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Abstract 

This paper introduces stochastic volatility to the Libor market model of interest rate 
dynamics. As in Andersen and Andreasen (2000a) we allow for non-parametric volatility 
structures with freely specifiable level dependence (such as, but not limited to, the CEV 
formulation), but now also include a multiplicative perturbation of the forward volatility 
surface by a general mean-reverting stochastic volatility process. The resulting model 
dynamics allow for modeling of non-monotonic volatility smiles while explicitly allowing for 
control of the stationarity properties of the resulting model dynamics. Using asymptotic 
expansion techniques, we provide closed-form pricing formulas for caps and swaptions that 
are robust, accurate, and well-suited for both model calibration and general mark-to-
market of plain-vanilla instruments. Monte Carlo schemes for the proposed model are 
proposed and examined. 

 
Keywords: volatility smiles, stochastic volatility, Libor market model, asymptotic 
expansions, ADI finite differences, Monte Carlo simulation 

 
1. Introduction. 
 The Libor market (LM) model of Jamshidian (1997), Brace et al (1997), and 
Miltersen et al (1997) has established itself as an important model for pricing and 
hedging of fixed income derivatives. The model is flexible, supports multiple factors and 
rich volatility structures, and is tractable enough is to allow fast calibration to market-
quoted caps and swaptions. In its original log-normal form, however, the LM model does 
not incorporate the observable phenomenon that implied log-normal volatilities of quoted 
interest rate caps and swaptions are strike- and coupon-dependent, respectively. This is a 
fairly significant drawback of the basic model, as virtually all fixed income markets 
exhibit significant downward-sloping volatility “skews” (i.e. cap volatilities decrease with 
strike) with some markets even displaying non-monotonic “smiles” where both in-the-
money and out-of-the-money options trade at higher implied volatilities than at-the-
money options.  

                                                 
1 The authors wish to express their gratitude to Jesper Andreasen and Alan Lewis for discussions 
and suggestions.   
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To incorporate volatility skews and smiles into the LM model, researchers have 
suggested a variety of extensions of the basic framework. Andersen and Andreasen 
(2000a) modify the assumption of log-normal diffusion to allow for local forward rate 
volatilities that have arbitrary dependence on the forward rate itself. Such effects are 
empirically observable, see for instance the US data in Figure 0 below. Even stronger 
level dependence can be observed in Japanese markets. 

 
Figure 1 Here 

 
The introduction of level dependency of forward rate volatilities in LM models essentially 
corresponds to the deterministic volatility function (DVF) approach by Dupire (1994) for 
equity options, and works well for markets where implied volatilities are monotonic 
functions of the option strike. For the case of non-monotonic volatility “smiles”, the 
approach is, however, prone to non-stationarities in the evolution of implied volatility 
and is generally less useful (see for instance Andersen and Andreasen (2000b) for a 
discussion of this phenomenon in an equity setting).  

In another line of research, Glasserman and Kou (1999) and Jamshidian (1999) 
instead extend the Libor market model to incorporate jumps in forward rates curves. 
This work is related to that of Merton (1976) and in certain special cases (e.g. log-
normally distributed jumps) has enough tractability to allow for closed-form solutions for 
European interest rate options. While the jump approach can generate stationary, non-
monotonic volatility smiles, it involves a variety of technical complications, and 
numerical execution of the resulting model is non-trivial. Moreover, to generate 
asymmetric smiles and skews, the jump component of the forward rate dynamics 
typically needs to be of substantial magnitude, typically with a downward bias. While 
such dynamics are probably reasonable for equity prices (see Andersen and Andreasen 
(2000b)) they might be less natural for the term structure of interest rate forwards.  

The approach to volatility smile modeling discussed in this paper involves 
overlaying the level-dependent volatility function approach in Andersen and Andreasen 
(2000a) with an independent stochastic volatility process. Empirical evidence strongly 
supports the qualitative basis of such a model, as volatilities in interest rate options 
markets clearly possess a random component beyond that implied by the DVF approach. 
Application of stochastic volatility models to equity option pricing2 is common and has 
received much scrutiny throughout the last decade or so (e.g. Hull and White (1987), 
Heston (1993), and the excellent monograph by Lewis (2000)), but comparatively little 
work has been done on applications to problems in fixed income. Of direct relevance to 
our work is primarily the recent paper by Joshi and Rebonato (2001) who investigate a 

                                                 
2 Note that virtually all of this literature assumes that the stochastic volatility process is imposed 
on a regular, skew-free geometric Brownian motion process.  
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displaced3 log-normal LM model with a particular four-parameter parameterization of 
the instantaneous forward rate volatility term structure. To introduce stochastic 
volatility, each of the four parameters is assumed to follow an Ornstein-Uhlenbeck 
process (or a transformation thereof), with all processes being independent of each other 
and of the forward curve. While the assumption of independence allows for some relief of 
computational burden, the model is not analytically tractable and caps and swaptions 
must be priced by Monte Carlo simulation.  

The approach taken in this paper differs from that of Joshi and Rebonato (2001) 
in several important ways. We allow for a richer class of forward rate diffusion processes, 
making it possible for the model builder to establish virtually any kind of skew/smile 
"bedrock" on which to superimpose the stochastic volatility process. This has several 
consequences, among others the ability to potentially sustain smiles for long maturities, 
as well as the ability to explicitly control how much of a non-monotonic volatility smile 
should be stationary (in a sense defined shortly) and how much should not. Also, we 
allow for complete freedom in the specification of the instantaneous volatility term 
structure, accommodating both parametric and non-parametric calibration approaches 
(for a discussion of the latter, see for instance Sidenius (2000) and Andersen and 
Andreasen (2001)). While we allow for several extensions, our basic approach to 
stochastic volatility modeling is parsimonious with a single, mean-reverting stochastic 
factor perturbing the volatility term structure. Most importantly, we provide accurate 
closed-form asymptotic expansions for European cap and swaption prices, ensuring that 
the proposed model allows for fast calibration and is suitable as a production model to 
mark-to-market cap and swaption positions. This feature is, of course, of importance in 
preventing model arbitrages between plain-vanilla and exotic options. We note that 
applications of asymptotic techniques to derivatives pricing problems involving 
stochastic volatility are relatively well-established (see e.g. Hull and White (1987), 
Hagan (2000), and Lewis (2000)), but previous work has not been general enough for our 
purposes. 

The rest of the paper is organized as follows. Section 2 provides notation and 
outlines the basic model assumptions. Section 3 uses a variety of asymptotic techniques 
to derive an expansion for the prices of caps and floors. In Section 4, the results of 
Section 3 are applied to European swaption pricing, for which an approximation is 
found. Section 5 tests the cap and swaption pricing formulas against numerical results 
from Monte Carlo simulations (an algorithm for which is outlined in Appendix A) and a 
2-factor alternating directions implicit (ADI) finite difference grid. See In Section 6 we 
briefly examine implied volatility data from the US market and demonstrate that the 
proposed framework is capable of capturing important characteristics of the implied 
                                                 
3 A displaced log-normal martingale x satisfies ( ) ... [ ( )] ( )dx t dt a bx t dW t= + +  where a and b are 
positive constants and where W is a Brownian motion. We notice that this process allows for 
negative values of x; the domain of x is [ / , )a b− ∞ .  
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volatility dynamics. We also propose a number of extensions of the basic model 
framework. Section 7 contains the conclusions of our paper.  
 
2. Model setup, assumptions, and notation. 

Consider an increasing maturity structure 0 1 10 ... KT T T += < < <  and define a 
right-continuous mapping function ( )n t  by ( ) 1 ( )n t n tT t T

−
< ≤ . With ( , )P t T  denoting the 

time t price of a zero-coupon bond maturing at time T, we define discrete forward rates 
(Libor forward rates) on the maturity structure as follows (where kt T≤  and k K≤ ): 
 

 
1

( , )1( ) 1( , )
k

k
k k

P t TF t P t Tδ
+

 
≡ −   

,  1k k kT Tδ +≡ −  . 

 
We wish to state the dynamics of the Libor forward rates in the spot measure Q, the 
equivalent martingale measure induced by a discrete-time Libor money market account 
B generated by "rolling over" an initial investment of $1 at each date in the maturity 
structure. Specifically, 
 
 

( ) 1 ( ) 1
1

1( ) ( )
0 0

( ) ( , ) ( , ) ( , ) (1 ( ))
n t n t

j j j jjn t n t
j j

B t P t T P T T P t T F Tδ
− −

−
+

= =

= = +∏ ∏ . (1) 

 
Under the extended LM model in Andersen and Andreasen (2000a), the no-arbitrage 
dynamics of forward rates in Q are governed by the following set of stochastic 
differential equations, (),...,k n t K= : 
 

 ( ) T( ) ( ) ( ) ( ) ( )k k k kdF t F t t t dt dW tϕ λ µ = +  , ( )
( )

( ) ( )
( ) 1 ( )

k j j j
k

j n t j j

F t t
t F t

δ ϕ λ
µ

δ=

=
+∑  . (2) 

 
In (2), :ϕ + +→¡ ¡  is a one-dimensional function satisfying certain regularity 
conditions, ( )k tλ  is a bounded m-dimensional deterministic function, and ( )W t  is a m-
dimensional Brownian motion under Q. (2) defines a system of up to K Markov state 
variables. The setup in (2) allows for robust modeling of downward-sloping volatility 
skews, for instance by using a CEV model with ( ) , 0 1x xαϕ α= < <  for which a closed-
form option pricing formula is available. For other specifications of ϕ , one can employ 
either finite-difference grids or, more conveniently, the asymptotic pricing formulas 
derived in Section 3.1.  

In principle, the specification (2) can also be used to generate non-monotonic, U-
shaped volatility “smiles” by letting ( )/x xϕ  be non-monotonic. It is clear, however, that 
such a model would often imply quite non-stationary behavior of the volatility smile as a 
function of forward rate levels. For instance, consider the “double” CEV model 
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( )x x wxα βϕ = + , 0 1, 1α β< < > , with w calibrated to generate a volatility smile 
bottoming out at current forward rate levels. If forward rates were to move up 
considerably from calibration levels, the “super-lognormal” x β  term would dominate, 
resulting in an inverted volatility skew with caplet volatilities increasing in strike. This 
behavior does not correspond well to observed market behavior where the smile tends to 
"slide along" with the forward rate. Ideally, we would like to include in our model a 
mechanism that would complement our existing framework by allowing for such 
behavior.  
 Generation of stationary non-monotonic volatility smiles can be accomplished by 
allowing the underlying forward rates to jump Poisson-style, or by introducing stochastic 
volatility (or possibly a combination of both). As discussed earlier, we find the stochastic 
volatility approach to be the most appealing, and will focus on this throughout this 
paper. We will take the process (2), likely equipped with a ϕ  that generates either a flat 
or monotonically down-ward sloping volatility skew (or at least only a mildly non-
monotonic smile), as our starting point, but allow the term on the Brownian motion to 
be scaled by a stochastic process. Specifically, we introduce a mean-reverting scalar4 
process 
 
 ( ) ( )( ) ( ) ( ) ( )dV t V t dt V t dZ tκ θ εψ= − +  (3) 
 
where ,κ θ , and ε  are positive constants, ( )Z t  is a Brownian motion under Q, and 

:ψ + +→¡ ¡  is a well-behaved function. We obviously must impose that (3) will not 
generate negative values of V, which requires (0) 0ψ = . We will interpret the process in 
(3) as the (scaled) variance process for our forward rate diffusions. Specifically, the 
square-root of the process in (3) will be used as a stochastic, multiplicative shift of the 
diffusion term in (2). In total, our process assumption is: 
 
Assumption 1: 
The forward rate process under Q is  
 
 ( ) T( ) ( ) ( ) ( ) ( ) ( ) ( )k k k kdF t F t V t t V t t dt dW tϕ λ µ = +  ,  (4) 
 
where ( )k tµ  is given in (2) and where ( )V t  follows (3). 
  
In applications, it is often natural to scale the process for V such that 1θ = . The 
quantity 1 ( )V t−  then represents the percentage at which current levels of V deviate 
from the long-term mean. Also, we note that the inverse mean reversion parameter 1κ −  
has units of time and represents the half-life of volatility shock decay. So, if (in the 
                                                 
4 Extensions to multi-dimensional variance processes are possible; see Section 6.  
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pricing measure Q ) we expect the effects of a volatility shock to be reduced by 50% 
within 6 months, we must set 2κ = .  

We shall also need the following: 
 
Assumption 2: 
The Brownian motion of the variance process (3) is uncorrelated to the Brownian 
motions of the forward curve, i.e. 
 
 ( )diag ( ) ( )dZ t dW t 0⋅ =  . 
 
Assumption 2 might, at first glance, appear somewhat prohibitive. However, empirical 
evidence from all major fixed income markets generally suggests that correlations 
between short-dated forward rates and their volatilities are indistinguishable5 from 0; see 
e.g. the analysis in Chen and Scott (2001). In traditional models for stochastic volatility 
(such as the Heston (1993) model) built on top of geometric Brownian motion, non-zero 
correlations are often necessary to fit observed asymmetric volatility skews in the 
market. In our more general set-up, however, the base skew is established by the 
function ϕ  and non-zero correlations are not needed to generate asymmetric skews. 
Loosely speaking, the effects of non-zero correlation in a geometric Brownian model with 
stochastic volatility are here generated by two separate pieces: a zero-correlation piece 
(the V process) and a piece that is either perfectly dependent or perfectly anti-dependent 
on the forward process (the effect of the skew function ϕ ).  

The main technical implication of Assumption 2 is the ability to shift pricing 
numeraires without affecting the process (3). For example, consider substituting the 
numeraire ( )B t  for a specific zero-coupon bond 1( , )kP t T + , with k K≤  fixed. Let the 
martingale measure induced by this choice of numeraire be 1kQ + . The Radon-Nikodym 
derivative for the shift from Q to 1kQ +  is thus  

 
 

1
1 1

1
( , )/ (0, ) () ,( )

k
k k

t k
P t T P Td t t Td B t

Q
Q ρ

+
+ +

+
ℑ = ≡ ≤ . 

 
Letting ,< ⋅ ⋅ >  define quadratic co-variance, the dynamics in the 1kQ +  measure are then: 
 
 ( ) T

1( ) ( ) ( ) ( ) ( )k k k kdF t F t V t t dW tϕ λ
+

= ,  (5a) 
 

                                                 
5 In our framework, movements of implied volatilities of forward rates are caused both by the 
random nature of V and the presence of the skew function ϕ . Over short time-horizons – as in 
the study by Chen and Scott (2001) – the first effect dominates. See Section 6 for further 
discussion.  
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 ( ) ( ) ( ) 1( ) ( ) ( ) ( ); ( )/ ( ) ( ) ( )kdV t V t dt V t dZ t d t t V t dZ tκ θ εψ ρ ρ εψ += − + +  
                        ( ) ( )( ) ( ) ( ),V t dt V t dZ tκ θ εψ= − +  (5b) 
 
where 1kW +  and 1kZ +  are Brownian motions under 1kQ + , and where the last equality in 
the equation for ( )dV t  follows from Assumption 2. Without this assumption, it is clear 
that the SDE for ( )V t  under 1kQ +  would involve forward rates themselves, making the 
overall dynamics analytically intractable. 
 Under (3) and (4), pricing of a contingent claim C with time T payout of ( )C T  
amounts to evaluating the Q-expectation 
 
 ( )( ) ( ) ( )/ ( )tC t B t E C T B TQ=  
 
where ( )C T  can depend on the entire paths of W  and Z  on [0, ]T . In practice this 
computation is done by Monte Carlo simulation; Appendix A outlines and tests a 
possible algorithm. 
 Finally, a word about what parameterization of the function ( )xψ  is most useful 
in applications. Scale invariance6 alone suggests that we should use a power function 
(satisfying ( ) ( ) ( )xy x yψ ψ ψ= ), then the second equation becomes simply 
 
 ( ) ( )* * * * * *( ) ( ) ( ) ( ), / ( )dV t V t dt V t dZ t q qκ θ ε ψ ε ε ψ= − + ≡ . 
 
In other words, if we set ( ) px xψ =  for some scalar p, then a re-scaling of the variance 
level can be accounted for solely by scaling the model parameters , ,kλ θ  and ε . In terms 
of selecting a particular value of the power p, we note that application of the usual Feller 
boundary tests (see e.g. Karlin and Taylor (1981)) reveals that the resulting process for 
V  can reach 0 for 0.5p <  (and can reach zero for 0.5p =  if 22κθ ε> ) and becomes 
explosive for 1p > . In most of our numerical work, we therefore focus on the "safe" value 
of 3

4p = ; the exact choice, however, is non-critical as the volatility smile shapes implied 
by the model are nearly independent of the choice of p, at least as long as 0.5 1p< ≤ . In 
any case, to ensure maximum flexibility, our theoretical treatment in the next two 
sections allows ( )xψ  to be a general function. 
 
3. Caplet Pricing Formulas.  
 For the model (3)-(4) to be useful in practice, it must provide for fast pricing of 
caps and swaptions to facilitate efficient calibration of market parameters. This section 
will develop asymptotic expansions for cap prices; swaptions are treated in Section 4. 
The accuracy of the expansions are tested in Section 5. 
                                                 
6 In the sense that re-scaling V with a constant positive factor leaves (3) unchanged after 
appropriate scaling of the parameters , ,kl q  and e .  
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 Recall that an interest rate cap with strike X is composed of so-called caplets, 
each paying at time 1kT +  the amount ( )( )k k kF T Xδ

+
− , with the notation max( , 0)x x+ = . 

By standard theory, the time t arbitrage-free price C of the caplet is given by 
 
 ( ) ( )1

1 1( ) ( , ) ( ) ( , ) , ( ) , ( )k
tk k k k k k kC t P t T E F T X P t T G t F t V tQδ δ+

+

+ +
 = − ≡   . (6) 

 
For the purpose of pricing European options, the term 1( ) ( )T

k kt dW tλ +  in (5a) can be 
replaced by || ( ) | | ( )k t dY tλ , where ( )Y t  is a one-dimensional Brownian motion 
uncorrelated to ( )Z t . From the Feynman-Kac theorem (e.g. Duffie (1996)), we thereby 
find that the function ( , , )G t F V  in (6) must satisfy the PDE 
 
 

2 2
2 2 2 21 1

2 22 2( ) ( ) ( ) || ( ) | | 0k k
k

G G G GV V F V tt V V Fκ θ ε ψ ϕ λ
∂ ∂ ∂ ∂

+ − + + =
∂ ∂ ∂ ∂

, 

 
subject to the terminal boundary condition ( , , ) ( )k k kG T F V F X += − . Notice the absence of 
a mixed derivative 2 / kG F V∂ ∂ ∂ , a consequence of our Assumption 2. 

To develop asymptotic solutions to the PDE for G, we proceed in two steps, first 
letting V be constant, and then later allowing V to become stochastic. For notational 
convenience, throughout the rest of this section we drop the subscript k , such that kF  
becomes F, || ||kλ  becomes λ  (a scalar), and kT  becomes T. With this convention, the 
PDE to be solved is thus 
 

2 2
2 2 2 21 1

2 22 2( ) ( ) ( ) ( ) 0G G G GV V F V tt V V Fκ θ ε ψ ϕ λ
∂ ∂ ∂ ∂

+ − + + =
∂ ∂ ∂ ∂

, s.t. ( , , ) ( )G T F V F X += −  (7) 
 
3.1. Constant V. 
 Assume for the remainder of this sub-section that V is constant; with no loss of 
generality, let us simply set 1V = . Let us also, for now, assume that 2( )tλ  is a constant, 
c. The PDE (7) now becomes 
 
 

2
21

2 2( ) 0G GF ct Fϕ
∂ ∂

+ =
∂ ∂

, s.t. ( , ) ( )G T F F X += − . (8) 

 
While a closed-form solution to (8) is known for special cases of ( )Fϕ  -- most notably for 
the case of displaced power-type functions ( ) ( )F aF b αϕ = +  -- such a solution is not 
possible in the general case. Instead, we here wish to develop an asymptotic series 
solution to (8). One approach to obtain such a series is to rely on singular perturbation 
techniques, as in Hagan and Woodward (1999). However, we generally find that a small-
time expansion around the known solution for ( )F Fϕ =  leads to more robust results, 
and consequently we will present this method here.  
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Proposition I. 
Let T tτ = − . An asymptotic expansion for the solution to (8) is ( , ) ( , ; )G t F g t F c= , 
where 
 
 ( , ; ) ( ) ( )g t F c F d X d−+= Φ − Φ , 

21
2ln( / ) ( , , )

( , , )
F X t F cd t F c±

± Ω
=

Ω
,  (9) 

 
where Φ  is the cumulative Gaussian distribution function, and 
 
 1/2 1/2 3/2 3/2 5/2

0 1( , , ) ( ) ( ) ( )t F c F c F c Oτ τ τΩ = Ω + Ω + , (10) 
 

 0 1

ln( / )( )
( )F

X

F XF
u duϕ −

Ω =
∫

, 

 
( )

1/2
0

2 01 1

( )( ) ln ( ) ( ) ( )( )F

X

F FXF F F Xu du ϕ ϕϕ −

 Ω  
 Ω = − Ω     ∫

. 

 
Proof: 
The result in Proposition I represents an expansion around the volatility term in the 
classical Black (1976) formula, arising in the special case ( )F Fϕ = . We notice that the 
quantity ( , , )/t F c τΩ  thus represents the implied Black-Scholes volatility. We must 
obviously require 1/2( , , )~t F c τΩ  as 0τ → , and so we seek a small τ solution of the form 
 
 1/2 1/2

0
( , , ) ( )i i

i
i

t F c c Fτ+ +

≥

Ω = Ω∑  . (11) 

 
Notice that (11) omits all integer powers of τ  -- it turns out that the weights on terms 
of the form iτ  are all identically 07. Substituting (11) into (8) and matching terms of 
order 1 / 2τ  gives 
 

 
2

2 2 2 0
0

0
( ) 1 ln( / )F F F F Xϕ

 ′Ω
Ω = −  Ω 

 , (12) 

 
where primes denote differentiation with respect to F. Taking square-roots of the above 
equation and rearranging leads to two first-order ordinary differential equations of the 

                                                 
7 The proof of this statement is simple and follows directly from the structure of the resulting 
homogenous differential equations for these terms.  
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Bernoulli type. Solving (12) subject to the boundary condition that the limit of 0Ω  must 
be finite for F X→  (and discarding the negative solution) leads to the result for 0Ω  in 
Proposition I.  

Progressing now to the 3/2( )O τ  term in (10), we get  
 

 { }2 01 11
2 20 01

01
2 ( ) ( ) ln( / ) ,F F F F F F Xϕ ϕ

 ′ ′Ω Ω Ω
′′ ′Ω = Ω + Ω − −  Ω Ω 

  

 
which again leads to a Bernoulli-type ODE, the explicit solution of which is as listed in 
the Proposition. Again, we have ensured that the limit for F X→  is finite.| 
 
 While developed specifically for small τ , experience shows that the result in 
Proposition I is often remarkably accurate for long option maturities. As an illustration, 
the figure below tests the expansion on the strike dependency of 10-year implied caplet 
volatility for two CEV models and a bounded exponential model of the type 

( ) (1 )bxx x aeϕ −= + , , 0a b > . Specifically, the figure below compares the volatility skews 
generated by the expansion in Proposition I against either closed-form results or, in the 
case of the exponential model, a finely spaced Crank-Nicholson finite difference scheme.  
 

Figure 2 Here 
 
The expansion is extremely precise for the CEV models and also does an excellent job on 
the exponential model, particularly in light of the fairly extreme parameters of the latter 
model. Incidentally, exponential models of the type in Figure 1 are often useful in 
generating volatility skews that flatten out faster than CEV skews for high strikes. 

As mentioned in the proof, the result in Proposition I represents an expansion 
around the Black-Scholes solution with the term / T tΩ −  conveniently representing 
the implied Black-Scholes volatility impσ , a quantity that is often quoted in interest rate 
cap markets. By equating (9) to a given market price, we can also introduce a constant 
scalar impλ  -- the implied “skew volatility” -- as the solution to 2( ; ) ( )impg t G tλ = , where 

( )G t  is a known, market-quoted caplet price. From Proposition I, impλ  and impσ  are 
related as  
 
 3

0 1( ) ( ) ( )imp imp impF F T tσ λ λ≈ Ω + Ω −  . (13) 
 
For a given value of impσ , this cubic equation for impλ  can easily be solved in closed 
form, a fact that can often be exploited to speed up the calibration of the model.  
 Before proceeding, we point out that for many instances of ϕ  it is possible to 
further improve the accuracy of the asymptotic expansion in Proposition I by expanding 
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around either a displaced log-normal diffusion or a Gaussian diffusion, rather than 
geometric Brownian motion. The resulting series are available from the authors upon 
request. For the purposes of this paper, however, the result in Proposition I is easily 
accurate enough.  
 Consider now the case where 2( )tλ  is no longer constant in time, but we still 
have 1V = . The pricing PDE then becomes 
 
 

2
2 21

2 2( ) ( ) 0G GF tt Fϕ λ
∂ ∂

+ =
∂ ∂

, s.t. ( , ) ( )G T F F X += − . (14) 

 
Proposition II 
An asymptotic solution to (14) is given by  
 
 ( )1 2( , ) , ;( ) ( )T

t
G t F g t F T t u duλ−= − ∫  , 

 
where the function g is defined in Proposition I. 
 
Proof: 
Performing a standard deterministic time-change (as in Andersen and Andreasen 
(2000a), Lemma 1) we find that Proposition I holds unchanged for (14), provided that 
we set 
 
 2( )T

t
c u duτ λ= ∫  . 

 
This is also easily seen from the structure of the pricing PDE. The result in Proposition 
II follows directly from this observation.| 
 
3.2 Stochastic V. 
 We now let V follow (3), and seek an asymptotic solution to the full PDE (7). 
From Assumption 2, an adaptation of a decomposition result first proposed in Hull and 
White (1987) allows us to write an asymptotic solution to (7) as  

 
 ( )1( , , ) , ;( ) ( )tG t F V E g t F T t U T− = −  , 2( ) ( ) ( )T

t
U T u V u duλ≡ ∫  (15) 

 
where we understand that the expectation is with respect to the 1kQ +  measure. The 
density of ( )U T  is difficult to generate and generally would require transform inversion. 
It is easy, however, to establish the first moment of ( )U T : 
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 [ ] [ ] ( ) ( )2 2 ( )( ) ( ) ( ) ( ) ( ( ) ) , ( )T T u t
t t Ut t

E U T u E V u du u V t e du t V tκλ λ θ θ µ− −= = + − ≡∫ ∫  (16) 
 
where the second equation follows from standard results (and is subject to some standard 
regularity conditions on ψ ). With a Taylor expansion of (15) in mind, we now seek to 
establish higher moments of ( )U T . Following the ideas in Lewis (2000), let us introduce 
the Laplace transform ( )( ) , ( );s U T

tE e L t V t s−  ≡   where s is the complex-valued argument 
to the Laplace-transform. L satisfies the PDE 
 
 

2
2 2 21

2 2( ) ( ) ( ) 0L L LV V s t VLt V Vκ θ ε ψ λ
∂ ∂ ∂

+ − + − =
∂ ∂ ∂

, s.t. ( , ; ) 1L T V s = . (17) 

 
We now introduce a centered transform ( , ; )l t V s  by 
 
 ( ) ( , ) ( , )( , ; ) ( , ; ) ( , ; )U Us U T t V s tV

tl t V s E e L t V s l t V s eµ µ − − −  = ⇒ =  . (18) 
 

Introduction of l ensures that we focus on deviations from the mean, which are small if 
either ε  or T tτ = −  are small. Insertion of (18) into (17) yields the PDE 
 
 

2
2 2 2 21

2 2( ) ( ) ( ) 2 ( ) 0l l l lV V ls p t sp tt V V Vκ θ ε ψ
 ∂ ∂ ∂ ∂

+ − + + − = 
∂ ∂ ∂ ∂ 

, s.t. ( , ) 1l T V = , (19) 

 2 ( )( ) ( )T u t
t

p t u e duκλ − −≡ ∫ . 
 
While we could attempt a small-time expansion for l similar to that in Section 3.1, the 
presence of the time-dependent term ( )p t  in (19) makes this approach somewhat 
cumbersome. Instead, we expand in 2ε , the squared “volatility of variance” parameter: 
 
Lemma I: 
Let ( )p t  be as in (19), and define 21

2( ) ( )x xψ ψ=%  and ( )( ) ( ) t uh u V eκθ θ −= + − . An 
asymptotic expansion for the solution to (19) is given by 
 
 2 4 6

1 2( , ; ) 1 ( , ; ) ( , ; ) ( )l t V s l t V s l t V s Oε ε ε= + + + , 
 2

1 1,2( , ; ) ( , )l t V s s l t V= , 

 ( )22 3 41
22 2,2 2,3 1,2( , ; ) ( , ) ( , ) ( , )l t V s s l t V s l t V s l t V= + + , 

with 

 2
1,2( , ) ( ) ( ( ))T

t
l t V p u h u duψ= ∫ % , 

 ( ) ( )2 2 2
2,2( , ) ( ) ( ) ( )T Tu v

t u
l t V e h u e p v h v dvduκ κψ ψ− ′′= ∫ ∫% % , 

 ( ) ( )2
2,3( , ) 2 ( ) ( ) ( ) ( )T Tu v

t u
l t V e p u h u e p v h v dvduκ κψ ψ− ′= − ∫ ∫% % .  
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Proof: 
Let  
 
 2

1
( , ; ) 1 ( , ; ) i

i
i

l t V s l t V s ε
≥

= + ∑ . 

 
Notice that odd powers on ε  are not used in the expansion, as only 2ε  figures in the 
PDE (19). Inserting this expression into (19) and collecting terms of order 2ε  gives 
 
 2 2 21 1 1

2( ) ( ) ( ) 0l lV s p t Vt Vκ θ ψ
∂ ∂

+ − + =
∂ ∂

, s.t. 1( , ) 0l T V = . 

 
This simple PDE can be solved in closed form, yielding the expression for 1l  above. The 
result for 2l  is established by collecting terms of order 4ε  and proceeding as for 1l .| 
 
 While somewhat complicated in appearance, the expressions for the integrals 
1,2 2,2,l l , and 2,3l  are trivial to implement on a computer. Indeed, due to the nested nature 

of the double integrals 2,2l  and 2,3l , all integrals can be computed in a single numerical 
integration loop, at negligible computational cost. In some cases of practical interest it is 
also possible to evaluate the integrals analytically.  

Equipped with Lemma I, we can compute central moments as follows: 
 
 ( ) 0( ) ( , ) ( 1) ( , ; )/ , 2,3,..n n n n

t sUE U T t V l t V s s nµ =
 − = − ∂ ∂ =   

 
There are many ways to turn these moments into an option price expression. For 
instance, we could rely on an Edgeworth expansion or perhaps some parametric density 
family to express the full density of ( )U T . Eq. (15) could then be evaluated by 
integration of the density-weighted expression for the function g . Alternatively, we can 
Taylor expand (15) and produce a closed-form asymptotic result. This latter approach 
results in the following asymptotic solution to the option pricing problem (7): 
 
Proposition III: 
Define ln( / )Y F X=  and 1( , ) ( , )Uc t V t Vτ µ−= . An asymptotic expansion for the caplet 
price ( , , )G t F V  that solves (7) is 
 
 ( ) ( )*, , , ; ( , )G t F V g t F c t V= , 
 
where the function g  is given in Proposition I, and to order 2ε  
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 * 2 2 2 4
0 1( , ) ( , ) ( )c t V c t V Y Oα ε α ε ε= + + + , (20) 

or to order 4ε  
 
 2 2* 2 4 2 4 2 4 4 6

0 0 1 1 2( , ) ( , ) ( ) ( ) ( )Yc t V c t V Y Y e Oεα ε β ε α ε β ε β ε ε−Λ= + + + + + + , (21) 
 
where the coefficients 0 01 1 2, , , ,α α β β β  are given in Appendix B, and where Λ  is an 
arbitrary positive number. The corresponding Black-Scholes implied volatility is given by 
 
 * * 3/2 2

0 1( , ) ( , ) ( )imp c t V c t V Oσ τ τ= Ω + Ω +  , (22) 
 
where 0Ω  and 1Ω  are given in Proposition I. 
 
Proof: In Appendix B. | 
 
We notice that *

impc λ= , where impλ  is the implied “skew-volatility” introduced earlier. 
In the special case of ( )x xϕ = , we have imp impλ σ=  and, provided that λ  is constant, 
the expression (20) becomes identical to the result given in Hull and White (1987) and 
many other sources. As we shall see in Section 5, (20) is adequate for reasonably low 
values of ε  (or, alternatively, high values of the mean reversion parameter κ ). In other 
situations, (20) is somewhat inaccurate, particularly (and unfortunately) for at-the-
money options where 0Y = , in which case the higher-order result (21) should be used. 
(21) includes a 4Y  term and corrects both the at-the-money term and the 2Y  term. As 
we are here less interested in the contributions from the 4Y  term (which tend to grow 
uncontrollably for strikes far away from the forward), we have introduced a 
transcendental dampening factor 2 2Ye ε−Λ  on this term. The choice of Λ  is non-critical, as 
long as it is big enough to prevent the 4Y  term from causing problems for high values of 
| |Y . In most applications, a number between 1 and 10 is sufficient. We note that it is 
comparatively straightforward, but tedious, to continue the expansions to order 6ε , 
should additional precision be required. 
 
4. Swaption Pricing Formulas. 

To facilitate calibration to swaptions, this section will discuss how to apply the 
expansion results for caps and floors to approximate European swaption prices for the 
process dynamics (3)-(4). The development of these formulas closely follow the approach 
taken in Andersen and Andreasen (2000a), and certain steps will be omitted for brevity. 

Consider a European payer swaption maturing at some date sT , {1,2,..., }s K∈ . 
The swaption gives the holder the right to pay fixed cashflows 1 0kαδ − >  at kT , for 

1, 2,...,k s s e= + +  in exchange for Libor (paid in arrears) on a $1 notional. α  is thus 
the annual coupon rate, and sT  and eT  are the start- and end-dates of the underlying 
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swap, respectively; clearly we require 1 e sKT T T+ ≥ > . At maturity sT  the value of the 
payer swaption S is, by definition, 

 
 ( )

1

1( ) ( , ) [ ( ) ] ( ) ( )
e

S
s s s s sk k k

k s
S T P T T F T B T R Tδ α α

+−
+

+
=

 
= − = − 

 
∑ ,  (23) 

 
1

1( ) ( , )
e

S
k k

k s
B t P t Tδ

−

+
=

≡ ∑ ,  ( , ) ( , )( ) ( )
s e

S
P t T P t TR t B t

−≡ ,  

 
where the second equality for ( )sS T  requires a few straightforward manipulations. ( )SB t  
in (23) is a strictly positive process and can thus be used as a pricing numeraire. The 
probability measure induced by SB  is denoted SQ , and is often referred to as the 
(forward) swap measure for the swaption S. By standard theory, absence of arbitrage 
implies that the par-rate ( )R t  is a martingale under SQ . Assuming that the yield curve 
dynamics are governed by the stochastic volatility model (3)-(4), an application of Ito's 
lemma yields, 
 
 

1
T( )( ) ( ) ( ( ) ) ( ) ( )

e
S

j j
j s j

R td R t V t F t t dW tF
∂

ϕ λ
∂

−

=

= ∑ , 

 
where SW  is an m-dimensional Brownian motion under SQ  and ( ) / jR t F∂ ∂  is easily 
computed analytically. The stochastic differential equation above for R(t) is not 
analytically tractable. To proceed, we notice that for most reasonable shifts of the 
forward curve, ( ) / jR t F∂ ∂  normally varies little with time and the state of interest 
rates. In many cases, it is often also reasonable to assume that the ratio 

( ) ( )( ) / ( )jF t R tϕ ϕ  is close to constant. The quality of this assumption obviously depends 
on the specific form of ϕ , but seems in practice to hold very well for many useful 
functions, particularly those that are close to the power-type (CEV) specification (see 
Andersen and Andreasen (2000a) for a variety of tests). In total, we suggest the 
following approximation of the dynamics of R in the model (3)-(4): 
 
 ( )

1
T( ) ( ) ( ) ( ) ( ) ( ),

e
S

sj j
j s

dRu R u V u w t udW u t u Tϕ λ
−

=

≈ ≤ <∑ ,  (24) 

( )
( )

( )( )( ) ( ) ( )
j

j
j

F tR tw t F t R t
ϕ∂

∂ ϕ
= . 

 
 With the approximation (24), the SDE for R under SQ  takes exactly the same 
form as the forward rate SDE's in 1kQ + ; see Section 2. As such, the swaption pricing 
problem becomes identical (after substitution of numeraires) to the caplet pricing 
problem discussed in detail in Section 3. Specifically, we can write the swaption price as 
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 ( )( ) ( ) , ( ) , ( ) ,SS t B t H t R t V t=  

 
where ( , , ),H u R V t u T≤ ≤ , solves 
 
 

2 2
2 2 2 2 21 1

2 22 2( ) ( ) ( ) ( ) 0R
H H H HV V R V uu V V Rκ θ ε ψ ϕ λ

∂ ∂ ∂ ∂
+ − + + =

∂ ∂ ∂ ∂
, ( , , ) ( )sH T R V R α += − , 

 (25) 

 
1

( ) ( ) ( )
e

j jR
j s

u w t uλ λ
−

=

≡ ∑  . 

 
(25) is, apart from notation, identical to (7) whereby all expansion results of Section 3 
can be applied directly.  
 
5. Numerical Results. 

In this section we will investigate the numerical properties of the suggested 
framework and test the precision of the asymptotic expansions for cap and swaption 
pricing. 
 
5.1. Cap pricing. 
 As our first test case, we set (0) 6%F =  for all forward maturities, ( )tλ  to a 
constant 20%, 3/4( )x xψ = , and, as we first wish to focus exclusively on the stochastic 
volatility expansion, choose a log-normal base model, ( )x xϕ = . We denote this choice of 
parameters Test A, and shall proceed to test the performance of the expansions (20) and 
(21) as functions of maturity T, mean reversion speed κ , and volatility of variance ε . 
For ease of reference we denote the combination of (20) and (22) expansion O2 (as it is 
accurate to second order); the combination of (21) and (22) is denoted expansion O4. 

In Figure 2 we have fixed 1.5T =  and 1κ =  (implying a half-life of volatility 
shocks of 1 year) and demonstrate the performance of the expansion solution (22) for 

impσ , as a function of option moneyness and ε . The panels of the figure use quite 
extreme values of ε  (150% and 200%, respectively) to generate visible differences 
between the ADI and O4 smiles. Notice the difference in scales for the implied volatility 
used in the two panels: as ε  is increased the magnitude of the volatility smile implied by 
the model increases, as expected. 
 

Figure 3 Here 
 

As the figure shows, the expansion precision is generally excellent across a broad range of 
strikes, with the higher-order series in Eq. (21) outperforming the one in Eq. (20). The 
precision of both expansions decreases for large values of ε , as one would expect, 
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although the breakdown in precision is quite gradual. For instance, for 200%ε =  the at-
the-money implied volatility error for the O4 expansion is 0.00013 (or 0.13%), easily 
within the typical at-the-money bid-offer spread of around 0.5% - 1.0% (bid-offer spreads 
are significantly higher for options with strikes away from at-the-money). For 150%ε =  
the at-the-money error of the O4 expansion is 0.02%. 

In Figure 4 we have fixed ε  at 150% and investigate the effects of varying time 
to maturity (T).  
 

Figure 4 Here 
 
As expected, the effects of stochastic volatility on the implied volatility smile dies out 
over time, a consequence of mean reversion. Notice from the figure that the performance 
of the stochastic volatility expansion holds up well, even for long maturities. Notice that 
the errors of both expansions eventually decline as T gets very large (this is evident in 
panel B for expansion O4, but a similar effect holds for expansion O2). While figure 4 
has fixed ε  at 150%, the results for other values of ε  are qualitatively similar. 
 As we demonstrated earlier, increasing the vol-of-variance parameter ε  increases 
the steepness of the implied volatility smile for any fixed maturity T. A similar effect can 
be obtained by keeping ε  fixed and decreasing the mean reversion parameter κ . In 
Figure 5, panel A, we demonstrate the effects on the 1.5-year caplet smile of moving κ  
from 1 to the extreme value of 0.  
 

Figure 5 Here 
 
The O4 series expansion generally shows significantly less sensitivity to decreases in κ  
than does the O2 expansion, particularly for the important case of at-the-money options. 
Figure 5, panel B shows in more detail the series performances for at-the-money options 
at various mean reversion speeds. The graph has been done for 2-year caplets; other 
maturities display qualitatively similar shapes. One caveat: for maturities beyond, say, 4-
5 years, usage of κ 's close to zero generally becomes questionable unless ε  is small (say, 
less than 50%), as the variability of volatilities over long horizons becomes excessive and 
in some cases can make the distribution of ( )V T  degenerate for large T. In such 
situations it becomes increasingly difficult to make numerical methods (including finite 
difference schemes and Monte Carlo simulations) converge, and it might be necessary to 
add further terms to the asymptotic expansions.  

Before we move on to models with more complicated skew functions ϕ , we 
consider briefly the role of the truncation factor Λ . For the parameters and strike-ranges 
considered so far, the choice of Λ  is non-critical – our selection of 1Λ =  for the 
numerical experiments was of little consequence for the displayed results and we could 
equally well have set 0Λ = . However, for very large values of | ln( / ) |F K  -- that is, for 



 18

options very deeply in-the-money or out-of-the-money -- the order 4Y  term in expansion 
O4 can become problematic, particularly in situations where the model parameters are 
extreme (high ε , low κ ). Figure 6 demonstrates such a situation. Notice the effect of 
the defensive term 2 2Ye ε−Λ  which overall makes the expansion more robust without 
sacrificing much accuracy. (We should point out that the monetary impact of the break-
down of the expansion for large | |Y  is limited as the sensitivity of caplet prices to 
volatility is very low in this region. As a consequence, bid-offer spreads in implied 
volatility terms tend to be very high for strikes far away from the forward). 
 

Figure 6 Here 
 

So far we have confined our investigation to the case where ( )x xϕ = . In these 
cases, our asymptotic expansions approximate the volatility smile as near-parabolic in 

( )ln (0)/F X . In particular, in this model the volatility smile generated by the expansion 
is always symmetric in moneyness (0)/F X  for X  close to (0)F , a consequence of 
having zero correlation between the forward rate and variance processes. To generate a 
non-symmetric smile, we now move to Test B where we change our base skew 
assumption and set 0.6( )x xϕ = . The rest of the Test A parameters are kept, although we 
now renormalize λ  to 6.49% ( 1 0.620% (0)F −= ⋅ ) to retain approximately the same 
volatility levels as in test A. Figure 7 shows the 1.5-year volatility smile for Test B with 

1κ =  and ε  equal to 150% and 200%, respectively. 
 

Figure 7 Here 
 
We note that in Figure 7, the parabolic smile effect of stochastic volatility is now 
superimposed on a non-flat base skew, effectively generating an asymmetric "smirk", a 
shape that is empirically observable in a range of markets. As for the performance of the 
expansions, the results are both qualitatively and quantitatively similar to Figure 3 
(which use the same V-process parameters, but ( )x xϕ = ). This is entirely to be expected 
given the high precision of the expansion in Proposition I-II (see Figure 2) and the 
orthogonality of the forward rate and variance processes. Indeed, in virtually all practical 
applications, the ε -expansion in Proposition III is more critical than the small-time skew 
expansion in Proposition I-II. Having already spent considerable time testing the former 
expansion, we shall not repeat the tests for the Test B setting, but just point out that 
the performance of the expansions O2 and O4 in Test B for various levels of , ,T ε κ  is 
consistent with the results shown for Test A in Figures 3-6. Instead, we show in Figure 8 
an example of the full caplet volatility smile surface that can be generated for the 
settings in Test B. Notice that the intial "smirk" gradually turns into a skew as the 
caplet maturity is increased. The speed at which this transition takes place is, as we 
have seen, a function of the volatility of variance ε  and the mean reversion speed κ .  
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Figure 8 Here 

 
5.2. Swaption Pricing. 

We now turn to the test of our pricing formulas applied to European swaptions. 
From the results of Section 4, we notice that the accuracy of the swaption pricing 
formulas depend on both the precision of the expansions in Propositions I and II, as well 
as the approximations made to arrive at the simplified SDE (25). The asymptotic 
expansions have been extensively tested in Section 5.1., and the validity of the steps 
leading to (25) have been examined at length in Andersen and Andreasen (2000a) as well 
as Hull and White (2000), among several others. In the interest of brevity, we shall 
therefore limit ourselves to a few representative tests, all set within the following, fairly 
realistic, two-factor scenario: 

 
Test C: Forward curve: 0.5δ = , (0) 0.04 0.00075kF k= + ⋅ . Skew function: ( )x xϕ = . 
Stochastic volatility dynamics: 3/4(0) 1, 1, ( )V x xθ κ ψ= = = = , and 1.5ε = . Volatility 
term structure: ( )0.05( ) 0.1( )( ) 0.015 0.025 ,0.01 0.05k j k j

jk T e e T
λ − − − −= + − , with ( )k tλ  piecewise 

flat between dates in the tenor structure. 
 
The above scenario involves an upward-sloping linear yield curve with 0(0) 4%F =  and 

40(0) 7%F = , and a two-factor time-stationary volatility term structure. The net 
instantaneous forward volatility 1 2 2 2|| ( ) | | ( ) ( )k k kt t tλ λ λ= +  in Test C is downward-sloping 
in kT t−  and will generate implied swaption volatilities that decrease both in swap tenor 
and swaption maturity, consistent with typical market conditions8. In log-normal terms, 
|| (0)||kλ  starts out at around 28% for 0k =  and decays to around 8% for 40k = . The 
instantaneous correlation between 0F  and 40F  is 32%.  

In Table 1, we list for Scenario C the prices of at-the-money swaptions with 
maturities ( sT ) and swap tenors ( e sT T− ) ranging between 1 and 10 years. Prices have 
been computed both by Monte Carlo simulations and the fourth-order expansion (21)-
(22), applied as discussed in Section 4. The accuracy of the expansion results is excellent, 
with all errors being less than 1% of the simulated price (and all less than 0.15% in 
terms of implied volatility). Indeed, for the 50,000 antithetic paths used in the table, the 
differences between the expansion and Monte Carlo results are mostly not statistically 
significant. Recall also (see Appendix A) that the Monte Carlo simulated results 
themselves are subject to a discretization error, although it is likely to be small here.  

                                                 
8 This phenomenon is consistent with mean reversion in interest rate movements. While not used 
in our numerical example, we note that the stochastic volatility component of our model can 
produce downward-sloping implied volatilities, even for constant kl , if (0)V q> .  
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Table 1: Prices of At-the-Money Swaptions in Scenario C 

sT  e sT T−  R  MC (SD) Expansion O4 Error Error (%) 
Error 
(Vol) 

1 1 4.19% 35.67 (0.15) 35.45 0.23 0.64% 0.15% 
1 5 4.47% 134.11 (0.53) 133.29 0.82 0.61% 0.11% 
1 10 4.80% 204.47 (0.78) 203.14 1.33 0.65% 0.09% 
5 1 4.79% 57.62 (0.24) 57.15 0.47 0.82% 0.14% 
5 5 5.07% 223.73 (0.85) 222.17 1.56 0.70% 0.10% 
5 10 5.40% 350.55 (1.25) 348.77 1.78 0.51% 0.06% 
10 1 5.54% 58.27 (0.22) 57.89 0.37 0.64% 0.09% 

 
Notes: The table above shows at-the-money (in the sense that the swap coupon equals the 
par rate, R α= ) payer swaption prices in model scenario C, as produced by the expansion 
(21)-(22) ("Expansion O4") and Monte Carlo simulation ("MC"). Numbers in parentheses 
refer to sample standard deviations ("S.D") as generated by 50,000 antithetic paths (for a 
total of 100,000 separate paths). "Error" refers to the difference between the prices 
generated by expansion and Monte Carlo simulation;  "Error (%)" is the error as a 
percentage of the Monte Carlo result; and "Error (Vol)" is the error expressed in terms of 
implied (Black) volatility. Prices and errors are reported in basis points (1/10,000). The 
table contains results for swaption maturities ( sT ) and swap tenors ( e sT T− ) ranging from 
1 to 10 years; for reference, the third column lists the par rate (R) of each swaption. In the 
application of the expansion in Eq. (21), the cut-off parameter Λ  was set to 1. The Monte 
Carlo results reported in the graph were computed with 50,000 antithetic paths (a total of 
100,000 separate paths) and the simulation algorithm (A.1)-(A.2) in Appendix A with a 
constant time step of 1

8∆ = . 
 

To examine the performance of the expansion results for swap coupons away 
from the par rate we now freeze the tenor to 5e sT T− =  years (results are comparable 
for other tenors) and examine the full volatility smile for various swaption maturities; 
see Figure 9 below. It is clear from the figure that the expansion results work well even 
for swaptions that are far from at-the-money.  

 
Figure 9 Here 

 
 
7. Parameter Estimation and Model Extensions. 

The way we envision that the proposed framework typically would be 
parameterized involves calibrating the kλ  vectors to observed prices of swaptions and 
caps (see Andersen and Andreasen (2001) and Sidenius (1999) for details) for fixed 
exogenous specification of ( )xϕ  and the parameters of the V process, primarily ε  and 
κ . The parameterization of ( )xϕ  and the stochastic volatility parameters could be 
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obtained from observations of the dynamics of implied volatilities as well as the market 
skew/smile and its dependence of option maturity. (Note that the V process parameters 
must be estimated in the spot measure, not the statistical measure. As such, estimation 
directly from empirical forward rate dynamics is not possible, and we instead must look 
at option prices and their implied volatilities). We refer to Joshi and Rebonato (2001) for 
some observations about estimating the parameters from empirical observations of smile 
and skew behavior, and here just demonstrate how, in principle, information about the 
stochastic volatility process, as well as the skew function, can be extracted from 
dynamics of at-the-money implied volatility data.  

Let us define ( ) ( , , )imp impV t V t F Vτ τ=  as the time t at-the-money implied log-normal 
variance (=volatility squared) of a caplet maturing at time t τ+ . F is the forward rate 
underlying the caplet, and V is, as before, the state of the variance multiplier process. 
Applying Ito's lemma to the process (3)-(4), we get that percentage changes in implied 
variance satisfy 
 

 
( )

( )

1

1

( ) / ( ) ... ( ) ( ) ( ) ( )

( ) ( ) () ,

imp
imp imp imp

imp
imp

VdV t V t dt V t F t t dW tF
VV t V t dZ tV

τ
τ τ τ

τ
τ

ϕ λ

εψ

−

−

∂
= +

∂
∂

+
∂

  (26) 

 
where the drift term is measure specific. We notice that movements in implied 
volatilities originate from two sources: a term from movements of forward rates and a 
term from the V process. The first term only exists in models with non-flat base skews 
and simply reflects the fact that log-normal volatilities are functions of forward rate 
levels9 when ( )x xϕ ≠  (if ( )x xϕ = , / 0impV Fτ∂ ∂ = ). The second term exists as long as 

0ε >  and will, due to mean reversion, affect short-dated implied volatilities more than 
long-dated ones. For sufficiently long-dated options, the effect of the V process will be 
negligible and the total volatility of implied variances will be determined solely by the 
skew function and ( )tλ . 
 From (26), we see that the total volatility of implied variance is 
 

( )
( )

( )
( )

2 2
1 , ( ) , ( ) , ( ) , ( )( ; ) ( ) ( ) || ( ) | | ( )imp imp

impV

V t F t V t V t F t V tt V t F t t V tF V
τ τ

τσ τ ϕ λ εψ−
   ∂ ∂

= +      ∂ ∂   
 

 
an expression that for most parameterizations is fairly insensitive to the levels of V and 
F. The derivatives in this expression can be computed directly from the pricing formulas 
given in Section 5. For 130%ε = , 3κ = , 3/4( )x xψ = , (0) 6%F = , and ( )(0) 1.2%Fλϕ = , 
                                                 
9 For instance, in a CEV model with ( ) , 0 1px x pj = < < , implied at-the-money volatilities 
increase (decrease) when forward rates move up (down). 
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the figure below shows the time 0 volatility of implied variance as a function of τ  for 
different parameterizations of ϕ . The figure also contains empirical results, as computed 
from 2 years of weekly Bloomberg data on implied volatilities of options on 1-year swaps.  
 

Figure 10 Here 
 
While the comparison between the empirical data and the theoretical results here is only 
suggestive, we do note that the model at least captures the important characteristics of 
empirical implied volatility dynamics: a) for short maturities, the volatility of implied 
variances decays rapidly as a function of τ ; b) in the presence of a base skew in the 
model, the volatility of implied variances approaches a non-zero asymptotic value. In 
principle, one can use the level of the asymptote to parameterize the skew function ϕ , 
although it is an outstanding question how consistent such a parameterization would be 
with parameterizations based on either the market skew or the empirical relationship 
between forwards and implied volatilities (see Figure 1). We leave this question for 
future work, but point out that it is possible to adjust the asymptotes in Figure 10 by a 
mechanism other than a DVF function, if needed. Specifically, in the base model (3)-(4), 
consider writing 
 
 1 2( ) ( ) ( )V t V t V t= + , (27) 
 ( ) ( )1 1 1 1 1 1 1 1( ) ( ) ( ) ( )dV t V t dt V t dZ tκ θ ε ψ= − + , 

( )2 2 2 2 2( ) ( ) ( )dV t V t dZ tε ψ= , 
 
where 1Z  and 2Z  are independent of each other and of the Brownian motions driving 
forward rates. In other words, the variance process now has a component ( 2V ) that does 
not mean revert and consequently affects the volatility of implied variances even for long 
maturities. Now, in equation (15) we get 
 
 2 2

1 2 1 2( ) ( ) ( ) ( ) ( ) ( ) ( )T T

t t
U T u V u du u V udu U T U Tλ λ= + ≡ +∫ ∫ , 

 
where 1U  and 2U  are statistically independent. Due to independence, we have  
 
 ( ) ( ) ( )1 1 2 2( ) [ ( )] ( ) [ ( )] ( ) [ ( )]n nnE U T E U T E U T EU T E U T E U T    − = − + −       
 
where each of the terms on the right hand side can be determined using the methods in 
Section 3. This again allows us to carry out an asymptotic expansion for cap and 
swaption prices with relative ease (the result is a simple extension to the results already 
given and is omitted). As 2ε  is likely to be small (less than 50%), the asymptotic 
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expansions will generally have no problems handling the lack of mean reversion in 2V , 
even for long maturities. 
 We point out that extensions of the model along the lines of (27) can be 
generalized to  
 
 ( ) ( ) ( )i i

i
V t c t V t= ∑  

 
where the ic  are deterministic functions and where the iV  are independent mean-
reverting processes. Such a formulation could be useful if one suspects that the variance 
process has multiple mean reversion time scales. Again, the asymptotic expansions for 
caps and swaptions can be carried out with no complications, as sketched above. 

The empirical data in Figure 10 only covers a specific tenor of rate (1 year). In 
practice, the behavior of volatilities of implied variances is rate tenor dependent, as 
shown in Figure 11:  
 

Figure 11 Here 
 
In particular, note from the figure above that the effective “volatility of variance” 
parameter ε  decreases with increasing tenor. This phenomenon is likely to be a 
diversification effect, reflecting the fact that the variance processes of the forward rates 
underlying a particular swap rate in practice are not, unlike in our model, perfectly 
correlated. In effect, our model corresponds only to the first principal component of the 
movements of the instantaneous volatility surface. To capture the tenor effect in our 
model, we would need to extend the number of factors driving the variance process, most 
generally by equipping each forward rate kF  with a unique mean-reverting variance 
process ( ), 1,2,...kV t k =  In addition, we would need to specify a correlation structure 
between the Brownian motions driving the various kV -processes. We note that such an 
extension will cause no problems when deriving expressions for caplet pricing formulas 
(our results carry over unchanged) but makes the derivation of a closed-form swaption 
pricing formula more difficult. In addition, estimation of the many parameters in the 
resulting model will be challenging, although it should be possible (by a principal 
components analysis of movements of implied volatilities, for instance) to reduce the 
dimension of the estimation problems somewhat through simplifying assumptions. We 
leave further exploration of these issues to future research. 
 
8. Conclusions. 

This paper has developed a straightforward yet flexible framework for the 
incorporation of mean-reverting stochastic volatility behavior into DVF-extended Libor 
Market models. The proposed framework allows for arbitrary base skews and 
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accomodates non-parametric volatility term structure specification. In addition, the 
proposed model dynamics are amenable to analytical methods, and a key contribution of 
this paper has been the establishment of robust and accurate expansions for plain-vanilla 
option prices. The primary focus of the paper has been on developing the basic model 
framework and analyzing its analytical and numerical properties, although we have 
included a brief discussion of certain empirical issues along with suggestions for how the 
basic framework can be extended to provide an increasingly realistic model of rate 
dynamics. However, much interesting empirical research remains to be done; hopefully 
the algorithms and formulas developed in this paper will be of use in this work. Another 
line of investigation that we postpone for future research involves the investigation of the 
effects of stochastic volatility on prices of exotic structures, such as Bermudan swaptions 
and trigger swaps (see e.g. Andersen and Broadie (2001) for a discussion about the 
pricing of Bermudan swaptions in a LM model setting). Finally, it would be of interest 
to examine LM models that merge the approach taken in this paper with the jump 
model of Glasserman and Kou (1999). The resulting model would likely be challenging to 
parameterize but would provide a very rich framework for empirical and theoretical 
work. 
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Appendix A 
Monte Carlo Simulation of (3)-(4) 

 
To implement a Monte Carlo simulation scheme for the proposed model, we need 

to discretize the continuous-time dynamics in Eqs. (3)-(4) on some time-grid 
{ }, 1,2,...it i = . A variety of discretization schemes are discussed in Kloeden and Platen 
(1992). Andersen and Andreasen (2000a) adopt a simple log-Euler scheme for the SDE 
(2) and demonstrate that discretization errors are manageable; applications of higher-
order schemes to the log-normal version of (2) can be found in Brotherton-Ratcliffe 
(1997). We shall here just list the log-Euler scheme for (4): 
 

 ( ) ( )1
21

ˆ ˆ( ) ( )ˆ ˆ ˆ ˆ ˆ( ) ( )exp ( ) ( ) ( ) ( ) ( )ˆ ˆ( ) ( )
i ik kT

i i i i i i i i iik k k k k
i ik k

F t F t
F t F t V t t V t t t n

F t F t
ϕ ϕ

λ µ λ+

   
   = ∆ − + ∆
        

% , 

  (A.1) 

 ( )
( )

ˆ ( )
ˆ ( ) ( ) ˆ1 ( )i

k j j i
i j ik

j n t j j i

F t
t t

F t
δ ϕ

µ λ
δ=

=
+

∑ , 

 
where 1i iit t+∆ = − , and in% , 1,2,..i =  is an independent series of draws of a m-
dimensional standard Gaussian distribution. We notice that this scheme by construction 
will not generate negative forward rates. 

To complete (A.1), we need to discretize the V-process (3). This generally 
requires more care than is the case for the forward rate process, particularly if the mean 
reversion parameter κ  is high. Indeed, a direct Euler (or log-Euler) discretization of (3) 
is likely to be unstable for practical time steps, with the drift term oscillating between 
high and low values. One way to correct this problem is to apply implicit or predictor-
corrector schemes; see Kloeden and Platen (1992) for details. An alternative, which we 
shall discuss here, approximates (3) over 1[ , ]i it t +

 with a Gaussian Ornstein-Uhlenbeck 
process (notice that the diffusion term is evaluated only at it ): 

 
 ( ) ( ) 1( ) ( ) ( ) ( ) , [ , ]i i idV t V t dt V t dZ t t t tκ θ εψ

+
≈ − + ∈ . 

 
Solving this approximation analytically gives rise to the scheme 
 
 ( ) ( ) ( )1 1( ) 1 2 ( )1

21
ˆ ˆ ˆ( ) ( ) ( ) 1i ii it t t t

i i iiV t V t e z V t eκ κθ θ εψ κ+ +− − − − −
+ = + − + −% ,  

 
where iz% , 1,2,..i =  is a series of univariate Gaussian draws, independent of the in%  used 
in (A.1). This scheme is easily verified to be stable, and its convergence order is the 
same as that of (A.1), namely ( )O ∆ . We notice, however, that the scheme can result in 
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negative values of V, a problem can be solved either by modifying the behavior of V̂  
around the origin (for instance reflecting the process off the orgin) or by using a moment 
matched, log-normal approximation: 
 
 ( )( ) 21

21( ) ( ) ( )
1

ˆ ˆ( ) ( ) i i i iit t t t z
iiV t V t e eκθ θ +

− − − Γ +Γ
+ = + − % , (A.2) 

 ( ) ( )
( )( )

1

1

22 1 2 ( )1
22

2( )

(̂ ) 1
( ) ln 1

ˆ( )

ii

ii

t t
i

t t
i

V t e
t

V t e

κ

κ

ε ψ κ

θ θ

+

+

− − −

− −

 − Γ = + 
+ −  

. 

 
The table below compares at-the-money caplet prices produced by Monte Carlo 
simulation of (A.1)-(A.2) to the prices produced by a finely spaced ADI finite difference 
grid. The table demonstrates that the bias induced by the combined discretization 
scheme (A.1)-(A.2) is typically very low, even for relatively coarse time grids. For 
instance, at a time-step of 0.5, the discretization error is generally around 1% of the 
caplet price (or here around 0.3-0.4 basis points) which is in line with typical bid-offer 
spreads. At finer steps, the discretization error would typically become hard to 
distinguish from the usual random Monte Carlo error. In the table, this is the case for 

0.125∆ =  and for most of the results with 0.25∆ = . Specifically, at these time-steps, the 
observed pricing error is generally within a few sample standard deviations, making the 
bias statistically insignificant. The number of trials in the table (50,000, with antithetic 
sampling) is probably reasonably representative, or even on the high side, of what would 
be used in practical applications.  
 The analysis above can be repeated for caplets with strikes away from at-the-
money, but results are similar to those of Table A.1. We refer to Andersen and 
Andreasen (2000a) for further numerical results and a more thorough discussion of 
simulation biases in extendended LM models. 
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Table A.1: Errors in Monte Carlo Simulation of Caplet Prices 
 

  T = 1 T = 2 T = 4 T = 6 T = 10 
 ADI 21.05 27.90 35.15 38.38 39.22 
 MC (S.D) 21.28 (0.09) 28.02 (0.12) 35.2 (0.15) 38.44 (0.15) 39.14 (0.13) 

1
8∆ =  Error 0.22 0.12 0.05 0.06 -0.07 

 Error (%) 1.06% 0.43% 0.14% 0.15% -0.19% 
 MC (S.D) 21.39 (0.09) 28.17 (0.12) 35.22 (0.15) 38.42 (0.15) 39.04 (0.13) 

1
4∆ =  Error 0.34 0.28 0.07 0.04 -0.17 

 Error (%) 1.60% 0.99% 0.20% 0.10% -0.45% 
 MC (S.D) 21.58 (0.09) 28.39 (0.12) 35.58 (0.15) 38.79 (0.15) 39.39 (0.13) 

1
2∆ =  Error 0.53 0.49 0.43 0.41 0.17 

 Error (%) 2.51% 1.76% 1.23% 1.06% 0.43% 
 

Notes: The table above shows at-the-money caplet prices in a LM model with stochastic 
volatility and skew function ( )x xϕ = , as produced by an alternating directions implicit 
finite difference grid ("ADI") and Monte Carlo simulation ("MC") with the scheme (A.1)-
(A.2). Numbers in parentheses refers to sample standard deviations ("S.D") as generated by 
50,000 antithetic paths (for a total of 100,000 separate paths). "Error" refers to the 
difference between the Monte Carlo prices and the ADI results. "Error (%)" is the error as 
a percentage of the ADI result. All numbers except for the percentage errors are reported 
in basis points (1/10,000). The table contains results for caplet maturities (T) ranging from 
1 to 10 years, and for time-discretizations of 1 1

2 4, ,  and 1
8  years. The tenor spacing in the 

model is 0.5δ =  with a flat initial forward curve of (0) 6%kF =  for all k. For the forward 
rate dynamics, we used one driving Brownian motion with a constant ( ) 4.899%k tλ =  for 
all k and t (roughly 20% in log-normal terms). The parameters for the stochastic volatility 
model were as follows: (0) 1V θ= = , 3 / 4( )x xψ = , 1κ = , and 1.4ε = . The dimensions of 
the ADI finite difference scheme used in the table were: 100 time steps, 150 steps in F, and 
100 steps in V. 
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Appendix B 
Details about the Expansion in Proposition III 

 
We write the solution to the call option valuation problem as 
 

 ( )
( )

1

( ) ( , )
( , , ) , ; ( , ) !

n
n U

n n
n

E U T t VgG t F V g t F c t V c n
µ

τ

∞

=

 −∂  = +
∂∑  (B.1) 

 
where ( , ; )g F t c  is given in Proposition I. The derivatives of g  in (B.1) are evaluated at 

( , )c c t V= , and the expectations are computed as 
 
 ( )

0
( ) ( ) ( 1)

nn n
nU

s

lE U T t sµ
=

∂ − = −  ∂
; 

  
see Lemma 2. From the result in the lemma we have, to order 4ε , 
 

 

( )
( )
( )

2 2 4
1,2 2,2

3 4
2,3

4 4
2,4

( ) ( ) 2 2

( ) ( ) 6

( ) ( ) 24

U

U

U

E U T t l l

E U T t l

E U T t l

µ ε ε

µ ε

µ ε

 − = +
 
 − = −
 
 − =
 

 

 
so that (B.1) becomes 
 
 ( ) ( )

2 3 4
2 2 4 4 3 4 4

2 3 41,2 2,2 2,3 2,4( , , ) , ; ( , ) g g gG t F V g t F c t V l l l lc c cτ ε ε ε τ ε τ− − −∂ ∂ ∂
= + + − +

∂ ∂ ∂
,  (B.2) 

 
to 4( )O ε . To compute (B.2) we need the derivatives of g  with respect to c . From 
Proposition I we obtain, after some work, 
 

 

2

2

3 2

3 2

4 3 2

4 3 2

( ) , ,

,

2 ,

g g gF d Rc c c
g g gR Rc c c
g g g gR R Rc c c c

φ +

∂ ∂ ∂
′= Ω =

∂ ∂ ∂
∂ ∂ ∂′= +
∂ ∂ ∂
∂ ∂ ∂ ∂

′ ′′= + +
∂ ∂ ∂ ∂

 (B.3) 

 
where φ  is the standard Gaussian density and primes denote derivatives with respect to 
c . Also, 
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( )

( ) ( )

21 10
2 2 2 2

31 21 20 10
3

41 31 21 21 30
22 2 3
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( , , ) ,
,

3 2
3 3 ,

R R t F c d d
R d d d d d d
R d d

d d d d d d

−+

− − −+ + +

−+

− − −+ + +

= ≡ Ω + Ω

′ = Ω − Ω + Ω − + + Ω

′′ = Ω − Ω Ω + Ω + Ω

− + + Ω Ω + + Ω

 (B.4) 

 
where d±  is given in Proposition I, and 
 
 

m m

mn n n

c
c

∂ Ω ∂
Ω ≡

∂ Ω ∂
.  

 
The derivatives of Ω  with respect to c  are listed below: 
 

 

1/2 1/2 1/2 3/21 3
2 20 1

2 2 3/2 1/2 1/2 3/21 3
4 40 1

3 3 5/2 1/2 3/2 3 / 23 3
8 80 1

4 4 7/2 1/2 5/2 3/215 9
16 160 1

( ) ( ),
( ) ( ),

( ) ( ),
( ) ( ).

c c F c F
c c F c F
c c F c F
c c F c F

τ τ

τ τ

τ τ

τ τ

−

− −

− −

− −

∂Ω ∂ = Ω + Ω

∂ Ω ∂ = − Ω + Ω

∂ Ω ∂ = Ω − Ω

∂ Ω ∂ = − Ω + Ω

 (B.5) 

 
(B.2) represents a valid asymptotic expansion for ( , , )G t F V . It is, however, often more 
convenient (and in many cases more accurate) to express the expansion in terms of 
implied “skew volatilities”. For this, we write the option value as   
 
 ( ) ( )*, , , ; ( , )G F t V g F t c t V=  (B.6) 
and expand *( , )c t V  as 
 
 * 2 * 4 *

1 2( , ) ( , ) ( , ) ( , ) ...c t V c t V c t V c t Vε ε= + + +  (B.7) 
 
Substituting (B.7) into (B.6), expanding around ( , )c t V , and equating to (B.2) gives  
 

 ( )

* 2
1 1,2

2 3 4 2 (4) 21
22,2 2,3 1,2*

2

( , ) ,

( , ) ,

c t V l R
l g l g l g R g

c t V g

τ

τ τ τ

−

− − −

=

′′ ′′′ ′′− + −
=

′

 (B.8) 

 
where primes denote differentiation with respect to c , and overbars represent evaluation 
at ( , )c c t V= . We can now use (B.4) together with the result in Proposition I to obtain 
an expression for * *

1 2,c c  as a polynomial in ln( / )Y F K= . In particular, if we write 
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 * 2
01 1c Yα α= + , 

 * 2 4
02 1 2c Y Yβ β β= + + ,  

we get 
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As the term 4

2Yβ  can be experimentally verified to cause a deterioration of the 
performance of the asymptotic expansion for large values of | |Y , we finally introduce 
the dampening factor 2 2Ye ε−Λ , as listed in Proposition III. This extra step does not alter 
the order of the expansion. 

We round off this appendix by pointing out that that an expansion directly in 
terms of implied Black-Scholes volatility (rather than in the implied skew volatility) is 
also possible. Details are available upon request. 
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Figure 1: Implied 0.25-Year ATM Volatility of 1-Year US Forwards  
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Notes: The graph shows the observed implied (Black) volatility for 0.25-year US at-the-
money option on 1-year rates, as a function of the forward rate itself. The time series in 
the graph is from Bloomberg and covers daily settings in the period 1/5/99 – 11/14/01.  
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Figure 2: Implied 10-year Caplet Volatility Skew in Selected DVF Models  
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Notes: The graph shows the implied (Black) volatility for a 10-year caplet, as a function 
of the option moneyness factor / (0)X F . The stochastic volatility factor is assumed 
constant at 1V = , and (0) 6%F = . The remaining model settings are: 
 
Case I:   0.1( )x xϕ = , 1.59%λ = .  
Case II:   ( )x xϕ = , 4.90%λ = .  
Case III:   10( ) (1 30 )xx x eϕ −= + , 16.75%λ = .  
 
The “Expansion” numbers in the graph are computed from the result in Proposition I. 
For Case I and Case II, the “Exact” numbers are computed by a known closed-form 
result (see e.g. Andersen and Andreasen (2000)); for Case III the “Exact” numbers are 
computed in a Crank-Nicholson finite difference grid with 150 time steps and 250 spatial 
steps. Note that for Case II, the “Exact” and “Expansion” numbers are indistinguishable 
to the resolution of the graph. 
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Figure 3: Implied 1.5-year Caplet Volatility Smile in Test A  
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 Panel A: 150%ε = , 1κ =  
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 Panel B: 200%ε = , 1κ =  
 
Notes: Panels A and B show the implied (Black) volatility smile for a 1.5-year caplet in 
the Test A scenario with 1κ =  and 150%ε =  and 200%, respectively. In the 
computation of expansion O4 results, the cut-off parameter Λ  in Eq. (21) was set to 1. 
The ADI numbers reported in the graph were computed with 100 time steps, 150 steps 
in F, and 100 steps in V.  
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Figure 4: Expansion Performance as a Function of Option Maturity in Test A 
 

18.5%

19.0%

19.5%

20.0%

20.5%

21.0%

21.5%

22.0%

22.5%

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

Moneyness (X/F(0))

Im
pl

ie
d 

V
ol

at
ili

ty
Expansion O4 ADI Scheme
Series3 Series4

T = 0.5

T = 2

T = 6

 
Panel A: Volatility Smiles 

-0.05%

0.00%

0.05%

0.10%

0.15%

0.20%

0 2 4 6 8 10

Maturity (T)

E
rr

or
 in

 I
m

pl
ie

d 
V

ol
at

ili
ty Expansion O2

Expansion O4

 
Panel B: Expansion Errors for At-the-Money Options 

 
Notes: The graphs demonstrate the performance of the asymptotic expansions in Test A, 
with 150%ε =  and 1κ = . Panel A shows volatility smiles at various maturities, as 
computed by an ADI scheme and expansion O4, respectively (expansion O2 was omitted 
for space considerations). Panel B displays the expansion errors (ADI implied volatility 
minus expansion implied volatility) for at-the-money options. In the computation of 
expansion O4 results, the cut-off parameter Λ  in Eq. (21) was set to 1. The ADI 
numbers were computed with 150 time steps, 150 steps in F, and 100 steps in V. 



 37

Figure 5: Expansion Performance as a Function of Mean Reversion κ  in Test A 
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Panel A: Volatility Smiles; 1.5T =  
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Panel B: Expansion Error vs. κ ; 2T =  

 
Notes: The graphs demonstrate the performance of the asymptotic expansions in Test A, 
with 150%ε = . Panel A shows the implied (Black) volatility smile for 1.5T = , and two 
different mean reversion speed levels : 1κ =  and 0κ = . Panel B displays the expansion 
errors (ADI implied volatility minus expansion implied volatility) for at-the-money 
options. In the computation of expansion O4 results, the cut-off parameter Λ  in Eq. 
(21) was set to 1. The ADI numbers were computed with 150 time steps, 150 steps in F, 
and 100 steps in V. 
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Figure 6: Effect of Transcendental Dampening Factor Λ  
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Notes: The graph shows the deeply in-the-money part of the implied (Black) caplet 
volatility smile for 4T = , 150%ε = , and 0.5κ = . The remaining model parameters are 
as in the Test A scenario. The graph reports the results for expansion O4 using cut-off 
parameters of both 1Λ =  and 0Λ = . The ADI numbers reported in the graph were 
computed with 150 time steps, 200 steps in F, and 150 steps in V. 
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Figure 7: Implied 1.5-year Caplet Volatility Smile in Test B  
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Panel A: 150%ε = , 1κ =  
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Panel B: 200%ε = , 1κ =  

 
Notes: Panels A and B show the implied (Black) volatility smile for a 1.5-year caplet in 
the Test B scenario with 1κ =  and 150%ε =  and 200%, respectively. In the 
computation of expansion O4 results, the cut-off parameter Λ  in Eq. (21) was set to 1. 
The ADI numbers reported in the graph were computed with 100 time steps, 150 steps 
in F, and 100 steps in V. The "base skew" numbers correspond to 0ε =  (no stochastic 
volatility component).  
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Figure 8: Volatility Smile Surface in Test B; 150%ε = , 1κ =   
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Notes: The graph shows the implied (Black) caplet volatility as a function of option 
maturity (T) and the option moneyness factor / (0)X F . 150%ε = , 1κ = , and the 
remaining model parameters are as in the Test B scenario. All numbers in the graph 
were computed using Eqs. (21) and (22) (expansion O4) with the cut-off parameter Λ  
set to 1.  
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Figure 9: Implied Swaption Volatility Smile in Test C; 5-Year Swap Tenor  
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Notes: The graph shows the implied (Black) volatility smile for payer swaptions on a 5-
year tenor swap (i.e. 5e sT T− = ) for option maturities 1sT = , 5sT = , and 10sT = . The 
moneyness factor in the graph is the ratio of the swap coupon to the par rate ( / (0)Rα ). 
Model parameters are as in the Test C scenario. In the application of the expansion in 
Eq. (21), the cut-off parameter Λ  was set to 1. The Monte Carlo results (MC 
Simulation) reported in the graph were computed with 50,000 antithetic paths (a total of 
100,000 separate paths) and the simulation algorithm (A.1)-(A.2) in Appendix A with a 
constant time step of 1

8∆ = . The average sample error (in terms of implied Black 
volatility) was around 0.1%.  
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Figure 10: Volatility of Implied Variance of 1-Year Rate in US  
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Notes: The graphs shows the volatility of implied variance for US swaptions on a 1-year 
rate, as estimated empirically and as computed in two different models. The empirical 
estimation is based on two years of weekly data from Bloomberg. The model data uses 

130%ε = , 3κ = , 3/4( )x xψ = , (0) 6%F = , and ( )(0) 1.2%Fλϕ = . The skew function is 
( ) px xϕ = , with p  being either 0.1 or 1. 
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Figure 11: Volatility of Implied Variance of Various Rates in US 
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Notes: The graphs shows the volatility of implied variance for US swaptions on 1-, 2-, 3-, 
5-, 7-, and 10-year rates, as estimated from two years of weekly data from Bloomberg.  
 
 
 


