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1. Nonlinear Univariate Times Series

1.1 Background

Example. Consider the following daily close-to-close
Nasdaq composite share index values [January 3, 1989
to February 4, 2000]

Nasdaq Composite [Jan 3, 1989 to Feb 4, 2000]
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Below are autocorrelations of the log-index. Obvi-
ously the persistence of autocorrelations indicate that
the series is integrated.” The autocorrelations of the
return series suggest that the returns are stationary
with statistically significant first order autocorrelation.

Figure. Nasdaqg Composite index autocorrelations for log|levels and log differences (returns)

tDefinition. Time series v, t=1,...,T is covariance stationary
if
Ely ] = pu, forallt
covlys, Yyi+x] = . for all
var[yg = o0 (< o0), for all t

Any series that are not stationary are said to be nonstationary.
Definition Times series y; is said to be integrated of order d,
denoted as y; ~ I(d), if A%y, is stationary. Note that if y; is
stationary then y; = Aoyt. Thus for short a stationary series is
denoted as y: ~ I(0), i.e., integrated of order zero.




Below are results after fitting an AR(1) and an MA(1)

model to the return series

Table. AR(1) estimates.

Dependent Variable: DNSDQ
Method: Least Squares
Sample: 2276 5080

Included observations: 2805

Convergence achieved after 2 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 0.086126 0.023048 3.736845 0.0002
AR(1) 0.105933 0.018782 5.640001 0.0000
R-squared 0.011221 Mean dependent var

Adjusted R-squared 0.010868
S.E. of regression 1.091357
Sum squared resid 3338.542
Log likelihood -4224.341
Durbin-Watson stat 1.997947
Inverted AR Roots 11

Table. MA(1) estimates

Dependent Variable: DNSDQ
Method: Least Squares
Sample: 2276 5080

Included observations: 2805

S.D. dependent var
Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

Convergence achieved after 4 iterations

Variable Coefficient Std. Error t-Statistic Prob.
C 0.086153 0.022811 3.776796 0.0002
MA(1) 0.107093 0.018779 5.702685 0.0000
R-squared 0.011323 Mean dependent var
Adjusted R-squared 0.010970 S.D. dependent var

S.E. of regression 1.091301
Sum squared resid 3338.198
Log likelihood -4224.196
Durbin-Watson stat 2.000051
Inverted MA Roots -.11

Akaike info criterion
Schwarz criterion
F-statistic
Prob(F-statistic)

0.086119
1.097336
3.013434
3.017668
31.80961
0.000000

0.086119
1.097336
3.013331
3.017565
32.10153
0.000000



Both models give virtually equally good fit, MA(1)
only just marginally better. The residual autocorrela-
tions and related Q-statistics indicate no further au-
tocorrelation left to the series.

Correlogram of Residuals Correlogram of Residuals Squared
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Figure. Autocorrelations of the squared MA(1) residuals
Figure. Autocorrelations of the squared MA(1) residuals

The autocorrelations of the squared residuals strongly
suggest that there is still left time dependency into
the series. The dependency, however, is nonlinear by

nature.




Because squared observations are the build-
ing blocks of the variance of the series, the
results suggest that the variation (volatility)
of the series is time dependent. This leads
to the so called ARCH-family of models.?

1.2 ARCH-models

The general setup for ARCH models is

yr = X108 + uy

with Xt — (wltanta SR 7wpt>/1 ﬁ — (ﬁl?ﬁQ? SR 75]?),1
t=1,...,7, and

ut| Fe—1 ~ N(O, hy),

where F; is the information available at time
t (usually the past values of wus; w1, ..., u;_1),
and

2 2 2
he = var(uFi-1) = w + aruj 1 + aouj 5 + -+ + aqup .

IThe inventor of this modeling approach is Robert
F. Engle (1982). Autoregressive conditional het-
eroscedasticity with estimates of the variance of
United Kingdom inflation. Econometrica, 50, 987—
1008.



Furthermore, it is assumed that w > 0, a; > 0O
for all 2 and a1 + -+ ag < 1.

For short it is denoted u; ~ ARCH(q).

This reminds essentially an AR(g) process for
the squared residuals, because defining vy =
u? — hy, we can write

2 2 2 2
upy =w -+ ajup_ 1 +azui >+ -+ QqUi_g —+ 4.

Nevertheless, var(v;) is time dependent (Ex-
ercise: Prove it!), implying that this is not a
stationary process in the sense defined above.
T his implies that the conventional estimation
procedure in AR-estimation does not produce
optimal results here.



Properties of ARCH-processes

Consider (for the sake of simplicity) ARCH(1)
process

ht = w + ozth_l

with w > 0 and 0 < a < 1 and wugluz_q1 ~
N(O7ht>

(a) us is white noise

(i) Constant mean (zero):

E[us] = E[E;_1[ud]] = E[0] = 0.
=0
Note E;_q[ut] = E[u¢|F;_1], the conditional
expectation given information up to time ¢t —
1.8

§The law of iterated expectations: Consider time points t1 < to
such that F, C Fi,, then for any t > to

Eu, [E,[u]] = E [Elw| Fi]|Fo] = Elw| Fiy] = Euy [we].



(ii) Constant variance: Using again the law
of iterated expectations, we get
varfu] = E[uf] = E |Es1[u7]
= E[h] = E[w + ozth_l]
w + ozE[th_l]

— w(l—l—oz—l—on—I—---—I—oz”)
+9n+1E[u152—n—1l

—0, as n—oo

_— W

l-o

(iii) Autocovariances: Exercise, show that
autocovariances are zero, i.e., Flugu;4g] = 0
for all k = 0. (Hint: use the law of iterated
expectations.)



(b) The unconditional distribution of wu; is
symmetric, but nonnormal.

(i) Skewness: Exercise, show that E[u7] = 0.

(ii) Kurtosis: Exercise, show that under the
assumption wu¢u;_1 ~ N(O,ht), and that a <
\/1/3, the kurtosis

w2 1 — «

(1 — )2 1-3a2
Hint: If X ~ N(0,02) then E[(X — u)%] =
3(02)2 = 307,

2

E[u?] =3

Because (1 —a?)/(1 —3a?) > 1 we have that
>

w

(1 - a)?
we find that the kurtosis of the unconditional
distribution exceed that what it would be,
if u; were normally distributed. Thus the
unconditional distribution of u; is nonnormal
and has fatter tails than a normal distribution
with variance equal to varfu = w/(1 — «).

E[uf] > 3 = 3[var(w)]?,

9



(c) Standardized variables

Write
_ W
Zt — \/h_t
then z; ~ NID(0,1), i.e., normally and inde-
pendently distributed. Thus we can always

write

Ut — Zt\/hita

where z; independent standard normal ran-
dom variables (strict white noise). This gives
us a useful device to check after fitting an
ARCH model the adequacy of the specifi-
cation: Check the autocorrelations of the
squared standardized series.

10



Estimation of ARCH models

Given the model

yr = X8 + wy

with ut|ft_1 ~ N(O, ht), we have yt‘{xtaft—l} ~
N(xB,ht), t =1,...,T. Then the log-likelihood
function becomes

T
00) = > £(6)
t=1
with
1 1 1
0(0) = —=log(2m) — = log hy — = (yt — x}43)? /hs,
2 2 2
where 0 = (B, w, a)’.
The maximum likelihood (ML) estimate 0 is

the value maximizing the likelihood function,
i.e.,

0(0) = max 2(0).

The maximization is accomplished by numer-
ical methods.

11



Note: OLS estimates of the regression para-
meters are inefficient (unreliable) compared
to the ML estimates.

Generalized ARCH models

In practice the ARCH needs fairly many lags.
Usually far less lags are needed by modifying
the model to

hi = w4+ oqu? | + 6h_1,

with w > 0, « > 0, 6 > 0, and aa+ 6 < 1.
The model is called the Generalized ARCH
(GARCH) model. Usually the above GARCH(1,1)
IS adequate in practice.

Econometric packages call o (coefficient of
u? ;) the ARCH parameter and & (coefficient
of h;_1) the GARCH parameter.

12



Note again that defining vy = ut h:, we can
write

th =w—+ (a+ 5)u752_1 + vy — vy q
a heteroscedastic ARMA(1,1) process.

Applying backward substitution, one easily
gets

—1_ 2
= 1—_5+0‘215" ui’

an ARCH(oo) process. Thus the GARCH
term captures all the history from ¢t — 2 back-
wards of the shocks wuy.

Imposing additional lag terms, the model can
be extended to GARCH(r, ¢) model

ht—w—l—ZcSht ]—I—Zaut ;
=1 1=1

[c.f. ARMA(p, q)]. Nevertheless, as noted
above, in practice GARCH(1,1) is adequate.

13



Example. MA(1)-GARCH(1,1) model of Nasdaqg re-
turns. The model is

re = W+ ur+ Oup—1
hy = w-+ ozth_l ~+ ohi_1.
Estimation results (EViews 4.0)

Dependent Variable: DNSDQ

Method: ML - ARCH (Marquardt)

Sample: 2276 5080

Included observations: 2805

Convergence achieved after 21 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

C 0.084907 0.017700 4797124 0.0000
MA(1) 0.171620 0.020952 8.190983 0.0000
Variance Equation
C 0.027892 0.009213 3.027258 0.0000

ARCH(1) 0.121770 0.020448 5.955103 0.0000
GARCH(1) 0.857095 0.021526 39.81666 0.0000

R-squared 0.007104 Mean dependent var 0.086119
Adjusted R-squared 0.005685 S.D. dependent var 1.097336
S.E. of regression 1.094213 Akaike info criterion 2.695856
Sum squared resid 3352.444  Schwarz criterion 2.706443
Log likelihood -3775.938 F-statistic 5.008069
Durbin-Watson stat  2.129878 Prob(F-statistic) 0.000507
Inverted MA Roots -.17

14



Correlogram of Standardized Residuals Squared

Sample: 2276 5080
Included observations: 2805
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation  Partial Correlation AC  PAC Q-Stat

Prob
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Figure. Conditional standard deviation function
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Series: Standardized Residuals
Sample 2276 5080
Observations 2805

Mean -0.019280
Median 0.050222
3.265924
Minimum -6.466048
Std. Dev. 0.999654
-0.731417
Kurtosis 5.456912

Jarque-Bera  955.6050
Probability ~ 0.000000

Figure. Conditional standard deviation function
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The autocorrelations of the squared standardized resid-
uals pass the white noise test. Nevertheless, the nor-
mality of the standardized residuals is strongly re-
jected. This is why robust standard errors are used in

the estimation of the standard errors.

The variance function can be extended by
including regressors (exogenous or predeter-
mined variables), x4, in it

ht = w + au? | + 0hy_1 + may.

Note that if x4y can assume negative values,
it may be desirable to introduce absolute val-
ues |x¢| in place of x; in the conditional vari-
ance function. For example with daily data
a Monday dummy could be introduced in the
model to capture the weekend non-trading in
the volatility.

16



ARCH-M Model

The regression equation may be extended
by introducing the variance function into the
equation

yr = x.8 + vg(he) + ug,

where uy ~ GARCH, and g is a suitable func-
tion (usually square root or logarithm).

This is called the ARCH in Mean (ARCH-M)
model (Engle, Lilien and Robbins (1987)Y).
The ARCH-M model is often used in finance
where the expected return on an asset is re-
lated to the expected asset risk. The coeffi-
cient ~ reflects the risk-return tradeoff.

YEconometrica, 55, 391—-407.

17



Example. Does the daily mean return of Nasdaq de-
pend on the volatility level?

Dependent Variable: DNSDQ

Method: ML - ARCH (Marquardt)

Sample: 2276 5080

Included observations: 2805

Convergence achieved after 22 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.

SQR(GARCH) 0.198064 0.074141 2.671456 0.0076
C -0.069416 0.061432 -1.129969 0.2585

MA(1) 0.174785 0.020644 8.466806 0.0000
Variance Equation

C 0.031799 0.009301 3.419007 0.0006
ARCH(1) 0.134070 0.020974 6.392287 0.0000
GARCH(1) 0.842134 0.021350 39.44407 0.0000
R-squared 0.011379 Mean dependent var 0.086119
Adjusted R-squared 0.009613 S.D. dependent var 1.097336
S.E. of regression 1.092049 Akaike info criterion 2.694709
Sum squared resid 3338.007 Schwarz criterion 2.707413
Log likelihood -3773.330 F-statistic 6.443432
Durbin-Watson stat 2.127550 Prob(F-statistic) 0.000006
Inverted MA Roots -.17

The volatility term in the mean equation is statistically
significant indicating that rather than being constant

the mean return is dependent on the level of volatility.

18



Consequently the data suggests that the best fitting
model so far is of the form

Tt = ’Y\/h_t + ug—1 + Oui—1
hy = w-+ auf_l + dhi_1.

Below are the estimation results for the above model

Dependent Variable: DNSDQ

Method: ML - ARCH (Marquardt)

Sample: 2276 5080

Included observations: 2805

Convergence achieved after 16 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coefficient Std. Error z-Statistic Prob.
SQR(GARCH) 0.119204 0.022944 5.195479 0.0000

MA(1) 0.174104 0.020771 8.382098 0.0000
Variance Equation

C 0.031291 0.009545 3.278211 0.0010
ARCH(1) 0.133713 0.021011 6.363810 0.0000
GARCH(1) 0.843131 0.021785 38.70279 0.0000
R-squared 0.010861 Mean dependent var 0.086119
Adjusted R-squared 0.009448 S.D. dependent var 1.097336
S.E. of regression 1.092141 Akaike info criterion 2.694578
Sum squared resid 3339.759 Schwarz criterion 2.705165
Log likelihood -3774.146 Durbin-Watson stat 2.132844
Inverted MA Roots -.17
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Correlogram of Standardized Residuals Squared

Sample: 2276 5080
Included observations: 2805
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation  Partial Correlation

AC PAC Q-Stat Prob
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13 -0.006 -0.005 9.9568
14 -0.001 -0.002 9.9594
15 0.005 0.003 10.023
16 -0.003 -0.005 10.055
17 -0.006 -0.008 10.163
18 -0.025 -0.027 11.907
19 0.006 0.004 11.994
20 -0.030 -0.030 14.490
21 0,003 0.000 14.511
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Figure. Actual and fitted series, and residuals
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Series: Standardized Residuals
300 Sample 2276 5080

Observations 2805
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Std.Dev.  0.998195
Skewness -0.726040
Kurtosis 5.409519

200
150

100

504 Jarque-Bera  924.9855
Probability 0.000000
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LLooking at the standardized residuals, the distribution
and the sample statistics of the distribution, we ob-
serve that the residual distribution is obviously skewed
in addition to the leptokurtosis. The skewness may
be due to some asymmetry in the conditional volatil-
ity which we have not yet modeled. In financial data
the asymmetry is usually, such that downward shocks
cause higher volatility in the near future than the pos-
itive shocks. In finance this is called the leverage ef-
fect.

An obvious and simple first hand check for the asym-
metry is to investigate the cross autocorrelations be-
tween standardized and squared standardized GARCH

residuals.

Below are the cross autocorrelations between the stan-
dardized and squared standardized residuals of the fit-
ted MA(1)-GARCH(1,1) model.

21



The cross autocorrelations correlations are not large,

but may indicate some asymmetry present.

Asymmetric ARCH: TARCH and EGARCH

A kind of stylized fact in stock markets is that
downward movements are followed by higher
volatility. EViews includes two models that
allow for asymmetric shocks to volatility.

22



The TARCH model

Threshold ARCH, TARCH (Zakoian 1994,
Journal of Economic Dynamics and Control,
9031-955 , Glosten, Jagannathan and Run-
kle 1993, Journal of Finance, 1779-1801) is
given by [TARCH(1,1)]

h = w + ozutz_l + qﬁug_ldt_l + dhy_1,

where d; = 1, if u; < 0 (bad news) and zero
otherwise. Thus the impact of good news
is o while for the bad news (a + ¢). Hence,
¢ #= 0 implies asymmetry. The leverage exists
if ¢ > 0.

23



Example. Estimation results for the MA(1)-TARCH-
M model.

Dependent Variable: DNSDQ

Method: ML - ARCH (Marquardt)

Sample: 2276 5080

Included observations: 2805

Convergence achieved after 26 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coefficient 8Std. Error 2z-Statistic Prob.

SQR (GARCH) 0.091184 0.023097 3.947880 0.0001
MA(1) 0.184263 0.020899 8.816678 0.0000

C 0.037068 0.009513 3.896566  0.0001
ARCH(1) 0.084275 0.025080 3.360240 0.0008
(RESID<0)*ARCH(1) 0.099893 0.040881 2.443502 0.0145
GARCH(1) 0.833239 0.019001 43.85202 0.0000
R-squared 0.009604 Mean dependent var 0.086119
Adjusted R-squared 0.007835 S.D. dependent var 1.097336
S.E. of regression 1.093029 Akaike info criterion 2.686832
Sum squared resid 3344.000 Schwarz criterion 2.699536
Log likelihood -3762.281 Durbin-Watson stat 2.149776

The goodness of fit improve, and the statistically sig-
nificant positive asymmetry parameter indicates pres-

ence of leverage.
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Furthermore, as seen below, the first few cross auto-
correlations reduce to about one half of the original
ones. They are still statistically significant, slightly

exceeding the approximate 95% boundaries £2/v/T =
+2/4/2805 ~ +0.038.

Cross autocorrelations of the standardized and squared
standardized MA(1)-TARCH(1,1)-M model.

The EGARCH model

Nelson (1991) (Econometrica, 347—370) pro-
posed the Exponential GARCH (EGARCH)
model for the variance function of the form
(EGARCH(1,1))

loght = w + 6109 hy 1 + alz_1] + ¢zt—1,
where z; = u;/+/ht is the standardized shock.
Again the impact is asymmetric if ¢ = 0, and
leverage is present if ¢ < 0.
25



Example MA(1)-EGARCH(1,1)-M estimation results.

Dependent Variable: DNSDQ

Method: ML - ARCH (Marquardt)

Sample: 2276 5080

Included observations: 2805

Convergence achieved after 28 iteratioms
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

SQR (GARCH) 0.084631 0.022593 3.745866 0.0002
MA(1) 0.171543 0.020387 8.414399 0.0000

C -0.197193 0.023051 -8.554804 0.0000
|IRES|/SQR[GARCH] (1) 0.251752 0.030816 8.169621 0.0000
RES/SQR [GARCH] (1) -0.071425 0.024034 -2.971755 0.0030

EGARCH(1) 0.958125 0.010941 87.57385 0.0000
R-squared 0.010762 Mean dependent var 0.086119
Adjusted R-squared 0.008995 §S.D. dependent var 1.097336
S.E. of regression 1.092390 Akaike info criter 2.682518
Sum squared resid 3340.093 Schwarz criterion  2.695222
Log likelihood -3756.232 Durbin-Watson stat 2.124928
Inverted MA Roots -.17

Cross autocorrelations (not shown here) are about
the same as with the TARCH model (i.e., disappear).
Thus TARCH and EGARCH capture most part of the
leverage effect.
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News Impact Curve

The asymmetry of the conditional volatility
function can be conveniently illustrated by
the news impact curve (NIC). The curve is
simply the graph of h:(z), where z indicates
the shocks (news).

Below is a graph for the NIC of the above estimate
EGARCH variance function, where h;_q1 is replaced by
the median of the estimated EGARCH series.

News Impact Curve: EGARCH
log h(t) = -.197 + .252 |z(t)| - .071 z(t) + .958 log h(t-1)
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The Component ARCH Model

We can write the GARCH(1,1) model as

=&+ a(ui—o)+5(hi_1 — o),

where
w

l—a—9

iIs the unconditional variance of the series.
Thus the usual GARCH has a mean rever-
sion tendency towards w A further extension
iIs to allow this unconditional or long term
volatility to vary over time. This lead to so
called component ARCH that allows mean
reversion to a varying level ¢; instead of w.
The model is

ht — qt a(u? { —q-1) +6(hi_1 —qi-1)
at w4 p(g—1—w) +0(u? { —hi1).

An asymmetric version for the model is

w =

h—aq = a(u? { —gq 1)

> _
+o(uf 1 —q—1)di—1 +0(hs—1 —q—1)
w+ p(g—1 — w) + 0(us_; — hy—1).

qt
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Example Asymmetric Component ARCH of the Nas-

dagq composite returns.

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080

Included observations: 2805

Convergence achieved after 4 iterationmns

Bollerslev-Wooldrige robust standard errors & covariance

MA backcast: 2275, Variance backcast: ON

SQR (GARCH) 0.097235
MA(1) 0.182908

0.023997 4.
0.027822 6.

052002
574119

.076100 -1
.353158 -1

Perm: C 0.926329
Perm: [Q-C] 0.734067
Perm: [ARCH-GARCH] 0.228360
Tran: [ARCH-Q] 0.037121
Tran: (RES<0)*[ARCH-Q] -0.077747
Tran: [GARCH-QI] -0.688202
R-squared 0.008632
Adjusted R-squared 0.006151
S.E. of regression 1.093956
Sum squared resid 3347 .282
Log likelihood -3878.519
Inverted MA Roots -.18

Mean dependent
S.D. dependent

.080794 11.46533
.077885 9.
.048519 4.
.039565 0.
.021635
.948710

425047
706581
938228

var

Akaike info criterion
Schwarz criterion
Durbin-Watson stat

0.086119
1.097336
2.771137
2.788076
2.152828

This model, however, does not fit well into the data.

Thus it seems that the best fitting models so far are
either the TARCH or EGARCH.
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1.3 Regime switching models

A potentially useful approach to model non-
linearities in time series is to assume differ-
ent behavior (structural break) in one sub-
sample (or regime) to another. If the dates,
the regimes switches have taken place are
know, modeling can be worked out simply
with dummy variables.

30



Consider the following regression model

yt:Xt,/BSt_I_uta t=1,...,7T,

where
us ~ NID(0,03,),
Bs, = Bo(1 — St) + P15t
0§, = 05(1 — Sp) + 018},
and

Sg=0or 1, (RegimeO or 1).

Thus under regime 1, the coefficient para-
meter vector is #1 and error variance a%.

For the sake of simplicity consider an AR(1)
model. That is x; = (1,vy:_1)’. Usually it is
assumed that the possible difference between
the regimes is a mean and volatility shift, but
not autoregressive change. That is

Yyt — 1S, _I_ ¢1(yt—1 - ,Ust_l) + ut, ug ~ NID(O7 O-g't)a
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where pg, = po(l — S¢) + p1S:, and agt as
defined above. If S;, t =1,...,T is known a
priori, then the problem is just a usual dummy
variable autoregression problem.

In practice, however, the prevailing regime is
not usually directly observable. Denote then

P(St = j|Si—1 =1) =pi5, (,7=0,1),
called transition probabilities, with p;,o+p;1 =
1, 2= 0,1. This kind of process, where the
next state depend only on the previous state,
is called the Markov process, and the model
a Markov switching model in the mean and
variance.

Thus in this model additional parameters to
be estimated are the transition p;;. Usually
the parameters are estimated (numerically)
by the ML method.**

**For a detailed discussion, see Kim Chang-Jin and
Charles A. Nelson (1999). State Space Models
with Regime Switching. Classical and Gibbs-Sampling Ap-
proaches with Applications. MIT-Press.
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The joint probability density function for
yt, St, S¢_1 given past information

Fit-1=1Y—-1,Yt—2,---} IS
f(ytv St7 St—1|ft—1) — f(yt|St7 St—laj:t—l)P(Sta St—1|Ft—1)7
with
f(yt|St, Sp—1, Ft—1) =
1 exp {_ lyt—pg,—#1 (yt—l_,uStl)]Q} |

2
27T0'§t 20875

Then the log-likelihood function to be maxi-
mized with respect to the unknown parame-
ters is

T
00) = ) 4(9),
t=1

where

1 1

6:(0) =1og | > Y f(yil St St-1, Fi1) P[St, Si-a1|Fial |
S,=05,.,=0

0 = (p,q, ¢0, $1,05,0%), and P[S; = 0|S;_1 =
0] = p, P[Sy = 1|S;_1 = 1] = ¢, the transition
probabilities.
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To evaluate the log-likelihood function we
need to define the joint probabilities

P[St, S¢—1|F;—1]. Because of the Markov prop-
erty P[S|Si_1,Fi—1] = P[S¢S;—1]. Thus we
can write

P[St, St—1|Fe—1] = P[St|St—1]P[St—1|F¢—1],

and the problem reduces to calculating (es-
timating) the time dependent state proba-
bilities P[S;_1|F;_1], and weight them with
the transition probabilities to obtain the joint
probability.

This can be achieved as follows:

First, let P[SO = 1|.7:Q] - P[SQ = 1] = T
be given (then P[S; = 0] = 1 — 7). Then
the probabilities P[S;_1|F;_1] and the joint
probabilities are obtained using the following
two steps algorithm
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19 Given P[S;_1 = i|F;_1], i = 0,1, at the
beginning of time ¢ (tth iteration),

P[S; = j, Si—1 = i|Fi—1] = P[S; = j|Si-1] P[St—1|Fi-1],

20 Once vy, is observed, we update the infor-
mation set F; = {F;_1,y:} and the prob-
abilities
P[S: = j,Si-1 = i|F] = P[S: = j, St—1 = i|Fi—1, ys]

— f(St:Z.aSFl:jaytL’Ft*l)
f(yt|~7:tfl)
lf(yt|St:j75t71:7;,f.t71)P[St:jystflzi|~7:;.‘71]

Zst,st71=0 f(yt|3t,3t71;j:;ffl)P[St:St;Stflzstfl’f.tfl]

with
1
P[St = St‘ft] — Z P[St — St, St—l = St_l‘ft].

St,1:o

Once we have the joint probability for the
time point ¢, we can calculate the likelihood
/+(0). The maximum likelihood estimates for
0 is then obtained iteratively maximizing the
likelihood function by updating the likelihood
function at each iteration with the above al-
gorithm.
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Steady state probabilities

The probabilities # = P[Sg = 1|Fp] is called
the steady state probability, and, given the
transition probabilities p and ¢, is obtained
as

]_ _
= P[Sg = 1|F] = P
2—-p—gq
Note that in the two state Markov chain
1—gq
P[Sg = 0|Fg]l =1 — P[Sg = 1|Fo] = 5 )
—P—q

Smoothed probabilities

Recall that the state S; is unobserved. How-
ever, once we have estimated the model, we
can make inferences on S; using all the infor-
mation from the sample. This gives us

P[St:.ﬂfT]) j:O,l,

which are called the smoothed probabilities.

Note. In the estimation procedure we de-
rived P[S; = j|F:] that are usually called the
filtered probabilities.
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Expected duration

The expected length the system is going to
stay in state 5 can be calculated from the
transition probabilities. Let D denote the
number of periods the system is in state j.
T he probabilities are easily found to be equal
to P[D = k] = p?{l(l —pjj), SO that

E[D] = i kP[D = k] = o

h=1 1 —pjj
Note that in our case pgp = p and p11 = q.

Example. Are there long swings in the dollar/sterling
exchange rate?

If the exchange rate z; is RW with long swings, it can
be modeled as

Az = ag + a15: + €,

so that Azi ~ N(po,03) when Sy = 0 and Az ~
N(p1,0%2), when Sy = 1, where po = ap and pu; =
apo+a1. Parameters pup and u; constitute two different
drifts (if a3 % 0) in the random walk model.
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Estimating the model from quarterly with sample pe-
riod 19721 to 19961V gives

Parameter Estimate Std err
140 2.605 0.964
41 -3.277 1.582
o3 13.56 3.34
o? 20.82 4.79
p (regime 1) 0.857 0.084
g (regime 0) 0.866 0.097

The expected length of stay in regime 0 is given by
1/(1 —p) = 7.0 quarters, and in regime 1 1/(1 —q) =
7.5 quarters.
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Example. Suppose we are interested whether the mar-

ket risk of a share is dependent on the level of volatility
on the market. In the CAPM world the market risk of

a stock is measured by 3.

World and Finnish Returns

10.0

7.5

5.0

2.5

0.0

-2.5

Finnish Returns

-5.0

-7.5

-10.0 I I \ \

World Returns

Consider for the sake of simplicity only the cases of

high and low volatility.
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The market model is

Yyt = ag, + Bs,xt + €,

where ag, — Oéo(l — St) —I— alst, ﬁst = ﬁo(l — St) —|— 51515

and e ~ N(O,aé) with o2 = 05(1 — S;) + 07S;.

Estimating the model yields

Parameter Estimate Std Err t-value p-value
Qo -0.0075 0.0186 -0.40 0.685
Qo 0.0849 0.0499 1.70 0.089
Bo 0.9724 0.0224  43.47 0.000
061 1.8112 0.0666 27.19 0.000
o3 0.7183 0.0150 48.01 0.000
o2 1.3072 0.0267 48.89  0.000
State Prob
P(High|High)  0.96340
P(Low|High) 0.03660
P(High|Low) 0.01692
P(Low|Low) 0.98308
P(High) 0.68393
P(Low) 0.31607

Log-likelihood -3186.064
The empirical results give evidence that the stock’s

market risk depends on the level of stock volatility.

The expected duration of high volatility is 1/(1 —
.9634) ~ 27 days, and for low volatility 59 days.
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Market returns with high-low volatility probabilities

World Index
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