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Abstract

We present and analyze a method for constructing approximated high-resolution forward
price curves in electricity markets. Because a limited number of forward or futures contracts
are traded in the market, only a limited picture of the theoretical continuous forward price
curve is available to the analyst. Our method combines the information contained in observed
bid and ask prices with information from the forecasts generated by bottom-up models. As
an example, we use information concerning the shape of the seasonal variation from a
bottom-up model to improve the forward price curve quoted on the Nordic power exchange.
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1. Introduction

Commodity forward and futures prices serve an important role as information
carriers for operational and investment decisions. However, the term structure that
can be observed at any given time will be based on a limited number of products
regardless of liquidity in the market. Even in highly liquid bond markets, one will
often find that the product one needs to price is not traded in the market. There is
often a need to estimate the prices for more maturity dates than are observed in the
market.
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Fig. 1. Two approaches for transforming data and theory into price scenarios, which can be used as input
to decision models.

Depending on the required level of accuracy an analyst can choose to use an
interpolation between prices of traded products or perform a regression using some
smooth function. Such an approach, suggested, e.g. by Adams and van Deventer
(1994), will generally suffice if the market is mature and if liquidity of the quoted
products is high. In electricity markets, neither of these criteria apply, as markets
are generally young and many products struggle with low liquidity. Recognizing the
insufficiency of market data, it therefore seems natural to look for additional
information. In electricity and other commodity markets, comprehensive bottom-up
models often exist, and when used as a supplement rather than a competing
methodology, they can often provide additional valuable information.
To compensate for the deficiencies that arise from separate use of either market

data or bottom-up models, we suggest a Bayesian inspired approach. The idea is to
use market data as an apriori set of information and then form an aposteriori
information set, by combining the market prices with forecasts from a bottom-up
model. The proposed model constructs daily forward prices forming a smooth
forward curve. The model is a quadratic program that uses bid and ask prices to
constrain the forward prices from below and above. The objective function ensures
both smoothness of the curve and that the curve follows the seasonality of the price
forecast of a bottom-up model. Though we restrict ourselves to a model of the
Scandinavian futuresyforward market and the use of a single bottom-up model, the
idea can be seen as a general approach where several bottom-up models might be
used to add information to the initial set of market data. Fig. 1 provides an
illustration.



411S.-E. Fleten, J. Lemming / Energy Economics 25 (2003) 409–424

Testing the approach against alternatives such as using a truncated Fourier series
or maximum smoothness, we find that our model is robust and that its ability to
give forward prices within traded maturity is promising.
The article is structured as follows: Section 2 discusses the electricity forward

and futures prices; Section 3 presents the model; Section 4 reports on tests of the
quality of the generated curves; and Section 5 concludes.

2. Electricity forward markets

An important characteristic of the electricity market is that the power once
generated, cannot be stored economically. An exception is mountain reservoirs
connected to hydroelectric plants and also manmade hydro pumped-storage facilities
that usually are employed for shorter term storage. Producers owning storage
facilities benefit from the varying electricity prices and use their production
flexibility to produce little(or consume electricity when using pumps) when prices
are low and produce near capacity when prices are high. Pumping entails energy
losses in the order of 30% however, and aggregate pumping and storage capacity in
the energy systems is usually low. Due to the limited storage capacity and flexibility,
even hydro-dominated power systems have periodic variations in prices.
Limited storage means that forwards and futures cannot be priced using the

standard arbitrage arguments involving cost-of-carry relationships. Forward and
futures prices are the result of supply and demand for hedging and speculation.
Producers hedge by selling(going short) and power marketers and power-intensive
industry hedge by buying(going long). Speculators, which often include producers
and power marketersyconsumers, enter both sides of the market depending on their
expectations and risk-taking ability. These expectations about future spot prices are
often formed by price forecasts from bottom-up models.
In the former regulated regime, bottom-up models served multiple purposes

including prediction of the marginal cost of electricity production. The merits of
such models typically include a detailed technical description of generation,
transmission and distribution systems as well as an extensive set of data on
hydrological conditions, fuel prices and consumer behaviour. The main drawback
of these models is that they cannot estimate or capture the risk premium or market
price of risk determined by the market forces.
A class of commodity price models designed to capture the market price of risk

is the financial asset pricing models, originating from Black(1976). In this approach,
a set of coupled stochastic differential equations is used to describe the time
dynamics of prices. As described in Clewlow and Strickland(1999) most literature
on commodity pricing fall into one of two categories that originates from the theory
of bond pricing. The first category can be seen as an extension of the SDE based
short rate models from bond pricing. The idea is to formulate a set of SDEs for the
spot price and additional factors that affect the spot price. Forward prices can then
subsequently be derived from this representation. Recent contributions generally
include more than one stochastic factor e.g. stochastic convenience yield and
stochastic interest rates(Schwartz, 1997). Lucia and Schwartz(2002) study both



412 S.-E. Fleten, J. Lemming / Energy Economics 25 (2003) 409–424

Fig. 2. Relative approach, combining the bottom-up and financial approaches. Both empirical information
and theory is used to create price scenarios that are input to decision support models.

single- and two-factor models with stochastic volatility and various forms of
deterministic seasonal components, using data from the Nordic market.
The second category of asset pricing models is based on the Heath-Jarrow-Morton

(HJM) framework (Heath et al., 1992). In this framework, the time dynamics of
the entire forward price curve is described using a multi-dimensional Brownian
motion or state variable. The basic idea is to simultaneously describe the stochastic
time dynamics of the entire forward price curve using a volatility function and the
initial forward price curve observed in the market. Bjerksund et al.(2000) use a
sum of three uncorrelated Brownian motions to capture the time dynamics in the
shape of the electricity forward price curve. To find forward prices for dates that
fall between traded maturity dates, the maximum smoothness criterion is applied.
Given the credibility that such factor models have obtained, it seems reasonable

to argue that in deregulated markets it is more natural to price electricity using the
financial approach than to repair bottom-up models that were created to work well
in a different environment. The two financial approaches have already been applied
to various electricity markets. The case studies are, however, generally based on a
rather scarce data material due to the youth of most markets.
Whatever structural choices the analyst makes with respect to stochastic factors,

the quality of the model output will depend crucially on the input data used to
estimate the parameters of the model. Rather than relying on a specific financial
model, we prefer to use a non-parametric approach taking the market forward prices
as given. We suggest using bottom-up data to create an improved forward price
curve as illustrated in Fig. 2. An alternative can be to include bottom-up data in the
parameters estimation process and thereby basically introduce information from the
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bottom-up model into the construction of the factor model(shown as option 2 in
Fig. 2).
In the Nordic market, seasonality is an essential characteristic of electricity prices

due to forces on both the demand and the supply side. On the supply side, the
region relies heavily on Norwegian and Swedish hydropower plants that receive
high levels of inflow in spring and summertime when snow in the mountain melts.
Due to capacity constraints, these plants must produce at high levels during the
summertime in order to avoid costly spill resulting from overflow in the reservoirs.
This naturally creates a downward pressure on prices, which is exacerbated by a
low demand. Unlike other regions, the cold climate in Scandinavia means that there
is little need for air conditioning. Conversely, in the winter period there is an upward
price pressure from the demand side as a result of high electricity demand for
heating purposes especially in Norway, Finland and Sweden.
Futures and forwards are traded over the counter and in a financial market

(Eltermin) at the Nordic power exchange Nord Pool. Unlike other energy com-1

modities such as oil or gas, electricity is a flow commodity implying that delivery
of a specified constant(or deterministically time-varying) power level takes place
over a period of time(delivery period) rather than at a specific point in time. A
forwardyfutures electricity contract can, therefore, be viewed as a portfolio of basic
forwardyfutures contracts each with different time to maturities, one for each point
in time during the delivery period. By point in time is meant a specific hour of a
day, as the underlying asset for the contracts is the hour-by-hour spot price in the
Nordic market. This spot price is calculated and published every day by Nord Pool.
We assume throughout this article that interest rates are deterministic and constant
in time, in which case forward and futures contract prices are equal and can be
treated as similar products for modelling purposes.
Fig. 3 illustrates the structure of both a forward and a futures contract in the

shape provided by Nord Pool. Notice that atT (the start of the delivery period)1

the spot price and futures price does not necessarily coincide as theory would
require if the commodity was to be delivered at that specific point in time. Because
the electricity futures concerns power delivered over a period of timewT , T x the1 2

relevant statistic for the contract is not the spot price atT , but the average spot1

price during the interval wT , T x. Ex post, the differenceF(T ,T )y1 2 1 2

between the closing futures price atT , F(T , T ) and theT2 S y(T yT )t 2 1 1 1 28tsT1

average of the spot priceS in wT , T x, is paid to the buyer and is charged the sellert 1 2

(if the difference is negative the seller gains and buyer loses). A futures contract
thus offers a perfect hedge against the risk in thewT , T x-period average spot1 2

(system) price for a constant MW level position held throughout the delivery period.
The forwards and futures products listed by Nord Pool differ not only in terms

of time to maturity but also in terms of the length of the delivery period. This

A basic forward contract is an agreement between a buyer and a seller on the future delivery of a1

product at an agreed price. A basic futures contract is a similar agreement but it is generally a more
standardized product and has daily financial settlement until time of maturity through the use of margin
accounts.
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Fig. 3. The structure of future contracts(top figure) and forward contracts(bottom figure) supplied by
Nord Pool.

means that at any point in time the decision maker has only a partial picture of the
forward price curve available for analysis. Fig. 4 shows a series of typical contract
prices where the horizontal regions indicate delivery period intervals. There is no
trading in contracts with start of deliverywithin these intervals.
Futures contracts having delivery periods of 4 weeks are traded for maturities

ranging from 4 weeks to 12 months into the future. As maturity draws nearer, the
nearest contract is split into 4 weekly contracts, which are traded until the working
day before the start of delivery. For forward contracts, the delivery periods are
seasons and years. Seasons refer to early winter(1 January to 30 April), summer
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Fig. 4. The term structure of futures and forward prices at Nord Pool on 6-12-1999.

(1 May to 30 September) and late winter(1 October to 31 December). In contrast
to futures, the forward contracts are not split into smaller blocks but are traded until
the beginning of the delivery period. The fact that contracts are traded in relatively
large chunks means that the problem of finding prices for specific maturity times
or in general constructing a high-resolution term–structure curve is significant.
The volume has grown extensively at Nord Pool in the last couple of years.2

However, many contracts have had small trading volumes. For example, the contract
for delivery of power in the period 04-01-1999 to 25-04-1999 had zero turnovers at
Nord Pool in 58 out of the 71 days when it was possible to trade the contract. Still,
there is an active over-the-counter market where roughly three quarters of all
contracts are traded; Nord Pool has a 25% market share for financial products.

3. Model

The described shortcoming of available market data indicates a possible gain
from combining these data with forecasts from bottom-up models. In the Scandina-
vian market, seasonal variation is an important characteristic. However, throughout
the year products with maturities exceeding 6–12 months are only represented by
1–3 products per year, as seen in Fig. 4. Clearly, the available market data provide
relatively good information about the short end of the term structure, but a much
less detailed picture of the long end and the important seasonal component.
A commonly used bottom-up model in the Nordic region is the MPS model

(Botnen et al., 1992). This model consists of a number of interconnected subsystems

‘The total volume of power contracts traded on Nord Pools financial market in January 2001 was2

101.8 TWh. This is nearly quadruple the volume traded in January 2000. The monthly volume exceeded
the entire annual volume traded on the Exchange in 1998’(Nor, 2001).
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(regions). Each region consists of a single-node electricity market where production,
consumption and exchange(transmission) with adjacent areas are modeled. A
solution of the model results in a set of equilibrium prices and production quantities,
for each week over the time horizon considered(usually 3 years), and for each
historical inflow year(usually 70). Important input to the model, when determining
future spot prices, include demand and its dependence on temperature, fuel costs,
exchange with other countries(importyexport prices and quantities) and initial
reservoir and snow accumulation levels. Since the MPS model explicitly takes into
account the dynamic stochastic behavior of demand and of detailed hydropower
production, we believe that one of the model’s strengths is the ability to capture
seasonal variations in prices(Haugstad and Rismark, 1998), at leastwithin summer
and winter seasons, and in the transition between these.
To illustrate how an improved term structure curve can be constructed by

including information from a bottom-up model we propose a small optimization
model based on the following criteria: First, since we view market data as providing
fundamental information we impose a strong constraint on the relationship between
optimized prices and the bidyask prices observed in the market. However, to
properly express this constraint we need the theoretical relationship between
forwardyfutures contract that entails delivery over a periodwT , T x and contracts1 2

with delivery in the subperiods ofwT , T x, where each subperiod is a day or a1 2

week. Denotef the price of the forward contract with delivery in day or weekt,t

and letF(T , T ) be the price of the forward contract with delivery in the interval1 2

wT , T x. This latter contract is a portfolio of basic forward contractsf and by1 2 t

arbitrage arguments its price must be:

T T2 21 yrtF T ,T s e f (1)Ž .1 2 t8 8yrtT2 e8tsT tsTtsT1 11

Therefore, the forward priceF(T ,T ) can be seen as a weighted average of a series1 2

of forward pricesf over the intervalwT ,T x. Since we do not observe exact pricest 1 2

but rather a bidyask spread in the market we replace the equality condition with the
following:

T21 yrtF T ,T F e f FF T ,T (2)Ž . Ž .bid ask1 2 t 1 28yrtT2 e8 tsTtsT 11

The proposed optimization model uses a daily or weekly resolution and we
require as the set of strong constraints that the optimized prices do not violate Eq.
(2) for any of the products observed in the market. LettingP equal the number of
observed futuresyforwards andN the number of days or weeks in the period
spanning the entire term structure, we have a model with a set of 2P constraints
andN variables for any given point in time. Many of the contracts are overlapping,
and our model will not find a feasible solution if there are arbitrage opportunities
among such overlapping contracts.
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The second criterion is due to the degrees of freedom for optimization, which are
induced by the bidyask spread and the large blocks in the long end of the forward
price curve. The aim is to capture information about the shape of the seasonal
variation from the bottom-up model forecasts, and intuitively this leads us to look
for a function or curve that has the same shape of seasonal characteristics as the
bottom-up forecast. A simple objective function that will serve this purpose is a
constrained least square(LSQ) curve fitting. Using this procedure, the model simply
minimizes the squared differences between the decision variables and the bottom-
up forecast values subject to the bidyask constraints described above. Squared
differences are clearly preferable over absolute differences because we seek to fit
the term structure to the shape of the bottom-up forecast but generally at a different
level.3

We expect forward contract with neighboring delivery points to exhibit relatively
small price differences. In other words, we expect trading to create a smooth forward
curve, therefore, we add a smoothing term to the objective function. In the absence
of such a term there is no mechanism in the model to prevent large jumps in the
forward curve, e.g. on the transition from the end of the summer contract delivery
and the beginning of the late winter contract delivery. This combination of smoothing
and LSQ constitutes the basic version of our model stated below.
The MPS model usually predicts less seasonality than can be observed in the

futures and forward market, i.e. the difference between summer and winter prices
is less in the MPS forecasts than what is observed in the derivative market. However,
this does not mean that our approach will lead to a too small difference between
summer and winter prices. The constraints Eqs.(1) and (2) ensure that the
difference between average summer prices and average winter prices is the same as
is observed in the contract market.
This illustrates an important feature of the model, namely that the absolute level

of the bottom-up forecasted prices or prior periodic function used, do not matter for
the generated forward curve. Again, this is due to the fact that we constrain the
forward prices implied by the generated curve to be within the relatively narrow
bid and ask spread of the observed(given) market prices. This means, for example,
that the bottom-up forecast does not have to be an unbiased forecast of future spot
prices, nor does it have to be adjusted for risk.
MODEL: Term Structure Generation(TSG)

T Ty1
2 2Minimize f yB ql f y2f qf (3)Ž . Ž .t t ty1 t tq18 8

ts1 ts2

Squaring the differences will increase the penalty for large differences in relative terms and it will3

therefore tend to equalize differences at all points. Clearly, if the price level dictated by the strong bidy
ask constraints lie far from those dictated by the MPS model, LSQ fitting will generally cause a parallel
shift in the curve, whereas absolute differences will be more inclined towards also changing the shape
of the curve.
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Subject to

T2i1 yrtF T ,T F e f ; ;igº (4)Ž .bid1i 2i t8yrtT2i e8 tsTtsT 1i1i

T2i1 yrtF T ,T G e f ; ;igº (5)Ž .bid1i 2i t8yrtT2i e8 tsTtsT 1i1i

The following notation is used for parameters, variables and indices:

Indices and sets:
T: The final day or week over the entire period.
º: The set of products with observed market prices.
T :1i Beginning of delivery period for producti in º.
T :2i End of delivery period.

Parameters:
B :t Price in bottom-up forecast for dayyweek t.
F(T ,T ) : Bid price for producti.1i 2i bid

F(T ,T ) : Ask price for producti.1i 2i ask

l: Weight that scales smoothing term relative to LSQ term.

Variables:
f :t Basic forward price with maturityt.

The end point of the curve(tsT) should exhibit seasonality. However, if the
weight on smoothing is high compared to the weight on LSQ, then the end point
will tend to be shaped as a straight line. To avoid this problem, the generated points
near the end of the curve is encouraged in the objective function via an additional
term penalizing deviation between the shapes of the end of the last two years
constrained to equal the first and second derivative at the previous year(i.e. atTy
365 for daily resolution). Thus, we assume that the shape of the curve at the end
point is well represented by the shape 1 year before.

4. Experimental results

Figs. 5 and 6 illustrate forward curves generated for an example where observed
bidyask prices on 01-09-1998 was chosen as apriori data and an average scenario
from a simulation with the MPS model was used as the bottom-up data. From Fig.
5 it is clear that the forward price curves generated with LSQ, i.e.ls0, have
inherited the discontinuities in the market data.
Fig. 6 shows the same simulation except that the weight of the smoothing

parameter has been set so that the two terms in the objective function are of the
same order of magnitude. It is clear from the figure that the smoothing parameter
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Fig. 5. Forward price curves generated using only least squares in the objective.

effectively removes the undesirable jumps and provides a more realistic picture of
the forward price curve.
Testing the quality of the generated forward price curves is not a straightforward

task. As the curves themselves represent approximations to realized term structures
there are no empirical data to test them against, and the quality should, therefore,
ideally be assessed by testing it in the context in which the curves are to be applied.
One such application could be as input to a factor model of the type described in
Section 2. In order to test the quality of the generated forward price curves against
other forms of input data one could choose a specific factor model and compare4

output in the form of price forecasts(in-sample and out-of sample analysis of
predictive power, see, e.g. Schwartz(1997)) and goodness of fit tests. However,
construction of a factor model would exceed the scope of this paper.
Since the TSG model is basically a hybrid where information from bottom-up

forecasts supplement market data, it is interesting to examine whether or not the
information from the bottom-up model does in fact capture the shape of the seasonal
variation. One-way to measure this is to test the generated curves against the price
that would have been set by the market, if all the points on the curve where traded

Other candidates can be market prices, simple periodic functions fitted to market prices and bottom-4

up forecasts.
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Fig. 6. Forward price curves generated using a combination of least squares and smooting as the
objective.

products. We do not have market prices beyond those already used to generate the5

curves, but at dates where new products are listed, i.e. when a season contract is
split into 4-week blocks or when a 4-week block is split into weekly contracts we
gain new information overnight or over the weekend. This information can be used
by comparing the prices that the model generated at the last day before the split,
with the actual market prices at the first day after the split. Therefore, to make such
a comparison we must in principle be able to extrapolate the forward price curve
from one day to another.
We give a short example to clarify. Consider a forward price curve generated

based on all products traded at the market on the date 18-04-1997. On the
subsequent trading day 21-04-1997, the seasonal product S01-98 ceases to exist and
is replaced by four new 4-week products B01-98 to B04-98. The price of these four
new products provides information about the seasonal shape within the delivery
period previously represented only by the seasonal product S01-98. We now wish
to examine how the generated forward price curve based on the data available at
18-04-1997, would have priced the products B01-98 to B04-98. We know the price

Clearly, one could imaging using the presented framework to beat the market by including new5

information from bottom-up models thought to be superior to the market. However, here we have
restrict ourselves to an analysis of the degree of agreement between market data and the generated
curves.
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changes for all the products that existed on both dates and possible strategies,
therefore, include:(a) to extrapolate using an average of price changes taken over
all traded products,(b) to find a functional relation across maturities and then
extrapolate the desired interval or(c) to extrapolate using an average of the price
changes in products with maturities close to the new products. In the following
example we tried all three strategies, but found little or no change compared to the
reported results based on no extrapolation.
For comparison with the TSG model, we fitted to market data both a curve

generated using only the smoothness part of the objective function and a truncated
Fourier series on the form:

J

g t saqgtq b cos(vt)qb sin(vt) (6)Ž . Ž .1,j 2,j8
js1

To approximate the true seasonality and simultaneously avoid overfitting, we set
Js2. The maximum smoothness approach can be viewed as a best alternative if
bottom-up models are considered to hold no information. The truncated Fourier
series was included because it is often used in factor models to approximate the
seasonal variation.
The forward and futures data used is from Nord Pool, with observations for each

trading day in the period 25-09-1995 to 05-04-2002. Four MPS forecasts were used
as input. Each column in Table 1 shows the date at which a seasonal product is
split into 4-week products(column 1), the number of 4-week products created at
that date(column 2) and the average pricing error with respect to the generated
prices and the new market prices of the 4-week products(columns 3–5). The error
definition is adopted from Bliss(1997) and implies that there is no error if the
model prices are within the observed bid–ask spread:

SF yPask if P)FaskFT ask

U´s 0 if F FPFF (7)bid ask

F yPbidT if P-Fbid
V Fbid

whereP is the fitted contract price. Each error is calculated as the square root of
the average square error, where the average is taken over all new contracts introduced
at the date indicated in column 1(and for all dates in the bottom row). The average
errors found using the TSG and maximum smoothness are not significantly different,
but the TSG approach seems to perform best. Fig. 7 shows each of the three
approaches applied to the date 08-10-1999 where a seasonal product is split into six
4-week products. The curve found by the TSG model captures the bottom peak of
4-week market data more accurately than the smoothness curve. Though this
indicates that useful information has been extracted from the MPS forecast, one can
also notice that some inaccurate information causes the TSG prices to be lower than
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Table 1
Comparing the three approaches with market prices of newly listed block products, i.e. having a four
week delivery period. Each percentage error shown is an average for the 3 to 6 new products. The total
averages are calculated as the average of errors for each of the 87 monthly products

Date New prod. TSG model Max. smooth Trunc Fourier
(%) (%) (%) (%)

02-01-1996 3 2.62 2.88 1.96
22-04-1996 4 2.43 2.45 6.32
07-10-1996 6 12.10 14.07 14.65
30-12-1996 3 2.67 3.08 5.40
21-04-1997 4 0.78 0.90 2.35
06-10-1997 6 3.60 2.91 4.49
30-12-1997 3 0.27 1.86 1.67
20-04-1998 4 0.77 1.29 2.41
05-10-1998 6 3.04 3.62 5.32
04-01-1999 3 0.65 0.66 0.18
26-04-1999 4 0.00 1.73 0.64
11-10-1999 6 3.05 3.55 4.38
03-01-2000 3 1.17 1.30 0.69
26-04-2000 4 1.76 0.68 3.06
09-10-2000 6 3.79 4.03 7.71
02-01-2001 3 0.50 0.38 1.52
23-04-2001 4 3.30 2.85 5.79
08-10-2001 6 2.62 3.41 5.74
02-01-2002 3 2.98 2.99 1.67

Total 87 2.70 2.87 4.01

Fig. 7. Pricing the monthly products created on 11-10-1999.
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Table 2
Summary of pricing errors in NOKyMWh. RMSE is the square root of the average square error(each
trading day is given equal weight)

RMSE TSG model TSG model Trunc. Max.
(NOKyMWh) ls500 ls1000 Fourier smoothness

New weeks 5.068 5.058 4.774 5.066
New blocks 7.053 7.410 10.01 8.260
Overlapping 4.766 4.760 5.449 4.819
forwards

4-week market prices in the regionts330 to ts350. In this specific case the
average error of the TSG model is, therefore, approximately equal to that of the
maximum smoothness model.
A summary of the root mean square pricing errors of the TSG model with two

different smoothness weights, the truncated Fourier series and the maximum
smoothness approach are listed in Table 2. Pricing errors for ‘new weeks’ pertain
to splitting of 4-week products into products with delivery period length 1 week.
‘New blocks’ pertain to pricing of newly listed 4-week products. ‘Overlapping
forwards’ pertain to pricing of contracts with long delivery periods that overlap with
other products—in this case these long delivery period products are excluded from
the model. Thus, all errors are out of sample. We see that the Fourier series approach
works well in the very short end of the forward curve, the first 4–7 weeks. The
TSG model performs no better than the maximum smoothness approach for this
part of the forward curve. For maturities 26–52 weeks into the future(new blocks)
the differences are greater, the TSG approach performs best. For the overlapped
seasonal and annual forward contracts the TSG and maximum smoothness perform
somewhat better than the Fourier approach.

5. Conclusions

In this paper we have suggested a new approach for generating forward price
curves based on a combination of market data and forecasts from bottom-up models.
We have illustrated how to apply the suggested framework using the Scandinavian
electricity market as a case study.
The ability to obtain an acceptable approximation in the form of a high-resolution

forward price curve is relevant not only for the pricing of simple electricity
derivatives such as futures and forwards but also to extract information about
volatility and seasonal variation. Finally, our approach enables the decision maker
to include additional information not contained in the market or perhaps simply not
revealed by the market.
We examine the model’s quality by its ability to price non-traded maturities. By

assuming a simple functional relationship along the time to maturity dimension of
the forward price curve we showed that at maturities of approximately 26–52 weeks
one captures the view of the market far better by using our model than by fitting a
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truncated function to the curve. Our model also performs slightly better than a
maximum smoothness model.
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