Bellman equation (28) gives, after some simplification,

the following ordinary differential equation:

0 = −βψH−1 + βψ + r (1− ψ)− Hµ

H
κ (θ − µt) (45)

+
σ2µ
2

Ã
−Hµµ

H
+

µ
1 +

1− γ

1− ψ

¶µ
Hµ

H

¶2!

+
1− ψ

2γ

µ
µt − r

σS

¶2
− 1− γ

γ

Hµ

H
ρσµ

µ
µt − r

σS

¶
+
1

2

(1− γ)2

γ (1− ψ)

µ
Hµµ

H

¶2
ρ2σ2µ.

This ordinary differential equation does not have an exact analytical solution, unless ψ = 1.

Though there does not exist an exact analytical solution to (45), we can still find an

approximate analytical solution following the methods described in Campbell and Viceira

(2002).and Chacko and Viceira (1999). First, we note that substitution of the solution guess
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(29)-(31) into the first order condition (26) gives

Ct

Wt
= βψH (µt)

−1 .

We can now use the following approximation for βψH−1 around the unconditional mean of

the log consumption-wealth ratio:

βψH (µt)
−1 = exp {ct − wt}

≈ h0 + h1 (ct − wt)

= h0 + h1 (ψ log β − ht) , (46)

where ct = logCt, wt = logWt, ht = logH (µt), and

h1 = exp {E [ct − wt]} , (47)

h0 = h1 (1− log h1) . (48)

Substitution of the approximation (46) for the first term of (45) transforms this ordi-

nary differential equation into another one that has an exact solution, with the following

exponential-quadratric form:

H (µt) = exp

½
A1 +B1µt +

C1
2
µ2t

¾
.

The coefficients A1, B1, and C1, can be obtained by solving the approximated Bellman
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equation

0 = −h0 − h1

½
ψ log β −

µ
A1 +B1µt +

C1
2
µ2t

¶¾
+ βψ + r (1− ψ)− κ (θ − µt) (B1 + C1µt)

+
σ2µ
2

·
−((B1 + C1µt)

2 + C1) +

µ
1− γ

1− ψ
+ 1

¶
(B1 + C1µt)

2

¸
+
1− ψ

2γ

µ
µt − r

σS

¶2
−1− γ

γ
(B1 + C1µt) ρσµ

µ
µt − r

σS

¶
+
1− γ

2γ

µ
1− γ

1− ψ

¶
(B1 + C1µt)

2 ρ2σ2µ,

which implies the following system of recursive equations:

0 =
σ2µ
2

1− γ

1− ψ

µ
1 +

1− γ

γ
ρ2
¶
C2
1 +

µ
h1
2
+ κ− 1− γ

γ

ρσµ
σS

¶
C1 +

1− ψ

2γσ2S
, (49)

0 = κθC1 +
1− ψ

γ

r

σ2S
− 1− γ

γ

ρrσµ
σS

C1 (50)

+

µ
κ+ h1 + σ2µ

1− γ

1− ψ

µ
1 +

1− γ

γ
ρ2
¶
C1 − 1− γ

γ

ρσµ
σS

¶
B1,

0 = h1A1 − h0 − h1ψ log β + βψ + r (1− ψ) +
1− ψ

2γ

r2

σ2S
− σ2µ
2
C1 (51)

+
σ2µ
2

1− γ

1− ψ

µ
1 +

1− γ

γ
ρ2
¶
B2
1 +

µ
1− γ

γ

σµ
σS

ρr − κθ

¶
B1.

We can solve this system by solving equation (49) and then using the result to solve (50)

and finally solve (51). Equation (49) is a quadratic equation whose only unknown is C.

Thus it has two roots. Campbell and Viceira (1999) show that only one of them maximizes

expected utility. This root is the one associated with the positive root of the discriminant of

the equation. Note also that this equation implies that C/(1− ψ) does not depend on ψ–

except through the loglinearization parameter h1–which in turn implies, through equation

(50), that B/(1− ψ) does not depend on ψ either.
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We now show that the intertemporal hedging component of portfolio demand approaches

zero as γ → ∞. First, note that the solution C1 to the quadratic equation (42) converges

to zero as γ → ∞. To see this, note that the limit of the numerator in the solution is

finite, while the denominator diverges to ∞. Thus limγ→∞C1 = 0. From equation (43), it

is immediate to see that this implies that B1 also approaches zero as γ →∞. Therefore,

lim
γ→∞

C1 = lim
γ→∞

C1
ψ − 1 = 0,

and

lim
γ→∞

B1 = lim
γ→∞

B1
ψ − 1 = 0,

so

lim
γ→∞

µ
1− 1

γ

¶
σµ
σS

ρ (B1 + C1µt) = 0.
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TABLE 1

Continuous-Time VAR: Parameter Values

Model:

dBt/Bt = rdt,

dSt/St = µtdt+ σSdZ̃S,

dµt = κ(θ − µt)dt+ σµdZ̃µ,

dZ̃SdZ̃µ = ρdt

Parameter Values:

r 0.0818e-2

κ 4.3875e-2

θ 1.3980e-2

σS 7.8959e-2

σµ 0.5738e-2

ρ -0.9626

Note: These parameter values are based on quarterly estimates of the discrete-time equiv-
alent process reported in Campbell and Viceira (2000). They are obtained using equations

(16)-(21) in text, with ∆t = 1.



TABLE 2

Mean Optimal Percentage Allocation to Stocks and
Percentage Mean Hedging Demand Over Mean Total Demand

R.R.A. E.I.S.

(A) Mean optimal percentage allocation to stocks:
1/.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 180.31 198.02 209.80 214.47 220.42 223.53 224.49 224.97
1.00 211.12 211.12 211.12 211.12 211.12 211.12 211.12 211.12
1.50 239.07 223.64 211.64 206.76 200.57 197.39 196.40 195.92
2.00 248.85 227.85 210.53 203.36 194.22 189.52 188.07 187.36
4.00 241.99 220.24 200.14 191.27 179.59 173.46 171.56 170.63
10.0 183.24 173.55 163.80 159.06 152.29 148.46 147.23 146.62
20.0 125.04 123.63 122.17 121.42 120.29 119.61 119.38 119.27
40.0 75.57 77.74 80.00 81.17 82.98 84.12 84.51 84.71

(B) Fraction due to hedging demand (percentage):
1/.75 1.00 1/1.5 1/2 1/4 1/10 1/20 1/40

0.75 -56.12 -42.16 -34.17 -31.26 -27.71 -25.94 -25.39 -25.13
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 41.13 37.06 33.49 31.93 29.82 28.69 28.34 28.16
2.00 57.58 53.67 49.86 48.09 45.65 44.30 43.87 43.66
4.00 78.19 76.03 73.63 72.40 70.61 69.57 69.23 69.07
10.0 88.48 87.84 87.11 86.73 86.14 85.78 85.66 85.60
20.0 91.56 91.46 91.36 91.31 91.22 91.17 91.16 91.15
40.0 93.02 93.21 93.40 93.50 93.64 93.73 93.75 93.77


