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Artificial Neural Networks for Valuation of Financial Derivatives and 

Customized Option Embedded Contracts 

 

Abstract 

 

In this paper we propose and test a valuation methodology for improving the 

efficiency of contingent claims pricing using Artificial Neural Networks (ANN).  

Contingent claims is by now a standard method for pricing under uncertainty non-

linear (option embedded) contracts, for both financial options (standardized or 

customized) and real (investment) opportunities.  In the presence of liquid option 

markets, implied volatility surfaces have aided considerably option pricing with and 

without the use of ANN.  In the absence of such liquid markets, customized positions 

are much harder to evaluate. The method in this paper improves the efficiency of 

valuation and financial decision-making dramatically.  The method can be used by 

financial institutions for real time pricing of customized options and investment 

contracts with guarantees, and valuation under uncertainty of new ventures and the 

related growth financing instruments. We compare the proposed (hybrid) method with 

the simple use of ANN for very hard option pricing problems and we demonstrate the 

method’s superiority. The combination of accurate option pricing and the resulting 

efficiency are instrumental for the applications we discuss. 

 

 
 
 

 



1.  Introduction 

 

The methodology of contingent claims pricing has become one of the most (if not the 

most) significant contributions of financial economics, and allows valuation under 

uncertainty of standardized or customized financial derivatives. Main initial 

contributions to the literature were Black and Scholes (1973) and Merton (1973a).  Since 

the original contributions, a vast number of models have appeared (see for example 

Briys et al, 1998, for some of the involved models and areas of application). The 

methodology of contingent claims pricing has also been extended to investment 

decision-making under uncertainty and the pricing of real (investment) options.  A 

seminal contribution here is McDonald and Siegel (1986) and good review of an ever 

expanding literature can be found in Trigeorgis (1996), and Dixit and Pindyck (1994).   

 

In all the above areas of applications only in the rare cases analytic solutions exist.  In 

most cases (often computationally intensive) numerical methods must be used (see for 

example, Rogers and Talay, 1997, and Clewlow and Strickland, 1998). Recently, 

(nonparametric) Artificial Neural Networks (ANN) methods have been added to the 

toolkit of researchers and practitioners for valuation of derivatives (i.e., Hutchinson and 

Poggio, 1994; see also the review in Lajbcygier, 1999), valuation of real options 

(Taudes, et. al., 1998), and prediction of financial assets´ returns (i.e., Desai and Bharati, 

1998). In this paper we propose the combined use of parametric and nonparametric 

(ANN) methods in order to price (customized) financial and real options efficiently, so 

that financial institutions and other intermediaries can implement them for purposes of 

real time decision making and valuation.   

 



2.  Function Approximation by Feedforward Neural Networks 
 
 

Artificial neural networks (ANN) are massively parallel, highly connected structures 

consisting of a number of simple, nonlinear processing elements, called neurons; 

because of their massively parallel structure, can perform computations at very high 

rate if implemented on a dedicated hardware; because of their adaptive nature, they 

can learn the characteristics of input signals and adapt to changes in data; because of 

their nonlinear nature they can perform functional approximation which are beyond 

optimal linear techniques. Multilayer perceptions (MLP) are feedforward neural 

network with one or more layers of neurons, called hidden layers, between the output 

layer and the network’s input. A three-layer feedforward network that is commonly 

used for approximation problems is shown in Fig. 1.  It consists of an input layer and 

an output layer, corresponding to model input and output variables x and y, 

respectively, as well as a hidden layer. 

 

Given the input feature vector x, the output can be computed by, 
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where zi is the output of the ith hidden neuron computed as, 
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and f is the activation function.  The two most widely activation functions are, 
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The logistic activation function bounds f, in the range (0,1) while the tansigmoid 

function bounds f in the range (-1,1). 

 

In the model development stage, samples of data (x,y) called training data, are 

generated from simulation or measurement.  The neural network is then train by 

adjusting the weights wij and vi, such that the neural network predicted output “best” 

matches that of training data, the target output. This is done by minimizing with 

respect to wij and vi´s some norm of the error function between the predicted output of 

the neural network and the targeted outputs. 

 

MLP were generally not popular due to the lack of effective learning algorithms, but 

this changed since the development of backpropagation (BP) learning algorithm 

proposed by Rumelhart, Hinton and Williams (1986). Although the BP algorithm is a 

simple learning algorithm for training MLP, it can exhibit oscillatory behavior or can 

even diverge; the algorithm is the steepest descent algorithm with predefined stepsize, 

the learning rate, λ. 

 

MLP have the very important property (independent of the BP algorithm), namely 

that the computation of the gradient vector of its output can be accomplished by 



performing a forward analysis, with inputs being the training set, and a backward 

analysis, with inputs in the output layer being the errors obtained by the forward 

analysis. Hence we can replace the BP training algorithm by any of the powerful 

gradient optimization algorithms available in the literature, such as the conjugate 

gradient algorithms; Fletcher and Reeves (1964), Polak and Ribiere (see the book by 

Polak, 1971), Charalambous (1992), the Quasi-Newton algorithms; Fletcher (1970), 

Huang (1970). 

 

In the model testing stage, a new set of input-output samples, called testing data, is 

used to test the accuracy of the neural model. The ability of neural models to give 

accurate y when presented with input values x never seen during training is called the 

generalization ability.  A trained and tested neural network model can then be used 

online during option pricing evaluation providing fast model evaluation replacing the 

original simulators. 

 

The usefulness of the above design approach is based on the following universal 

approximation theorem (see Cybenko, 1989). 

 

Let f(.) be a nonconstant, bounded, and monotone-increasing continuous function.  

Let lN denote the N-dimensional unit hypercube [0,1]N.  The space of continuous 

functions on lN  is denoted by C(lN). Then, given any function g ∈  C(lp) and ε > 0, 

there exist an integer H and sets of real constants,  
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such that we may define 
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as an approximate realization of the function g(.) ; that is, 
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for all vectors x that lie in the input space. 

 

In effect, the theorem states that a single hidden layer is sufficient for a multilayer 

feedforward network to compute a uniform ε approximation to a given training set.  

However, the theorem does not say that a single hidden layer is optimum in the sense 

of learning time, or more importantly generalization.  Moreover, the theorem does not 

give indications about the required number of hidden neurons necessary in order to 

achieve the desired degree of accuracy. 

 

Several fundamental questions must be addressed in order to make practical use of the 

feedforward neural network models as approximations. A first question is the 

following: how many samples are needed to achieve a given degree of accuracy?  It is 

well known that the answer depends on the dimensionality N of the data space and on 

the degree of smoothness of the function to be approximated.  It has been shown that 



the number of samples grows exponentially with the ratio between the dimensionality 

N and the degree of smoothness. 

 

An innovative approach, the hybrid approach, has been proposed by Watson and 

Gupta (1996) to reduce the training data needed and to improve the generalization 

capabilities of an ANN. In this model the target value for a given input vector x, is the 

difference in the response between that of the coarse model and that of the fine model.  

This leads into a simpler input-output relationship, and hence, reducing the number of 

fine model simulations.   

 

 

3.  Contingent Claims Pricing Problems 

 

The option pricing literature was established with the seminal contribution by Black and 

Scholes (1973), and Merton (1973a). Subsequent work established the so-called risk-

neutral valuation methodology and allows us to price claims dependent on several 

stochastic state-variables. Seminal contributions were Constantinides (1978), Harrison 

and Kreps (1979), Harrison and Pliska (1981), and Cox, Ingersoll, and Ross (1985).  For 

review see Malliaris and Brock (1982), and Karatzas and Shreve (1991). Following the 

extended (with a dividend yield) Black and Scholes assumptions a traded asset can 

follow a stochastic process of the form 
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in the real probability measure, and 
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in the risk-neutral probability measure.  The asset has a continuous expected growth rate 

of µ and a standard deviation of σS, it pays a continuous dividend yield of δS, with r 

being the continuous riskless rate of interest, and dz being the increment to the standard 

Wiener process.  For simplicity we will present the valuation method for two (potentially 

foreign assets) and the method is easily extendible to more.  We assume that there exist 

two assets in two foreign countries a and b, and we follow the notation that asset AR is in 

country a with exchange rate ER from our perspective, and asset AW is in country b with 

exchange rate EW.  All state-variables follow geometric Brownian motion processes.  

The foreign currencies follow (see Garman and Kohlhagen, 1983, and Grabbe, 1983) the 

stochastic processes 

 

 ERERa dzdtrr
ER

dER σ+−= )( , 

and 

 EWEWb dzdtrr
EW

dEW σ+−= )( , 

 

where r is the local, and ra, rb are the foreign (constant) riskless rates of interest, standard 

deviations σER and σEW, and covariance σER,EW.  The two foreign assets from the 

perspective of the option holder but before they are translated to the option holder’s 

currency (see Reiner, 1992, and Kat and Roozen, 1994) follow the risk-neutral process 
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and 

 AWAWEWAWAWb dzdtr
AW

dAW σσδ +−−= )( , . 

 

We see that the risk-neutral drifts include not only the (local) dividend yields δAR and 

δAW, but also the instantaneous covariance between the exchange rate and the cash flow 

(see Siegel’s paradox in Hull, 1997, pp. 298-301).  It is known that the partial 

differential equation (PDE) for the claim V dependent on AR, ER, AW, and EW is 
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In the presence of more foreign assets this PDE will be extended with two variables for 

each new asset in a new foreign country (all other combinations are special cases; see 

also Martzoukos, 1997).  For simplicity we present the PDE for two foreign assets only 

and in the presence of more assets the PDE is extended similarly.  Separation of the 

assets on the underlying state-variables as above allows solution of complex problems 

involving local or foreign stocks, foreign currencies, or assets protected from exchange 

rate moves through contractual provisions. To simplify the exposition we will assume 



that the underlying assets are simply the foreign assets without any exchange rate 

protection, and with the use of standard Ito calculus tools we reduce the PDE from one 

of four state-variables to one of two asset prices, the R and W (or S1, S2, etc.).  Using the 

multi-dimensional form of Ito´s lemma it can be easily shown that from the perspective 

of the option holder and under risk-neutrality 
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The two-dimensional PDE finally is 
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with 

 σR
2 = σAR

2 + σER
2 + 2σAR,ER,                

 σW
2 = σAW

2 + σEW
2 + 2σAW,EW, 

 σR,W  = σAR,AW + σAR,EW + σER,AW + σER,EW. 

 

If more than two underlying assets exist, the above PDE is expanded accordingly.  

Analytic solution of such PDEs is rather unlikely although possible for very special 

cases.  In the most general case numerical solutions will be needed, either direct 

(implicit or explicit numerical discretization methods), or indirect by use of option 



pricing techniques that simulate the underlying stochastic processes like Monte-Carlo 

simulation or lattice-based methods, etc. The option-pricing problem is finally solved 

by taking the appropriate boundary conditions into account.  Such conditions relate to 

the specification of the contingent claim as a call or put option, European or American 

(allowing for early exercise), option on the maximum or the average of the underlying 

assets, and other assumptions, for example contractual specification of path-

dependency, etc.  The first example that we use in this paper is the European option 

on the average of three assets, and for pricing we implement a three-dimensional 

lattice. 

 

 

Real Investment Options: The Case of Higher-Dimensional Operational Flexibility with 

(Path-Dependency Inducing) Switching Costs. 

 

In the real option models, investment decision-making and valuation of a claim (or real 

option) on risky ventures is contingent on stochastic (real) asset(s), following often 

geometric Brownian motion process(es) with constant drift(s) and instantaneous 

variance(s).  The methods of valuation have been established in the literature that applies 

stochastic calculus to valuation of real options, with a seminal publication that of 

McDonald and Siegel (1986), who consider the real option to wait-to-invest (in the 

context of complete irreversibility and a single investment decision).  Applications of 

this standard model have appeared in Crousillat and Martzoukos (1991). Partial 

irreversibility models that allow reversible (and costly) investment and disinvestment 

decisions were first introduced in the literature by Brennan and Schwartz (1985). In 

general the real options literature has demonstrated that the classic Net Present Value 



(NPV) rule fails under uncertainty and irreversibility-inducing sunk costs.  Review of 

this literature can be found in Pindyck (1991), Dixit (1992), Dixit and Pindyck (1994), 

and Trigeorgis (1996). For more recent contributions to the literature, see for example 

Trigeorgis (1993), Tannous (1996), Alvarez (1999), Childs and Triantis (1999), and 

Dangl (1999). 

In general, for real options pricing we draw on Constantinides (1978) or Cox, Ingersoll, 

and Ross (1985), and a continuous time capital asset pricing model (see Merton, 1973b, 

or Breeden, 1979) is assumed to hold.  The underlying asset is not necessarily a traded 

one.  The difference between the required rate of return on the underlying asset and its 

growth rate is denoted by δ, and is an opportunity cost of deferring investment in the 

capital intensive project (see McDonald and Siegel, 1984); for a convenience yield 

interpretation, see Brennan and Schwartz (1985), and Brennan (1991).  

 

We are interested in the very hard problems of partial irreversibility like the ones 

introduced by Brennan and Schwartz (1985) in a model for natural resource investment 

decisions, because the costs of switching among different modes of operation induce 

path-dependency within the zone of inaction.  Specifically, this zone is a range of asset 

prices where investment (or switching) decisions are path-dependent.  In this zone, if we 

have not invested, we remain so; likewise, if we have invested, we remain invested.  

This path dependency makes the valuation of such investment options difficult.  Soon 

thereafter, Dixit (1989a, 1989b, 1989c) generalized their results. Dixit (1989a, c) used 

the model to show the path-dependency effects in a simplified two-sector economy with 

costly capital mobility, and Dixit (1989b) used the model to show the effects in entering 

in, or exiting from, a foreign market when the exchange rate is risky and follows 

geometric Brownian motion. This model considers the more general case of industry 



equilibrium when the company has the (sequential) option to purchase or abandon many 

existing producers.  Extensions of these models have also appeared in corporate finance 

(Mauer and Triantis, 1994), and under foreign exchange as the sole factor of risk (Mello, 

Parsons, and Triantis, 1995, and Bell, 1995).  The second example we use in this paper is 

the valuation of a flexible operation that offers the option to operate on the best of two 

(stochastic) assets, with costly switching between the operating and the idle states. 

 

 

4.  Two Examples 

 

In this work, two examples will be considered to show the usefulness of ANN to 

option pricing. First we assume an investor with a position promising to pay a return 

linked to the average of three assets (local or foreign stocks or stock indexes). If in 

addition the investor is offered protection so that the value of the initial investment 

cannot fall below a certain level, the value of this protection is equivalent to the value of 

a put option on the average of the three assets. Such options are contractual guarantees 

embedded in the investment products the financial institutions offer to investors.  In the 

absence of path-dependency European and American options can be priced using lattice-

based methods like the Boyle, Evnine, and Gibbs (1989) that we implement (see also 

Kamrad and Rithcken, 1991, and Ekvall, 1996).  In order to have accurate results, it is 

known that we need to use a relatively dense (with many steps) lattice, thus increasing 

the computational intensity of the multi-dimensional problem. The price we derive (the 

fine model) is the average of those provided by a 40-step and a 41-step lattice.  If we use  

the coarse model alone (for efficiency purposes), the price is derived from a 10-step 

lattice. The difference in computational intensity between the two is by a factor of 357 



(option node evaluations). Since the accuracy standard is the computationally intensive 

fine model, we will also use ANN to efficiently price these financial options.  We allow 

six variables to take five different values each, thus creating a training set of 7776 for 

each of the fine and the coarse option values, and each of the input variables.  The input 

variables are the three underlying assets S1, S2 and S3, each with values equally spaced 

between 85 and 115, the riskless rate of interest r with values between 0.02 and 0.06, all 

correlations of the assets´ continuous rates of return ρ1,2, ρ1,3 and ρ2,3 (equal to each other 

for simplicity of exposition) between –0.20 and 0.20, and all standard deviations of the 

assets´ continuous rates of return σ1, σ2 and σ3 (again equal to each other) between 0.10 

and 0.50.  The exercise price is fixed at X = 100, the two dividend yields δ1 and δ2 are 

fixed at 0.03, and the time to maturity fixed at T = 3.00.  We also create a (out-of-the-

sample) test set of 200 by drawing randomly and independently for the six input 

variables from uniform distributions in the range of the values used in the training set. 

 

Our second application is in the context of real options pricing with operating flexibility 

and switching costs.  Such types of investment models can capture in general the effects 

of multiple uncertainties (several underlying assets, local or in foreign countries); the 

flexibility to choose among several products (output) or raw material (input); and the 

flexibility to operate or not according to the profitability of the operation (switching 

decisions equivalent to the early exercise feature of an American-type option). The 

difficulty of pricing under uncertainty this American-type contingent claim and of 

determining the optimal state is because of the path-dependency inducing switching 

costs.   

 



Our specific example involves pricing a risky venture with the operating flexibility to 

choose the production of the best of two outputs (with stochastic values) by paying a 

fixed production cost, and to switch between the active (operating) and the idle mode 

after paying fixed switching costs. In the most general case, both underlying assets (the 

outputs) can be multiplicative functions of two uncertainties, an asset price and an 

exchange rate. The continuous one-dimensional case would be similar to Dixit (1989a) 

in a local (one-country) setting, or Martzoukos (1998) in a multinational (three-country) 

framework.  The solution of such problems is very hard (for an early reference see 

Kulatilaka, 1988). The method we implement is equivalent to solving a multi-stage 

optimization problem by implementing a recursive forward-backward looking algorithm 

of exhaustive search.  Alternatively but similarly, a procedure like in Hull and White 

(1993) can be implemented (by using a 2-D lattice instead of the 1-D discussed therein). 

The fine model allows optimal decisions (switching) at time zero, at the maturity of the 

option, and twice in-between, thus the optimization problem with exhaustive search is 

similar to a 3-stage stochastic programming model.  Note that the decision at maturity is 

also path-dependent on the previous decisions, so the problem is practically a 4-stage 

one, but at the 4th stage since we have reached option maturity the optimization problem 

conditional on the path is not a stochastic one.  We implement a 24-step 2-D lattice for 

the fine model and an 8-step 2-D lattice for the coarse model.  The difference in 

computational intensity between the two is by a factor of 1567 (option node evaluations).  

Since the accuracy standard is the extremely computationally intensive fine model, we 

also use ANN to enhance the efficiency of calculations.  We allow five variables to take 

five different values each, thus creating a training set of 3125 for each of the fine and the 

coarse option values, and each of the input variables.   



The input variables are the two underlying assets (product values) S1 and S2, each with 

values equally spaced between 85 and 115, the standard deviations of the assets´ 

continuous rates of return σ1 and σ2 (equal to each other) between 0.10 and 0.50, the 

switching cost to get to active mode (from idle) between 5.00 and 25.00, and the 

switching cost to get to idle mode (from active) similarly between 5.00 and 25.00.  The 

exercise price is fixed at X = 100, the riskless rate of interest r is fixed at 0.05, the two 

dividend yields δ1 and δ2 are fixed at 0.05, the correlation of the assets´ continuous rates 

of return ρ1,2 is fixed at 0.35, and the time to maturity fixed at T = 3.00.  We also create a 

test set of 200 with random drawing exactly like in the first example. 

 

For both examples the feedforward neural network structure shown in Fig. 1 with one 

hidden layer will be used. 

 

The performance of the two neuromodels shown in Figs. 2 and 3 will be investigated; 

the simple neuromodel shown in Fig. 2 tries to capture the functional relationship 

between the option price (fine model) and the input variables, while the neuromodel 

shown in Fig.3 tries to capture the functional relationship between the deviation of the 

option price (fine model) from that given by the coarse model and the input variables.  

The neuromodel shown in Fig. 2 will be called simple ANN model. The neuromodel 

shown in Fig. 3 is based on the hybrid model of Watson and Gupta and will be called 

Hybrid Numerical Option Pricing and ANN (NOP-ANN) model.   

 

The Quasi-Newton, BFGS algorithm (see for example Fletcher, 1980) in conjunction 

with Charalambous (1992) line search is used to efficiently train the ANN´s as a 

powerful alternative to popular backpropagation algorithm. 



 

Tables 1 and 2 show the results obtained for problem 1 and 2, respectively.  For the 

hybrid model we considered different values for the number H of neurons in hidden 

layer, ranging from 1 to 20, while for the simple model we considered only the case 

where the number of neurons in the hidden layer is 20.  Three measures are used to 

compare the results: 

 

 mse (e):  mean square error 

 mae (e):  mean absolute error 

 max (e):  maximum absolute error 

 

For both neuromodels, error is defined as the difference between the option price 

obtained by the neuromodels and that of a fine model. The elements in brackets 

correspond to the results obtained on the training data, and the rest of the elements 

correspond to the results obtained on the testing data. Examining the tables we can 

conclude the following: 

 

• The simple model, even with 20 neurons in the hidden layer, did not give much 

better results that the ones obtained by the coarse model. 

• The results obtained by the hybrid model with only one neuron in the hidden layer 

are slightly better than those obtained by the coarse model; this should be 

expected, because in a way in the hybrid approach, we are taking the coarse model 

as our based model. 

• The results obtained by the hybrid model with 20 neurons in the hidden layer are 

superior to those obtained by the coarse model. 



 

Figures 4 and 5 show plots of the error for the 200 testing sample points, for both the 

hybrid model with H = 20 and the coarse model. 

 

 

Summary and conclusions 

 

In this paper we propose a method for fast and efficient (practically real time) pricing of 

contingent claims through the use of ANN. We demonstrate results for financial 

derivatives and real (investment) options. Specifically we price customized investment 

vehicles with embedded guarantees offered by financial institutions to individuals, and 

risky ventures with (costly) switching of modes of operation due to the strategic 

flexibility of dynamic management of the entrepreneur. Other contracts can be similarly 

priced, like complex warrants, venture capital financing vehicles (i.e., convertibles), etc.  

The results demonstrate tremendous advantages in computational efficiency through the 

combined use of option pricing models and ANN. The use of such intensive option 

pricing methods is thus made available for real time applications where institutions´ 

financial officers investigate alternative contractual terms and/or discuss them with 

clients. Some of these methods can be made available to current or prospective clients on 

the internet.  
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Figure 1:  Feedforward ANN model with a single hidden layer 
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           Figure 4: Plot of the error for the testing sample points, for both the 
                      hybrid  model with H=20 and the coarse model for example 
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           Figure 5: Plot of the error for the testing sample points, for both the 
                                hybrid model with H=20 and the coarse model for example 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
   Error 
Measure 
 

 
Hybrid NOP-ANN  

Model 

 
Simple ANN 
      Model 

 
Coarse NOP 

Model 

   H   H  
  

1 
 

2 
 

5 
 

10 
 

20 
 

20 
 
 
 

mse(e)x104 (3.2) (1.1) (0.82) (0.39) (0.23) (2.7) (6.0) 
 2.5 0.9 0.74 0.60 0.21 1.8 4.1 
        
mae(e)x102 (1.4) (0.85) (0.75) (0.47) (0.36) (1.2) (1.8) 
 1.3 0.79 0.72 0.59 0.35 1.1 1.6 
        
max |e|x102 (8.1) (8.3) (7.4) (5.0) (2.7) (2.3) (11.4) 
 6.0 3.4 2.9 2.1 1.6 4.4 8.6 
        
 
 
Table 1: Comparison between the hybrid NOP-ANN, the simple ANN, and the 

coarse NOP model on example 1.  The 1st and 2nd rows in each 
measure correspond to training and testing sets respectively.  

 
 
 
 
 
 



 
 
   Error 
Measure 
 

 
                  Hybrid NOP-ANN  

Model 

 
Simple ANN 
      Model 

 
Coarse NOP 

Model 

   H   H  
  

1 
 

2 
 

5 
 

10 
 

20 
 

20 
 
 
 

mse(e)x104 (1.1) (0.79) (0.47) (0.24) (0.16) (1.5) (1.3) 
 1.0 0.85 0.45 0.21 0.14 1.0 1.3 
        
mae(e)x102 (0.84) (0.72) (0.55) (0.38) (0.30) (0.97) (0.90) 
 0.84 0.75 0.54 0.33 0.27 0.79 0.95 
        
max |e|x102 (4.4) (3.3) (2.4) (2.1) (2.1) (6.1) (4.7) 
 3.2 2.3 2.2 1.9 1.4 2.8 2.7 
        
 
 
Table 2: Comparison between the hybrid NOP-ANN, the simple ANN, and the 

coarse NOP model on example 2.  The 1st and 2nd rows in each 
measure correspond to training and testing sets respectively.  
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