Operational Risk A Discussion of Quantification Techniques

John Jordan Federal Reserve Bank of Boston March 10, 2004

What is required in an AMA?

- Banks are expected to use internal models to determine operational risk capital requirements
- □ To qualify, however, banks must satisfy a number of supervisory standards beyond "model validation"
- □ OpRisk Supervisory Standards
 - Governance Structure
 - □ Data
 - Quantification

Data:

Required Elements of an AMA

Internal Data

• OpLoss event tracking

External Data

- OpLoss events occurring at peers
 - vendor products
 - data consortia

Business
Environment &
Control Factors

- Key Risk Indicators
- Risk and Control Self Assessments
- Scorecards

Scenario Analysis

• Systematic process for obtaining expert opinions

Quantification:

Significant flexibility in model design

The Loss Distribution Approach

Step 1: The Frequency Distribution

- □ Provides a range of the "number of events over a 1 year time horizon"
- □ "Shape" and "Location" of frequency distribution are determined by:
 - scale of operations
 - level of controls and sophistication of processes

Step 2: The Severity Distribution

- □ Provides the range of "loss amounts, given a loss event occurs"
- □ "Shape" and "Location" of severity distribution are determined by:
 - nature of underlying transaction (ex. size of trade)
 - controls and processes may play a "mitigation" role

Step 3:

The Aggregate Loss Distribution

- □ Provides the range "aggregate loss over a 1 year time horizon"
- □ Often construct using "monte carlo" simulation techniques:
 - Take a random draw from the frequency distribution, example: 22 events
 - Take 22 random draws from the severity distribution, example: 1st draw \$5,000,000; 2nd draw \$1,200,000; ...; the 22nd draw \$12,500,000
 - Sum the \$ value of losses, example: \$45,000,000 result is 1 observation in loss distribution
 - Repeat 100,000 (1,000,000, 10,000,000?) times

Using Internal Loss Event Data in an LDA

- Loss Data Collection Exercise sponsored by RMG/BCBS
 - 89 banks in 19 countries participated.
 - 47,269 losses above €10,000 occurring in 2001.
 - 22 banks had more than 500 observations
- Challenges:
 - Significant differences in the number of loss events across banks
 - A "handful" of banks contributed the majority of observations
 - Reason for differences:
 - □ Definition gaps
 - □ Capture gaps
 - □ Time Series gaps

Empirical Regularities in Internal Data

- Consistent cross-bank ordering of event types:
 - Internal Fraud (1)
 - Litigation (4)
 - Process Management (7)
 - External Fraud (2)
 - **Employment Practices (3)**

Severity Distributions with Internal Data

- □ We consider 9 common distributions.
 - Thin-tailed: Exponential, Gamma, Weibull, Lognormal
 - Fat-tailed: Pareto, Generalized Pareto, Burr, Loggamma, Loglogistic
- □ Goodness of fit:
 - Heavy-tailed distributions often fit well, as did the lognormal.
 - Other light-tailed distributions did not fit as well

Using External Loss Event Data in an LDA

- □ Vendors OpRisk Analytics, OpVantage, AON, others?
- □ Collect data from public news sources
- □ Events over \$1M from the past 10+ years
- □ Vendors provide scaling data
- Potential difficulties:
 - Business line classification
 - Non-finalized loss amounts
 - Non-monetary losses
 - Reporting bias

Summary Statistics of External Event Data

	% of Losses		3rd Qrt. (\$B)	
	<u>OpR</u>	<u>OpV</u>	<u>OpR</u>	<u>OpV</u>
Corp. Fin.	6%	4%	23	23
T&S	9%	9%	44	27
Ret. Bank.	38%	39%	11	12
Com. Bank.	21%	16%	24	28
P&S	1%	1%	11	11
Agency Svc.	2%	3%	110	28
Asset Mgmt.	5%	6%	20	22
Ret. Brok.	17%	22%	12	13
Total			17	17

- □ Data in all business lines
- □ Apparent variation across business lines
- □ Similarity across databases
- □ Non-US losses are larger, less agreement across databases
- □ Only 2 event types with many observations
- □ 99.9th percentile of the empirical severity distribution is \$1.3B. Are losses really that heavytailed?

Reporting Bias in External Data

- □ Not all losses are reported
- □ Reporting probability increases with loss amount
- □ Loss severity estimates are biased upwards
- ☐ Percentiles from the severity distribution also biased upwards
- □ Capital estimates will likely be too high

Correcting for Reporting Bias

- □ The observed loss distribution equals the "true" loss distribution times the reporting probability distribution.
- □ Extreme Value Theory (EVT) motivates choice of severity distribution.
- □ Normality motivates choice of reporting distribution.

An Example of the Monte Carlo Technique to Estimate an Aggregate Loss Distribution

Estimating an Aggregate Loss Distribution

- □ Monte Carlo Technique
- □ Frequency assumptions:
 - Poisson distribution
 - Parameter calibrated to published LDCE results
- □ Severity assumption:
 - Log-exponential distribution
 - Parameter based on severity distribution estimates using external data

Implications for Capital

Table. 99.9 percentiles from simulated aggregate loss distributions.

	$\lambda = 30$ (Low freq.)	$\lambda = 60$ (Large bank.)	$\lambda = 100$ (High freq.)
b = 0.55 (Lower)	\$0.4B	\$0.6B	\$0.8B
b = 0.65 (Est.)	\$0.9B	<u>\$1.4B</u>	\$2.1B
b = 0.75 (Upper)	\$2.4B	\$4.0B	\$6.0B

Note. Additional capital required to cover losses below \$1 Million.

Diversification Effects

Business A: $\lambda = 30$ b = 0.65

k = \$0.9B

Business B:

$$\lambda = 30$$
 $b = 0.65$
 $k = $0.9B$

☐ If risks at A and B are independent, the top-tier banking organization may benefit from diversification effects

Parent Bank (A+B):

$$\lambda = 60$$

$$b = 0.65$$

$$k = $1.4B$$

☐ Implications for top-tier vs. subsidiary legal entity capital requirements

Impact of Operational Events

- □ Results extended to 60 events.
- □ Market impact is immediate, significant, and proportional to loss amount.
- The market seems to view even moderate losses as material.

Conclusion

- □ OpRisk estimates seem significant, but reasonable
- □ The proposed methods appear feasible
- □ Modeling choices yield reasonable results:
 - Initial results suggest stability across banks
 - Initial results suggest stability across internal data and external data methodologies
 - Initial results suggest estimated capital requirements consistent with Basel Committee's expectations
- ☐ The availability of industry-wide loss data will be a critical development in ensuring consistent application across industry