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Abstract

This paper analyzes the special features of electricity spot prices derived from

the physics of this commodity and from the economics of supply and demand

in a market pool. Besides mean-reversion, a property they share with other

commodities, power prices exhibit the unique feature of spikes in trajectories.

We introduce a class of discontinuous processes exhibiting a �jump-reversion�

component to properly represent these sharp upward moves shortly followed by

drops of similar magnitude. Our approach allows to capture - for the �rst time to

our knowledge - both the trajectorial and the statistical properties of electricity

pool prices. The quality of the �tting is illustrated on a database of major US

power markets.

1



I. Introduction

A decade ago, the electricity sector worldwide was a vertically integrated industry

where prices were set by regulators and re�ected the costs of generation, trans-

mission and distribution. In this setting, power prices used to change rarely, and

in an essentially deterministic manner. Over the last ten years, major countries

have been experiencing deregulation in generation and supply activities. One of

the important consequences of this restructuring is that prices are now deter-

mined according to the fundamental economic rule of supply and demand : there

is a �market pool�where bids placed by generators to sell electricity for the next

day are confronted to purchase orders.

In a parallel way, deregulation of the energy industry has paved the way for a

considerable amount of trading activity, both in the spot and derivative markets.

Price risk has in particular forced the industry to identify, price and hedge the

options granted in energy contracts that have been written for decades.

Given the unique non-storability (outside hydro) of this commodity, electricity

prices are much more likely to be driven by spot demand and supply consider-

ations than for any other good, with demand in the short-term market being

fairly inelastic. As a result, sizeable shocks in production or consumption may

give rise to the price jumps which have been observed since 1998 in various parts

in the United States. Leaving aside the California 2000 events which were pos-

sibly driven by �aws in market design and wrongdoings on the part of some

major players, spike prices have been motivated by disruption in transmission,
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generation outages, extreme weather or a conjunction of these circumstances.

Today, an important fraction of the literature on electricity belongs to the

economics arena and analyzes deregulated electricity markets from the regulatory

viewpoint (see for instance Joskow and Kahn (2001)). It is clear that a proper

mathematical representation of spot prices is at the same time a necessary exercise

and the cornerstone for the optimal scheduling of physical assets and the valuation

of �nancial and real options in the electricity industry.

Some initial papers on the modeling of power price processes include Deng

(1999), Bhanot (2000), Knittel and Roberts (2001), Pirrong (2001), Barone-Adesi

and Gigli (2002), Lucia and Schwartz (2002), Barlow (2002), Escribano et al.

(2002). We extend this literature by proposing a family of stochastic processes

meant to represent the trajectorial and statistical features displayed by electricity

spot prices in deregulated power markets. We also introduce an e¤ective method

to identify spikes in historical raw data. In order to empirically investigate the

information content of observed power price dynamics, we design a procedure for

best �tting our model to market data both in terms of trajectories and moments.

Since our focus is an analysis of the empirical properties of electricity prices,

we shall solely work under the real probability measure. Yet, our concern is to

preserve the Markov property in the view of future developments on derivatives

valuation.

The outline of the paper is as follows. Section II discusses the main features of

power prices and of the stack function. Section III introduces a class of processes

that may encompass prices observed in a variety of regional markets. Section
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IV contains the description of data for three major U.S. power markets which

exhibit di¤erent degrees of mean-reversion and spike behavior. Section V ana-

lyzes the statistical methods allowing to select a process matching observed spot

prices. Section VI presents empirical results for all models and markets under

investigation. Section VII concludes with a few comments and suggestions for

future research.

II. The Key Features of Power Prices

Most of the important literature on commodities has focused on storable com-

modities (see for instance Fama and French (1987)). The same property applies to

the speci�c case of energy commodities, since deregulated power markets were es-

tablished fairly recently. Bessembinder and Lemmon (2002) build an equilibrium

model for electricity forward markets derived from optimal hedging strategies

conducted by utilities. They compare in this setting forward prices to future

spot prices and show that the forward premium increases when either expected

demand or demand risk is high. Geman and Vasicek (2001) empirically con-

�rm Bessembinder and Lemmon�s �ndings and demonstrate, on a U.S. database,

that short-term forward contracts are upward biased estimators of future spot

prices, in agreement with the high volatility and risk attached to U.S. spot power

markets.

Our perspective in this paper is complementary and distinct at several levels.

Firstly, we are interested in the modeling of the spot price of electricity, since we
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believe that in the wake of deregulation of power markets, a proper representation

of the dynamics of spot prices becomes a necessary tool for trading purposes

and optimal design of supply contracts. As discussed in Eydeland and Geman

(1998), the non-storability of electricity implies the breakdown of the spot-forward

relationship and, in turn, the possibility of deriving the fundamental properties of

spot prices from the analysis of forward curves. Moreover, as exhibited empirically

in markets as di¤erent as the Nordpool, the U.K. or the U.S., electricity forward

curve moves are much less dramatic than spot price changes.

If we turn to the wide literature dedicated to commodity prices in general, we

observe that the convenience yield plays an important role in many cases. The

interesting concept of convenience yield was introduced for agricultural commodi-

ties in the seminal work by Kaldor (1939) and Working (1949) to represent the

bene�t from holding the commodity as opposed to a forward contract. Our view

is that a convenience yield does not really make sense in the context of electric-

ity: since there is no available technique to store power (outside of hydro), there

cannot be a bene�t from holding the commodity, nor a storage cost. Hence, the

spot price process should contain by itself most of the fundamental properties of

power, as listed below.

A �rst characteristic of electricity (and other commodity) prices is mean rever-

sion toward a level that represents marginal cost and may be constant, periodic or

periodic with a trend. Pyndick (1999) analyzes a 127-year period for crude oil and

bituminous coal and a 75-year period for natural gas. He concludes that prices

de�ated (and represented by their natural logarithms), exhibit mean-reversion to
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a stochastically �uctuating trend line. In the case of power and with a few years

horizon in mind, we propose to represent the di¤usion part of the price process as

mean-reverting to a deterministic periodical trend driven by seasonal e¤ects. As

we shall see, the mean reversion will be more or less pronounced across di¤erent

markets.

A second feature of the price process, unsurprisingly, is the existence of small

random moves around the average trend, which represent the temporary sup-

ply/demand imbalances in the network. This e¤ect is locally unpredictable and

may be represented by a white noise term a¤ecting daily price variations.

A third and intrinsic feature of power price processes is the presence of so-

called spikes, namely one (or several) upward jumps shortly followed by a steep

downward move, for instance when the heat wave is over or the generation outage

resolved. Since shocks in power supply and demand cannot be smoothed away

by inventories, our view is that these spikes will persist beyond the transition

phase of power deregulation. The California situation has been widely discussed

over the last two years, but many studies neglect to mention that the �rst event

of this nature was totally unrelated to the possible exercise of market power by

some key providers: in the ECAR region (covering several Midwestern states

of the U.S.A.), prices in June 1998 went to several thousand dollars up from

25 dollars per megawatthour. This spectacular rise was due to the conjunction

of a long heat wave, congestion in transmission of hydroelectricity coming from

Canada and production outage of a nuclear plant. Within two days, prices fell

back to a 50 dollars range as the weather cooled down and transmission capacity
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was restored. In Europe, where weather events are usually less dramatic than

in the U.S. (and capacity reserves probably higher), prices went from 25 to 500

Euros on the Leipzig Exchange during a long cold spell in December 2001. From

an economic standpoint, this phenomenon is illuminated by the graph of the

marginal cost of electricity supply, called power stack function (see Eydeland and

Geman (1998)). Knowing the characteristics of the di¤erent plants in a given

region, one can build the supply function by stacking the units in �merit order�

from the lowest to the highest cost of production. The part corresponding to low-

cost plants (coal-�red or hydro) is fairly �at or with a small upward slope; then the

curve reaches a point where there is an exponential price increase corresponding

to very expensive units such as �peakers�being activated.

Figure 1 represents the merit order stack for the ECAR region and shows the

electricity price as determined by the intersection point of the aggregate demand

and supply functions. A forced outage of a major power plant or a sudden surge

in demand due to extreme weather conditions would either shift the supply curve

to the left or lift up the demand curve, causing in both cases a price jump. These

spikes are a major subject of concern for practitioners and a key characteristic of

electricity prices. Hence, they deserve to be the subject of a careful analysis.

Figure 1 about here

Following the jump-di¤usion model proposed in 1976 by Merton to account for

discontinuities in stock price trajectories, a number of authors have introduced

a Poisson component to represent the large upward moves of electricity prices;
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then, the question of bringing prices down is posed. Deng (1999) introduces a

sequential regime-switching representation which may be a good way of address-

ing the dramatic changes in spot prices; the trajectories produced by the model

are however fairly di¤erent from the ones observed in the market.

Lucia and Schwartz (2002) examine the Nordpool market and choose not to

introduce any jump component in the price process. Data from this market shows

that despite the signi�cant part of hydroelectricity in the northern part of Europe,

power prices do not have continuous trajectories; for instance, there is a quasi-

yearly violent downward jump early April at the end of the snow season when

uncertainty about reservoir levels is resolved. This tends to support our view

that jump components are hard to avoid when modelling power prices, since they

are structurally related to the physical features of this commodity. The class of

models presented below is meant to translate the existence of several regimes for

electricity prices, corresponding respectively to the quasi-�at and sharply convex

parts of the merit order stack. Under the normal regime, the aggregate capacity

of generation in the region under analysis is su¢ cient to meet consumers�demand.

In the case of a plant outage, inelastic demand drives spot prices to very high

values until the supply problem is resolved, hence the observed large spikes. We

can note that in the case of storable commodities (such as oil or wheat), prices are

determined not only by supply from existing production and demand for current

consumption, but also by the level of inventories. The bu¤ering e¤ect of these

inventories does not exist in the case of electricity.

We argue in this paper that the classical setting of continuous-path di¤usion
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processes does not deliver a viable solution to this problem for reasons linked

to trajectorial and statistical features of daily power prices. A jump component

should account for the occurrence of spikes through an appropriate jump-intensity

function and also explain the signi�cant deviations from normality in terms of

high order moments observed in logarithmic prices. Figure 2 compares as an

example the empirical distribution in the ECAR market to a normal density

with the same mean and variance.

Figure 2 about here

III. The Model

We model the behavior of the price process of one megawatthour of electricity

traded in a given pool market.1 In order to ensure strict positivity of prices and

enhance the robustness of the calibration procedure, we represent the electricity

spot price in natural logarithmic scale.2 Throughout the paper, except for the

pictures representing trajectories, the term price will refer to �log-price�.

The spot price process is represented by the (unique) solution of a stochastic

di¤erential equation of the form:

dE (t) = D� (t) dt+ �1
�
� (t)� E

�
t�
��
dt+ �dW (t) + h

�
t�
�
dJ (t) , (1)

where D denotes the standard �rst order derivative and f (t�) stands for the left

limit of f at time t.

The deterministic function � (t) represents the predictable seasonal trend of

the price dynamics around which spot prices �uctuate. The second term ensures
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that any shift away from the trend generates a smooth reversion to the average

level � (t). The positive parameter �1 represents the average variation of the

price per unit of shift away from the trend � (t) per unit of time. Note that the

speed of mean-reversion depends on the current electricity price level since the

constant �1 is multiplied by � (t) � E (t�), a di¤erence that may be quite large

in electricity markets (in contrast to interest rates or stochastic volatility models

for which mean-reversion is classically present). The process W is a (possibly

n-dimensional) standard Brownian motion representing unpredictable price �uc-

tuations and is the �rst source of randomness in our model. The constant �

de�nes the volatility attached to the Brownian shocks. Note that the instanta-

neous squared volatility of prices is represented by the conditional second order

moment of absolute price variations over an in�nitesimal period of time: in the

present context, it is the sum of the squared Brownian volatility and a term gen-

erated by the jump component (see for instance Gihman and Skorohod (1972)).

The discontinuous part of the process reproduces the e¤ect of periodically

recurrent spikes. A spike is a cluster of upward shocks of relatively large size

with respect to normal �uctuations, followed by a sharp return to normal price

levels. We represent this behavior by assigning a level-dependent sign for the

jump component. If the current price is below some threshold, prices are in

the normal regime and any forthcoming jump is upward directed. If instead,

the current price is above the threshold, the market is experiencing a period of

temporary imbalance between demand and supply re�ected by abnormally high

prices and upcoming jumps are expected to be downward directed.
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Jumps are characterized by their time of occurrence, size and direction. The

jump times are described by a counting process N (t) specifying the number of

jumps experienced up to time t. There exists a corresponding intensity process

� de�ning the instantaneous average number of jumps per time unit. We choose

for � a deterministic function that we write as:

� (t) = �2 � s (t) , (2)

where s (t) represents the normalized (and possibly periodic) jump intensity shape

and the constant �2 can be interpreted as the maximum expected number of jumps

per time unit.

The jump sizes are modeled as increments of a compound jump process

J (t) =
PN(t)

i=1 Ji. Here the Ji�s are independent and identically distributed ran-

dom variables with common density:

p (x; �3;  ) = c (�3)� exp (�3f (x)) , 0 � x �  , (3)

where c (�3) is a constant ensuring that p is a probability distribution density

and  is the maximum jump size. The choice of a truncated density within

the exponential family is meant to properly reproduce the observed high order

moments.

The jump direction determines the algebraic e¤ect of a jump size Ji on the

power price level. It is represented by a function h, taking values +1 and �1

according to whether the spot price E (t) is smaller or greater than a threshold
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T :

h (E (t)) =

8><>: +1 if E (t) < T (t)

�1 if E (t) � T (t)
. (4)

This function plays an important role in our model for two sets of reasons related

to the trajectorial properties of the process and the descriptive statistics of daily

price returns. Some authors have proposed to model spikes by introducing large

positive jumps together with a high speed of mean reversion; in particular Deng

(1999) who was among the �rst ones to address the speci�c features of electricity

prices. However, models with upward jumps only are deemed to display a highly

positive skewness in the price return distribution, in contrast to the one observed

in the markets. Other authors model spikes by allowing signed jumps (for instance

Escribano et al. (2002)), but if these jumps randomly follow each other, the spike

shape has obviously a very low probability to be generated. Lastly, another type

of solution proposed in particular by Huisman and Mahieu (2001) and Baroni-

Adesi and Gigli (2002), is the introduction of a regime-switching model. This

representation does not allow the existence of successive upward jumps; moreover,

a return to normal levels through a sharp downward jump would require in this

case a non Markovian speci�cation. As a consequence, calibrating a regime-

switching model is often quite problematic.

In our setting a proper choice of the barrier T coupled with a high jump

intensity can generate a sequence of upward jumps leading to high price levels,

after which a discontinuous downward move together with the smooth mean

reversion brings prices down to a normal range. Moreover, our representation
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has the merit of preserving the Markov property in a single state variable (see

Roncoroni (2002)).

Let us observe that general results about stochastic di¤erential equations of

the proposed type ensure that equation (1) admits a unique solution (see Gihman

and Skorohod (1972)). Hence, the level dependent signed-jump model with time-

varying intensity is fully described.

IV. Electricity Data Set

We calibrate the model on a data set consisting of a series of 750 daily average

prices compiled from the publication Megawatt Daily for three major U.S. power

markets: COB (California Oregon Border), PJM (Pennsylvania-New Jersey-

Maryland) and ECAR (East Center Area Reliability coordination agreement).

These markets may be viewed as representative of most U.S. power markets

both because of their various locations (California, East Coast and Midwestern),

because of the di¤erent mix of generation (for instance, an important share of hy-

droelectricity in California) and lastly because of the type of transmission network

servicing the region. Moreover, the market design in ECAR and PJM has proved

to have functioned properly so far; the choice of the period of analysis (ending in

1999) was meant to leave aside the California crisis and its e¤ects on the COB

pool. In terms of price behavior, the COB market is typical of �low-pressure�

markets (such as Palo Verde, Mid Columbia, and Four Corners), with high prices

ranging between $90 and $115 per megawatthour in the examined period. The

13



PJM market represents a �medium-pressure�market (such as West New York,

East New York, and Ercott) with highs between $263 and $412 per megawatthour

during that period. Lastly, the ECAR market portrays �high-pressure�markets

(such as MAAP, Georgia-Florida Border, North SPP, South SPP and MAIN),

experiencing spikes between 1; 750 and 2; 950 dollars per megawatthour.

Figures 3 to 5 depict absolute historical price paths in these markets for the

period between January 6, 1997 and December 30, 1999.

Figures 3, 4, and 5 about here

As stated earlier, our goal is to adjust our class of processes to both trajector-

ial features (i.e., average trend, Brownian volatility, periodical component and

spikes) and statistical features (i.e., mean, variance, skewness and kurtosis of

daily price returns) of historical prices.

In order to start the calibration procedure, we need to detect jumps in the raw

market data. The estimation of a mixed jump-di¤usion over a discrete sequence

E = (E1; :::; En) of observations may result in an ill-posed problem: standard

methods in statistical inference require samples to represent whole paths over a

time interval. In the case of discretely sampled observations, there are in�nitely

many ways a given price variation over a discrete time interval can be split into an

element stemming from the continuous part of the process and another from the

discontinuous one. Hence, the problem of disentangling these two components

on a discrete sample cannot be resolved in a theoretically conclusive way; yet,

the situation is better in a continuous time representation, which is our case. All
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examined data exhibit excess of kurtosis in the empirical distribution of daily

price variations. These changes tend to cluster close to either their average mean

or to the largest observed values (see Figure 2). In other words, data suggests

that either there is a jump, in which case the variation due to the continuous

part of the process is negligible, or there is no jump and the price variation is

totally generated by the continuous part of the process. This observation leads

us to identify a price change threshold � allowing one to discriminate between

the two situations. In this order, we extract from the observed data set two

important elements of the calibration procedure: the set �Ed of sampled jumps

and the ��-�ltered� continuous sample path Ec obtained by juxtaposition of

the continuous variations starting at the initial price.3 A discussion of possible

selection schemes in a general mathematical setting may be found in Yin (1988).

We include � as a parameter to be estimated within the calibration procedure:

for each market under investigation, we perform our calibration procedure over

di¤erent ��-�ltered�data sets for values of � chosen in the set of observed daily

price variations. Then, we select the value of � leading to the best calibrated

model in view of its ability to match descriptive statistics of observed daily price

variations. From now on, we suppose a value for � has been identi�ed for the

market under analysis and input data is described by the corresponding ��-

�ltered�pair
�
Ec;�Ed

�
.
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V. Calibration

We propose a two-step calibration procedure. A �rst step is the assignment of a

speci�c form for the �structural�elements in the dynamics described in equation

(1) and de�ned as:

� the mean trend � (t) ;

� the jump intensity shape s (t),

� the threshold T de�ning the sign of the jump,

� the jump size distribution p (x).

These quantities translate into path properties of the price process.

A second step consists in statistically estimating the four parameters of the

selected model, namely:

� the mean reversion force �1,

� the jump intensity magnitude �2,

� the jump size distribution parameter �3,

� the Brownian volatility �.

The resulting parametric model is �t to the �ltered prices by a new statistical

method described further on and based on likelihood estimation for continuous-

time processes with discontinuous sample paths.
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We now illustrate the implementation of this calibration procedure for the

ECAR market, propose possible alternatives to the resulting model and defer

results and comments to the next section.

A. Selection of the Structural Elements

The mean trend � (t) can be determined by �tting an appropriate parametric

family of functions to the data set. As mentioned earlier, power prices exhibit a

weak seasonality in the mean trend and a sharper periodicity in the occurrence of

turbulences across the year. The latter periodicity may be an e¤ective estimate

for the one displayed by mean trend: for instance, ECARmarket data shows price

pressure once a year, during warm season. Some markets display price pressure

twice a year, with winter average prices lower than summer average prices (which

requires a lower local maximum in the former case). In general, we �nd that a

combination of an a¢ ne function and two sine functions with respectively a 12-

month and a 6-month periodicity, is appropriate for the U.S. historical data under

investigation. We accordingly de�ne the mean trend by a parametric function:

� (t;�; �; ; �; "; �) = �+ �t+  cos ["+ 2�t] + � cos [� + 4�t] : (5)

The �rst term may be viewed as a �xed cost linked to the production of power.

The second one drives the long run linear trend in the total production cost.

The overall e¤ect of the third and fourth terms is a periodic path displaying

two maxima per year, of possibly di¤erent magnitudes. Observed prices over the

three-year period are averaged into a one-year period and bounded from above
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by a suitable quantile � of their empirical distribution. The trend function �

is �tted to the resulting average data by a sequential OLS method providing

parameters �, �, , �, ", and �.

We now turn to the identi�cation of the jump intensity shape s. Since spikes

occur over short time periods, we select an intensity function exhibiting pro-

nounced convex peaks with annual periodicity. This is meant to re�ect the shape

of the power stack function which, as shown in Figure 1, becomes very convex

(and quasi vertical) at some demand level. Sharp convexity also ensures that the

price jump occurrence tends to cluster around the peak dates and rapidly fades

away. In this order we choose:

s (t) =

�
2

1 + jsin [� (t� �) =k]j � 1
�d
. (6)

Here the jump occurrence exhibits peaking levels at multiples of k years, begin-

ning at time � .4 For instance, price shocks concentrating twice a year at evenly

spaced dates, with a maximum on August 1, are recovered by the choice � = 7=12

and k = 1=2. The exponent d allows to adjust the dispersion of jumps around

peaking times and is included among parameters to be estimated within the cali-

bration procedure. Figure 6 shows intensity functions across di¤erent coe¢ cients

d and Figure 7 reports a sample of jump times.

Figure 6 about here

Figure 7 about here

We found that in all three examined market the best value for d is 2. We have

discussed earlier the introduction of a barrier T above which all occurring jumps
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are downward directed. This threshold may reasonably be de�ned by a constant

spread � over the selected average trend:

T (t) = � (t) + �. (7)

The choice of� results from a balance between two competing e¤ects: the greater

the value of �, the higher the level power prices may reach during pressure peri-

ods; the smaller this value, the sooner the downward jump e¤ect toward normal

levels. Equally importantly, this number has an impact on the moments of daily

price variations. We select � in such a way that the corresponding calibrated

model generates paths whose average maximal values equal the maximal prices

observed in the market under analysis.

The last structural element to be determined is a probability distribution for

the jump size. We select a truncated version of an exponential density with

parameter �3:

p (x; �3;  ) =
�3 exp (��3x)
1� exp (��3 )

, 0 � x �  , (8)

where  represents an upper bound for the absolute value of price changes.

This distribution belongs to the family described in equation (3), where c (�3) =

�3= (1� exp (��3 )) and f (x) = �x. The resulting price process is a �special

semimartingale�, a property required to obtain the statistical estimator proposed

in the next section. This completes the �rst calibration step.
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B. Model Parameter Estimation

The issue of estimating discontinuous processes has been the subject of particular

attention in the �nancial econometric literature. The proposed methods mainly

draw on the extension of statistical techniques well-established in the case of

continuous processes. Beckers (1981), Ball and Torous (1983), and Lo (1988) de-

velop estimators based on moment matching; Johannes (1999) and Bandi (2000)

propose non-parametric methods based on higher order conditional moments of

instantaneous returns. We choose to focus on maximum likelihood methods.

The transition densities they typically require can rarely be computed in ana-

lytical terms; in our case, the mixed e¤ect of continuous and jump terms makes

the task even more arduous since one has to deal with mixtures of probability

distributions. Several numerical devices have been recently proposed in order to

overcome these di¢ culties. Broadly speaking, these methods start by discretizing

the process and then computing approximated versions of the targeted transition

densities. Pedersen (1995) explores simulation-based schemes, while Andersen et

al. (2002) make use of auxiliary model approximations. Unfortunately, all these

methods su¤er from computational complexity because of the necessary double

approximation of the process and of the transition densities.

We propose an estimator based on the exact likelihood of the unknown process

with respect to a prior process chosen as a reference within the same class. By

plugging a piecewise constant sample path agreeing with actual data at the sample

dates into this likelihood delivers an approximated likelihood function process.

The estimator is provided by the parameter vector maximizing this process over
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a suitable domain. This method has two major advantages: �rst, the analytical

form of the exact likelihood function under continuous time observations can

be computed for nearly all semimartingales through a generalized version of the

Girsanov theorem (see Roncoroni (2002)). Second, the discrete sample estimator

converges to the continuous sample one and a well-established estimation theory

exists in this latter case. We now explain the details of the procedure.

We compute the log-likelihood function L for the law of the di¤usion process

corresponding to an arbitrary parameter vector � with respect to the law of the

process under a prior reference parameter �0. Its exact analytical expression is

derived in Appendix A. We decide to choose as starting parameter values �1 = 0;

�2 = 1; �3 = 1 which correspond to an absence of drift, a normalized jump

intensity and a jump amplitude drawn from a truncated exponential distribution

with parameter 1.

The approximate logarithmic likelihood function reads as:

LD
�
�
���0;E� =

n�1X
i=0

(� (ti)� Ei) �1
�2

[�Ec
i �D� (ti)�t]�

�t

2

n�1X
i=0

�
(� (ti)� Ei) �1

�

�2
� (�2 � 1)

n�1X
i=0

s (ti)�t+ lg �2N (t)

+

n�1X
i=0

�
� (�3 � 1)

�Ed
i

h (Ei)

�
+N (t) lg

�
1� e��3 

�3 (1� e� )

�
,

where D� (ti) denotes the �rst order derivative of � at time ti. The �rst part is a

discretized version of the Doléan-Dade exponential for continuous processes. The

remaining terms come from the jump part of the process. The log-likelihood func-

tion explicitly depends on �1; �2; �3; and on the �ltered data set
�
�Ed;Ec

�
, which
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in turn is derived from the original market data set E and the choice of parameter

�. We maximize this function with respect to � over a bounded parameter set

� identi�ed through economic interpretation of the model parameters. One may

alternatively use Monte Carlo simulated samples to infer a reasonable parameter

domain and starting values for the numerical optimization algorithm. We �nally

obtain a non-linear maximization program of a continuous function over a com-

pact set and classical theorems ensure the existence of a local maximum, which

will be our estimate for ��.

The constant Brownian volatility over observation dates 0 = t0 < t1 < ::: <

tn = t can be obtained as:

� =

vuutn�1X
i=0

�E (ti)
2, (9)

where each summand�E (ti)
2 represents the square of the continuous part�Ec (ti)

of observed price variations (in a logarithmic scale) between consecutive days ti

and ti+1, net of the mean reversion e¤ect j�1 � (� (ti)� E (ti))j.5 This estimator

converges to the exact local covariance estimator for di¤usion processes under

continuous time observations (Genon-Catalot and Jacod (1993)). We note that

numerical experiments not reported here suggest that a time-dependent volatility

does not produce a signi�cant improvement in the estimated process (given the

other speci�cations of our model); moreover in this case a joint estimation of

volatility and mean reversion parameters would become necessary.

C. Alternative model speci�cations
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We now consider two models displaying in their discontinuous component features

either proposed in existing papers on electricity or that may be envisioned as

improvements of some kind.

First, by setting to +1 the jump direction function h de�ned in formula (4),

we obtain a restricted model where upcoming jumps are all upward directed and

reversion to normal levels is exclusively carried over by the smooth drift compo-

nent. This upward-jump model represents the classical jump-di¤usion extension

of the continuous di¤usion models proposed over the years by Pilipovich (1997),

Barlow (2002), Lucia and Schwartz (2002). All the remaining model speci�cations

are the same as those of our signed-jump model. As a consequence, calibration to

market data follows the steps described above, with one major exception: price

variations of negative size all enter the estimation of the continuous part of the

process (i.e., �Ed only contains positive jumps).

Alternatively, we may allow the jump intensity function � de�ned in formula

(2) to be stochastic. In order to account for the dependence of the likelihood

of jump occurrence on the price level following upward shocks, we consider the

following function of the spot price and time:

�
�
t; E

�
t�
��
= �2 � s (t)�

�
1 + max

�
0; E

�
t�
�
� E (t)

��
.

As in the case of the threshold T (t) de�ning the sign of the jump, we de�ne E (t)

as a constant c over the mean trend �. If the spot price is below the mean trend

� plus this spread c, then intensity is purely time dependent. Each price-unit

beyond this boundary ampli�es accordingly the time dependent intensity. We
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identi�ed that the best intensity function was provided by a choice of c equal

to �=2 (i.e., an increasing jump occurrence when prices are above the median

line between the mean trend � (t) and the threshold T (t)). The �max�function

ensures that the jump intensity never goes below the �standard level��2 � s (t)

(that may be viewed as the e¤ect of random outages that strike power plants).

This e¤ect is depicted in Figure 8 where stochastic intensity is displayed as a

function of time and log-price.

Figure 8 about here

In this signed-jump model, jump occurrence is both time and level dependent.

Because all the other model speci�cations are the same as those in the signed-

jump model with deterministic intensity, calibration to market data follows the

same steps as described above. The log-likelihood estimator denoted in this case

as LR, becomes slightly more complex:

LS
�
�
���0;E� =

n�1X
i=0

(� (ti)� Ei) �1
�2

[�Ec
i �D� (ti)�t]�

�t

2

n�1X
i=0

�
(� (ti)� Ei) �1

�

�2
� (�2 � 1)

n�1X
i=0

s (ti)max (1; Ei � � (ti)� c)�t+ lg �2N (t)

+

n�1X
i=0

�
� (�3 � 1)

�Ed
i

h (Ei)

�
+N (t) lg

�
1� e��3 

�3 (1� e� )

�
.

This expression shows that parameters �1 and �3 are una¤ected by a change in

the jump intensity function as the corresponding term can be factored out of the

likelihood estimator in absolute scale exp (LS).

VI. Empirical Results
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The calibration procedure has been implemented on the U.S. data set described

in section IV. We �rst present results for the signed-jump model, then discuss the

quality of our assessments on the data set under analysis and �nally conclude on

a comparison with the alternative models introduced at the end of Section V.

As mentioned before, the �rst step is the functional estimation of the struc-

tural elements �; s; T , and p. The values �; �; ; �; "; and � characterizing the

average trend function � (t) de�ned in formula (5) are reported in Table I.

Table I about here

The jump intensity shape s (t) is of the form de�ned in equation (6), with k = 1,

� = 0:5, and d = 2; this corresponds to a jump occurrence displaying an annual

peak strongly clustered around the middle of the year, as observed in all examined

markets. The threshold T (t) is de�ned by a spread� over the deterministic trend

�(t), where � in chosen in the order of 50 percent of the range spanned by the

observed log-prices. We observe that both ECAR and PJM reveal no signi�cant

linear trend over the three-year sample period, while COB shows a small positive

linear trend expressed by the coe¢ cient �.

In all cases, the annual periodicity expressed by the coe¢ cient  prevails over

the semiannual component described by the coe¢ cient �. Figure 9 represents the

average paths for the three regional markets in a joint graph; clearly, the annual

component is predominant in the COB market, whereas an additional semiannual
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component is signi�cant in the ECAR and PJM markets.

Figure 9 about here

A clear di¤erence between the three markets is represented by the maximum size

 of daily price variations: for instance, ECAR displays jumps which may be

more than three times greater than the maximum value observed in the COB

market. In this market, the high percentage of hydrogeneration and the reservoir

capacity allow to go through the year - the cold season in particular - with no or

mild spikes. In contrast, the PJM and ECAR markets experience both very warm

summers and cold winters; this leads to the semiannual periodicity of observed

power prices in these regions. However, PJM bene�ts from a fuel mix in power

generation and also from a rich transmission network which has been very e¢ cient

since the start of deregulation; hence the less dramatic price spikes observed.

The second step of the calibration procedure is the statistical estimation of pa-

rameters �1; �2; �3; �;�, and d. The approximated likelihood estimation detailed

in the previous section has been implemented by the Levenberg-Marquardt non-

linear maximum search algorithm. Final results are reported in Table II.

Table II about here

All markets exhibit some amount of smooth mean reversion. Note that the value

of the reversion force in PJM is signi�cantly greater than ECAR. It is worth

emphasizing again that the overall reversion displayed by our model is created by

the joint e¤ect of the classical mean reversion and an e¤ect due to the downward

jumps. Since ECAR displays more jumps than PJM, the overall reversion e¤ect is
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higher than the one observed in the PJM market. This is statistically consistent

with the fact that, in PJM, both skewness and kurtosis of daily price increments

are lower since the smooth reversion su¢ ces most of the time to ensure return

to the average trend. We remark that the expected number of jumps per year is

represented by the integral of the calibrated intensity function over one year.

We now turn to the assessment of the quality of the estimated processes. This

is performed according to four criteria:

� First, we analyze simulated sample paths together with empirically ob-

served trajectories and make a judgement about the �tting quality of the

trajectorial properties.

� Second, we compare simulated moments of the daily increments distribution

with the empirical values displayed by each market under investigation.

� Third, we check for the robustness of the procedure by re-estimating simu-

lated sample paths generated by the calibrated model.

� Fourth, we test our model against the most popular representation of elec-

tricity spot prices so far, namely a jump-di¤usion process with positive

jumps only and smooth mean-reversion.

� Fifth, we examine the e¤ect of introducing a price-dependent jump inten-

sity on both trajectorial and statistical properties displayed by the most

irregular market in our data set (ECAR).
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Figures 10 to 12 show trajectories of the estimated model for the three markets.

Figures 10 to 12 about here

For the purpose of comparison, both historical and sample paths are reported at

various scales. The dashed line represents the average mean trend � (t). These

pictures show that the proposed family of processes is capable to reproduce quite

consistently the qualitative features exhibited by power paths in all three exam-

ined markets.

Table III reports the mean, standard deviation, skewness and excess of kur-

tosis of observed and simulated daily price variations.

Table III about here

We see that all statistics of the simulated trajectories are quite satisfactory; there

is however a small positive skewness which has no counterpart in the empirical

data, suggesting that the reverting component ought to be more pronounced.

The most important e¤ect of the signed-jump model is the excellent �t of the

leptokurtosicity of the distribution. The relevance of the incorporation of jumps

in equity return modelling has been analyzed and exhibited in a number of re-

cent papers of the �nancial economics literature (see for instance Carr, Geman,

Madan, and Yor (2002)). In the case of electricity prices, the non-normality of dis-

tributions is widely recognized and kurtosis naturally becomes a key parameter:

in these markets where extreme events provide the rational for building small

and �exible power plants called peakers, a proper representation of the spikes
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and their probability of occurrence (i.e., of the tail of the distribution) is the �rst

requirement a model must satisfy.

We further test the robustness of the estimators by simulating one thousand

paths from the estimated process and then using the corresponding increments

to reassess the values of the parameters �1; �2; �3 and �. The simulation method

is detailed in Appendix B and results are described in Table IV.

Table IV about here

For all estimated models the procedure is satisfactorily stable. We do not report

the values for � because they are all identical to the original ones. The only

slight mismatch occurs for the jump size parameter �3 in the case of COB market;

this may be due to the very low number of jumps, which makes the estimator

sensitive to outliers in the simulated paths. This result is of minor importance,

to the extent that the jump component is almost irrelevant for the modelling of

COB prices. In general, we conclude that the procedure is not only statistically

but also numerically robust.

Returning to the alternative speci�cations discussed in Section IV.C, we also

calibrated the upward-jump model with deterministic intensity and the signed-

jump model with stochastic intensity to the ECAR market data. For the purpose

of comparison, Table V shows the quality assessment of these two models with

respect to the benchmark de�ned by the signed-jump model with a deterministic

intensity.

Table V about here
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It is clear that all three models account quite well for the �rst two moments of

daily average prices, with an excess in volatility and positive skewness, however,

for the upward-jump model. The signed-jump model with stochastic intensity

compared to the one with deterministic intensity slightly improves the value of the

skewness, and our view is that this extra-complexity does not bring any decisive

improvement. As for the upward-jump model (with deterministic intensity) which

is quite popular in the literature on electricity spot price modelling, it generates

a kurtosis four times smaller than the real one; this mispeci�cation may translate

into a wrong estimation of Value at Risk numbers and have severe consequences

in markets where some ine¢ cient plants continue to exist only because of these

rare events. In all industries a wrong estimation of reserves leads to harmful

consequences.

VII. Conclusion

We have proposed in this paper a family of discontinuous processes featuring

upward and downward jumps to model electricity spot prices. Our approach is

rooted in the physical properties of electricity, in particular its non-storability,

and their consequences on the short-term supply and demand equilibrium in the

pool market.

Given the number of state variables that explain power prices in a pool (i.e.,

temperature, fuel mix, type of transmission network) and their distributional

complexity (e.g., plant outages occurrence), we chose a reduced-form representa-
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tion in order to get a tractable and e¢ cient tool allowing to handle the random

evolution of spot prices and the related management decisions. The calibrated

processes exhibit the expected mean reversion property, however in an unevenly

pronounced manner depending on the market. All analyzed trajectories show

price spikes resulting from momentary imbalance between o¤ered generation and

volume of demand. The �tting performed on three major U.S. markets allows to

conclude positively on the quality of the model, both in terms of its statistical

and trajectorial properties.
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Footnotes

1. In most markets, this price for date t is de�ned the day before by the clearing

of buy and sell orders placed in the pool.

2. Up to now, negative electricity prices have rarely been observed.

3. If t is a jump date, the continuous part of the path is assumed to be constant

between t and the next sample date. Since spikes are rare and typical price vari-

ations are much smaller than those occurring during a spike, this simpli�cation

does not introduce any signi�cant bias in the estimation procedure.

4. � is called �the phase�in the language of sinusoidal phenomena.

5. Note that in contrast to classical settings where the mean reversion feature was

introduced (e.g., interest rates, stochastic volatility) the di¤erence � (t) � E (t)

may be quite large in the case of electricity prices. This observation was made in

Section III of the paper.
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Figure Legends

Figure 1. The power stack function for the ECAR Market.

The generation cost is mildly increasing until a load threshold is reached; then

the supply curve exhibits strong convexity.

Figure 2. Empirical Price Returns Distributions vs. Normal Distributions with

Equal Means and Variances.

For each market, the empirical density of price returns is reported together with

a normal density matching the �rst two moments. All markets display strong

deviations from normality due to the presence of upward and downward jumps.

Figure 3. ECAR Price Path (January 6, 1997 - December 30, 1999).

Spikes concentrate in summer, where prices may rise as high as 2000 U.S. dollars

per kilowatt-hour.

Figure 4. PJM Price Path (January 6, 1997 - December 30, 1999).

Spikes concentrate in summer, where prices move up to a level of 400 U.S. dollars

per kilowatt-hour.

Figure 5. COB Price Path (January 6, 1997 - December 30, 1999).

Spikes concentrate in summer, where prices rise to values around 100 U.S. dollars

per kilowatt-hour.

Figure 6. Time-Dependent Jump Intensity Function.

The time-dependent jump intensity function is designed to concentrated jump

occurrence during the warm season. Parameter d drives the degree of cluster.
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Figure 7. Sample Jumps of a Time-Dependent Jump Intensity Function.

The time-dependent jump intensity function is designed to concentrated jump

occurrence during the warm season. Dotted tags signal the sample jump times

of a Poisson process corresponding to the displayed time-dependent intensity

function.

Figure 8. Stochastic Jump Intensity Function.

Jump intensity depends on time and electricity price level. If the spot price

is below the mean trend � plus the spread �=2, then intensity is only time

dependent. Each price-unit beyond this boundary ampli�es accordingly the time

dependent intensity.

Figure 9. Estimated Average Trends in the Observed Log-Price Paths (January

6, 1997 - December 30, 1999).

PJM and ECAR markets exhibit overlapping periodicities with periods equal to

6 and 12 months. COB essentially displays an annual periodicity.

Figure 10. ECAR Simulated Price Path vs. Empirical Path. Panel (a): absolute

scale 0-2500. Panel (b): absolute scale 0-500. Panel (c): absolute scale 0-100.

Figure 11. PJM Simulated Price Path vs. Empirical Path. Panel (a): absolute

scale 0-600. Panel (b): absolute scale 0-300. Panel (c): absolute scale 0-100

Figure 12. COB Simulated Price Path vs. Empirical Path. Panel (a): absolute

scale 0-175. Panel (b): absolute scale 0-90. Panel (c): absolute scale 0-50.
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Tables

Table I: Estimated �Structural�Elements

Interpretation ECAR PJM COB

� average log-price level 3.0923 3.2002 2.8928

� average log-price slope 0.0049 0.0036 0.1382

 yearly trend -0.1300 0.0952 0.1979

� 6-month trend 0.0292 0.0217 0.0618

" yearly shift 0.3325 2.4383 1.7303

� 6-month shift 0.7417 0.2907 1.7926

� 0.7 avg distr. quantile 3.2762 3.3232 3.3586

� jump regime level 2.5000 1.5000 1.0000

 maximum jump size 3.3835 1.6864 1.0169

k jump periodicity 1.0000 1.0000 1.0000

� intensity phase 0.5000 0.5000 0.5000
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Note: The electricity log-price model

dE (t) = D� (t) dt+ �1
�
� (t)� E

�
t�
��
dt+ �dW (t) + h

�
t�
�
dJ (t) ,

with average trend function

� (t;�; �; ; �; "; �) = �+ �t+  cos ["+ 2�t] + � cos [� + 4�t] ,

and jump component

h
�
t�
�
= 1, if E

�
t�
�
< � (t) + �; � 1 otherwise, (Direction)

J (t) =
XN(t)

i=1
Ji; with Ji

i:i:d:� p (x; �3;  ) / e�3f(x), 0 � x �  , (Size)

� (t) = �2 � (2= (1 + jsin [� (t� �) =k]j)� 1)2 , (Intensity)

is calibrated to a data set including daily observations between January 6, 1997

and December 30, 1999. Observed log-prices over the three-year period are av-

eraged into a one-year period and bounded from above by the 0:7-quantile � of

their empirical distribution. The trend function � is �tted to the average data by

a sequential OLS providing parameters �, �, , �, ", and �. The regime-switching

threshold T is set as a spread � over the average trend �. The jump-size dis-

tribution takes values in the interval [0;  ]; where  is chosen as the observed

maximal daily absolute variation in log-prices. The shape of the jump intensity

is described through the parameters k and � .
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Table II: Estimated Model Parameters

Interpretation ECAR PJM COB

�1 Smooth mean-reversion force 38.8938 42.8844 13.3815

�2 Max. expected number of jumps 59.5210 63.9301 13.2269

�3 Reciprocal average jumpsize 0.3129 0.5016 1.0038

� Brownian local volatility 1.8355 1.4453 1.3631

� Jump threshold 0.9200 0.6000 0.6200

N (1) Average number of jumps 9.0000 9.6667 2.0000

nj Number of �ltered jumps 27 29 6

Note: The model parameters �1 (smooth mean-reversion force); �2 (maximum

expected number of jumps); and �3 (reciprocal expected jump size) are selected

by an approximated maximum likelihood estimator. The Brownian volatility �

is calculated as a discrete time observation approximation of the standard cu-

mulated covariance estimator on the continuous path obtained by deleting ob-

servations of size larger than �. The jump threshold � is chosen in such a way

that the resulting model matches the fourth moment of the daily log-price return

distribution. An estimate of the expected number of jumps over one year N (1)

is provided by the integral of the intensity function over a one-year period. The

quantity nj denotes the number of observed daily price variations attributed to

the jump component of the process according to the selected jump size threshold

�.
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Table III: Moment Matching

ECAR PJM COB

EMP SIMUL

Average -0.0002 -0.0001

Std. Dev. 0.3531 0.3382

Skewness -0.5575 2.1686

Kurtosis 21.6833 22.5825

EMP SIMUL

-0.0006 0.0000

0.2364 0.2305

0.3949 1.6536

13.1507 14.8429

EMP SIMUL

0.0009 0.0006

0.1586 0.1121

0.1587 0.9610

6.7706 6.5402

Note: For each model estimated by maximum likelihood, descriptive statistics

are computed for the empirical versus simulated (after calibration) logarithmic

price variations. Statistics include the mean, standard deviation, skewness and

excess of kurtosis. Simulations have been performed one thousand times.
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Table IV: Parameter Estimation Stability

ECAR PJM COB

Original Re-estim

�1 38.8938 37.7559

�2 59.5210 57.9367

�3 0.3129 0.2957

� 1.8355 2.1355

Original Re-estim

42.8844 40.0285

4.1578 4.0188

0.5016 0.4800

1.4453 1.7822

Original Re-estim

13.3815 11.7956

2.5822 2.4001

1.0038 1.1897

1.3631 1.3882

Note: The parameters �1; �2; �3; and � have been re-estimated by approximated

maximum likelihood over 300 simulated paths. Results have been averaged over

all samples.
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Table V: Moment Matching of Alternative Models in the ECAR Market

Market

ECAR

Existing literature

Upward-jump
det. intensity

Model I

Signed-jump
det. intensity

Model II

Signed-jump
stoch.intensity

Average

Std. Dev.

Skewness

Kurtosis

-0.0002

0.3531

-0.5575

21.6833

0.0000

1.3238

3.5688

8.3542

-0.0001

0.3382

2.1686

22.5825

-0.0000

0.37821

-0.0119

28.0288

Note: A comparison between descriptive statistics of empirical data and corre-

sponding statistics is produced for the three models. The �rst column reports

statistics of the ECAR market between January 6, 1997 and December 30, 1999.

The second one refers to the standard jump-di¤usion model in the existing liter-

ature: a smooth mean reverting di¤usion with an upward jump component only.

The third column relates to our benchmark model (Model I): a jump-di¤usion

with a deterministic jump intensity; the fourth to a jump reverting di¤usion

with a stochastic jump intensity (Model II). Each model is estimated by maxi-

mum likelihood. Model-generated statistics are computed over a sample of one

thousand simulated paths. The simulation algorithm for both deterministic and

stochastic jump intensities is detailed in Appendix B.
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Appendix A. Likelihood Estimator.

The following proposition is an important result for the estimation of jump

processes, both from a theoretical and operational standpoints, and an original

contribution of the paper (to our knowledge, at least).

Proposition. Let �; s; f; c and � be su¢ ciently regular functions for the stochastic

di¤erential equation (1)-(4) to admit a unique weak solution E� for all � =

(�1; �2; �3) in a compact subset of R3+. Let E = fE (t) ; t0 � t � tg be an observed

path over the continuous time interval [t0; t] and �
0 =

�
�01; �

0
2; �

0
3

�
a starting

parameter set. Then the log-likelihood of observing a realization of the process

E� with respect to the process E�
0
is given by:

L
�
�
���0;E� =

Z t

t0

[� (u)� E (u�)]
�
�1 � �01

�
� (u)2

d
�
Ec
�
u�
�
� � (u)

�
(10)

�1
2

Z t

t0

�
[� (u)� E (u�)] �1

� (u)

�2
du

�
�
�2

�02
� 1
�Z t

t0

s (u) du+
�
lg �2 � lg �02

�
N (t)

+
X

u�t;�E 6=0

��
�3 � �03

�
f

�
�E (u)

h (E (u�))

�
� lg c (�3) + lg c

�
�03
��
,

where Ec is the path process devoid of its jump component:

Ec
�
u�
�
= E

�
u�
�
� E0 �

X
s�u;�E(s) 6=0

�E (s) , (11)

E0 is the starting point E (t0), �E (s) is the observed jump size at time s (if

any), and N (t) is the number of jumps occurred up to time t.

Proof.
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For notational simplicity, we write equation (1) as:

dE = (�+ �1�) dt+ �dW + hdJ (12)

with � = D� (t), � = � (t) � E (t�), h = h (E (t�)) and set t0 = 0. We also

denote E (t�) by E�.

We divide the proof in two steps. First, we compute the semimartingale char-

acteristic triplet (B�; C; ��) of the jump-di¤usion process E corresponding to a

given choice of the parameter �. Second, we calculate the likelihood by applying a

general semimartingale version of the Girsanov theorem (see Jacod and Shiryaev

(1987)).

Step I - Since N is independent of Ji for all i, E� (N (t)) = � (t), Ji
i:i:d:� p (x; �3),

and the additive compensator of the purely discontinuous part of the semimartin-

gale E is given by:

�� (dt� A; t) = �� (A; t) dt

=

24E�
0@h �E�� dt

0@N(t)X
i=1

Ji

1A1A35 dt
=

�
�2s (t)

Z
[0; ]

dx
�
1Anf0g

�
h
�
E�
�
x
�
p (x; �3)

��
dt

=

�
�2s (t)

Z
X

x

h (E�)
p

�
x

h (E�)
; �3

��
dxdt.

whereX =
�h
0;  

h(E�)

i
\ A

�
nf0g. Since all coe¢ cients are bounded functions, the

process E is a special semimartingale. Consequently, the canonical representation

of equation (12) follows by adding and subtracting the compensator �� to the
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jump measure d�� = h(t) dJ(t) and gathering the absolutely continuous terms:

dE =

�
�+ ��1 +

Z
[0; ]

d�� (x; t)

�
dt+ �dW + d��,

where �� is a martingale measure under P�. From this expression we immediately

identify the term of the semimartingale triplet corresponding to �:

B� (t) =

Z t

0

�
� (u) + � (u) �1 +

Z
[0; ]

h
�
E�
�
xd�� (x; u)

�
du, (13)

Step II - The semimartingale process under the prior probability P�0 is determined

by the characteristic triplet (B�0 ; C; ��0). Since:

�� (dt� A) = dt

Z
X
dx

�
�2

�02
exp

��
�3 � �03

�
f

�
x

h (E�)

�
�
�
lg c (�3)� lg c

�
�03
���

��02s (t)
x

h (E�)
exp

�
�03f

�
x

h (E�)

�
� lg c

�
�03
���

=

Z
X

�2

�02
exp

��
�3 � �03

�
f

�
x

h (E�)

�
� lg c (�3) + lg c

�
�03
��
��0 (dt� dx) ,

the density of d�� with respect to d��0 is given by:

d� (t; x) =
�2

�02
exp

��
�3 � �03

�
f

�
x

h (E�)

�
� lg c (�3) + lg c

�
�03
��
.

By substituting this expression into (13), we see that the drift term under P�

can be represented as the sum of the drift term under P�0 and a term denoted as

c� (t)� (t), where:

c� (t) = � (t)
�
�1 � �01

�
� (t)�1 .

Let P�jFt be the probability measure induced by E
� over the path space and

restricted to events up to time t. Given the set E of continuous time observations,
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the corresponding density of P�jFt with respect to the prior probability P�0jFt is

given by the Radon-Nikodym derivative:

dP�
dP�0

����
Ft
= exp

�Z t

0

�
c�dW � 1

2
c2�du�

Z
X
((d� � 1) d��0 + lg d�d�)

��
.

This is a consequence of the Girsanov theorem on measure changes for general

semimartingales (see Jacod and Shiryaev (1988)). The �rst two factors can be

written as:

exp

�Z t

0

�
c�dW � 1

2
c2�du

��
= exp

(Z t

0

�
�
�1 � �01

�
�2

d

�
E (u)�

Z u

0

� (v) dv

�
X

s�u;�E(s) 6=0

�E (s)

35� 1
2

Z t

0

�2
�
�1 � �01

�2
�2

du

9=; .
The third factor is:

exp

�
�
ZZ

(d� � 1) d��0
�

= exp

�
�
Z t

0

s (u)

�
�2

�02

Z
X
p

�
x

h (E�)
; �3

�
dx

�
Z
X
p

�
x

h (E�)
; �03

�
dx

�
du

�
= exp

�
�
�
�2

�02
� 1
�Z t

0

s (u) du

�
,

where use the property
R
X p
�

x
h(E�) ; �

�
dx = 1.

The fourth factor is:

exp

�Z t

0

Z
X
lg d�d�

�
= exp

�Z t

0

Z
X

��
�3 � �03

�
f

�
x

h (E�)

�
� lg c (�3) + lg c

�
�03
��
d�

+
�
lg �2 � lg �02

� Z t

0

Z
X
d�

�
= exp

X
u�t;�E(u) 6=0

��
�3 � �03

�
f

�
�E (u)

h (E�)

�
� lg c (�3) + lg c

�
�03
��

+
�
lg �2 � lg �02

�
N (t) ,

49



where the last equality stems from the relation between the process and the

measure representation of any marked point process. Substituting the expressions

of � and � leads to the log-likelihood function (10). Q.E.D.
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Appendix B. Simulation Algorithm

Monte Carlo simulations of trajectories described in equation (1) serve three pur-

poses. First, they provide a starting value �0 for the maximum likelihood search

algorithm. This is accomplished by sampling trajectories for several parameter

sets until we �nd one whose corresponding simulated paths show qualitative fea-

tures comparable with those displayed in the empirical observations. Second,

sample trajectories allow one to judge upon the qualitative performance of the

calibrated model and to compute simulated moments of various orders for the

daily price variations. This is used for moment matching in the last step of the

calibration procedure. Third, simulations provide a robustness analysis of the

estimation procedure: parameters of a calibrated model can be re-estimated over

simulated paths. The closer to the original values are the re-estimated ones, the

more robust the likelihood estimation procedure is. We detail a simulation algo-

rithm for sampling a path de�ned by equation (1). The Euler approximation of

the stochastic di¤erential equation (1) over a discrete set of evenly-spaced sample

times t1; :::; tN is:

Ek+1 = Ek +D� (tk)��+ �1 [� (tk)� Ek]��+ �
p
�N + h (tk)� 1i � J ,

where N is a sample from a standard normal distribution and J is a sample

from p (�; �3). The function 1i is either 1 or 0 according to whether ti is, or

is not, a jump time of the process. In order to sample jump times of a point

process with non constant deterministic intensity, we may �rst simulate jump

times of a constant intensity Poisson process and then use a variation of the
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�acceptance-rejection�method to make sure that these are statistically identical

to the required sample set of times. More precisely, on a given horizon [0; T ], we

generate inter-arrival times "i until their sum exceeds T . Each "i is a sample from

an exponential distribution with parameter �� = maxt2[0;T ] � (t). Candidate jump

times � 0k are de�ned by approximating each
Pk

i=1 "i to the closest element in the

set of sample times ft1; :::; tNg. For each k, we draw a uniform random variable

Uk on [0; ��] and accept � 0k if Uk � � (� 0k), otherwise reject it. The set of selected

times is hence a sample sequence (� 1; :::; �n) of the jump times for a compound

jump process with intensity function � (t). Consequently, 1i = 1 if ti = � k, for

some k = 1; :::; n. This completes the description of the simulating algorithm for

any calibrated solution of equation (1).
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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Figure 6
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Figure 7

0 0.5 1 1.5 2 2.5 3
Time eYearsi

20

40

60

80

100
pm

u
J

g
a
l
F

≠
p
mu

J
y
cn

e
uq

e
r
F

e
sr

a
eY

ϑ
1
i

Jump Intensity Function and corresponding Sample Jump Times



Figure 8
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Figure 9
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Figure 10(a)
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Figure 10(b)
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Figure 10(c)
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Figure 11(a)
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Figure 11(b)
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Figure 11(c)
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Figure 12(a)
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Figure 12(b)
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Figure 12(c)
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