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1. Nonlinear Univariate Times Series

1.1 Background

Example. Consider the following daily close-to-close
Nasdaq composite share index values [January 3, 1989
to February 4, 2000]

Nasdaq Composite [Jan 3, 1989 to Feb 4, 2000]
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Below are autocorrelations of the log-index. Obvi-
ously the persistence of autocorrelations indicate that
the series is integrated.† The autocorrelations of the
return series suggest that the returns are stationary
with statistically signi¯cant ¯rst order autocorrelation.

Correlogram of LNSDQ

Date: 04/01/01   Time: 14:19
Sample: 2276 5080
Included observations: 2805

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.998 0.998 2798.4 0.000
2 0.997 -0.010 5587.9 0.000
3 0.995 0.016 8369.0 0.000
4 0.993 0.001 11142. 0.000
5 0.992 0.013 13906. 0.000
6 0.990 0.006 16663. 0.000
7 0.988 -0.018 19411. 0.000
8 0.987 -0.001 22151. 0.000
9 0.985 -0.011 24882. 0.000

10 0.983 0.007 27605. 0.000
11 0.981 -0.019 30319. 0.000
12 0.980 0.003 33025. 0.000
13 0.978 -0.001 35722. 0.000
14 0.976 -0.003 38410. 0.000
15 0.974 0.005 41090. 0.000
16 0.973 0.007 43762. 0.000
17 0.971 0.016 46426. 0.000
18 0.970 -0.009 49081. 0.000
19 0.968 -0.016 51728. 0.000
20 0.966 0.014 54367. 0.000
21 0.965 0.018 56998. 0.000
22 0.963 -0.016 59621. 0.000
23 0.961 0.001 62236. 0.000
24 0.959 -0.025 64842. 0.000
25 0.958 0.005 67440. 0.000
26 0.956 0.001 70030. 0.000
27 0.954 -0.002 72611. 0.000
28 0.953 0.002 75185. 0.000
29 0.951 -0.003 77750. 0.000
30 0.949 -0.004 80306. 0.000
31 0.948 0.000 82855. 0.000
32 0.946 0.003 85395. 0.000
33 0.944 0.013 87927. 0.000
34 0.943 0.000 90451. 0.000
35 0.941 0.007 92967. 0.000
36 0.939 0.014 95476. 0.000

Correlogram of DNSDQ

Date: 04/01/01   Time: 14:19
Sample: 2276 5080
Included observations: 2805

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.106 0.106 31.459 0.000
2 0.001 -0.010 31.465 0.000
3 0.008 0.009 31.659 0.000
4 -0.009 -0.011 31.904 0.000
5 -0.009 -0.007 32.123 0.000
6 -0.012 -0.010 32.514 0.000
7 -0.024 -0.021 34.069 0.000
8 -0.001 0.004 34.071 0.000
9 -0.006 -0.007 34.171 0.000

10 0.017 0.019 35.025 0.000
11 -0.004 -0.009 35.079 0.000
12 0.049 0.051 41.844 0.000
13 0.058 0.048 51.463 0.000
14 0.009 -0.002 51.686 0.000
15 0.017 0.016 52.507 0.000
16 -0.028 -0.032 54.694 0.000
17 0.008 0.017 54.875 0.000
18 0.036 0.034 58.504 0.000
19 0.040 0.038 63.052 0.000
20 -0.007 -0.013 63.174 0.000
21 -0.019 -0.017 64.219 0.000
22 -0.046 -0.044 70.298 0.000
23 -0.005 0.003 70.379 0.000
24 0.027 0.029 72.511 0.000
25 -0.002 -0.012 72.527 0.000
26 0.013 0.014 73.018 0.000
27 0.032 0.025 75.957 0.000
28 0.002 -0.005 75.968 0.000
29 0.020 0.021 77.127 0.000
30 0.014 0.006 77.648 0.000
31 0.005 -0.002 77.714 0.000
32 0.004 0.000 77.767 0.000
33 0.037 0.041 81.689 0.000
34 -0.032 -0.034 84.586 0.000
35 -0.037 -0.022 88.467 0.000
36 -0.006 -0.005 88.571 0.000

Figure. Nasdaq Composite index autocorrelations for log levels and log differences (returns) 

†De¯nition. Time series yt, t = 1, . . . , T is covariance stationary
if

E[yt] = µ, for all t

cov[yt, yt+k] = γk, for all t

var[yt] = γ0 (<∞), for all t
Any series that are not stationary are said to be nonstationary.

De¯nition Times series yt is said to be integrated of order d,

denoted as yt ∼ I(d), if ¢dyt is stationary. Note that if yt is

stationary then yt =¢0yt. Thus for short a stationary series is

denoted as yt ∼ I(0), i.e., integrated of order zero.
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Below are results after ¯tting an AR(1) and an MA(1)

model to the return series

Table. AR(1) estimates.

Dependent Variable: DNSDQ
Method: Least Squares
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 2 iterations

Variable Coe±cient Std. Error t-Statistic Prob.
C 0.086126 0.023048 3.736845 0.0002
AR(1) 0.105933 0.018782 5.640001 0.0000

R-squared 0.011221 Mean dependent var 0.086119
Adjusted R-squared 0.010868 S.D. dependent var 1.097336
S.E. of regression 1.091357 Akaike info criterion 3.013434
Sum squared resid 3338.542 Schwarz criterion 3.017668
Log likelihood -4224.341 F-statistic 31.80961
Durbin-Watson stat 1.997947 Prob(F-statistic) 0.000000
Inverted AR Roots .11

Table. MA(1) estimates

Dependent Variable: DNSDQ
Method: Least Squares
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 4 iterations

Variable Coe±cient Std. Error t-Statistic Prob.
C 0.086153 0.022811 3.776796 0.0002
MA(1) 0.107093 0.018779 5.702685 0.0000

R-squared 0.011323 Mean dependent var 0.086119
Adjusted R-squared 0.010970 S.D. dependent var 1.097336
S.E. of regression 1.091301 Akaike info criterion 3.013331
Sum squared resid 3338.198 Schwarz criterion 3.017565
Log likelihood -4224.196 F-statistic 32.10153
Durbin-Watson stat 2.000051 Prob(F-statistic) 0.000000

Inverted MA Roots -.11
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Both models give virtually equally good ¯t, MA(1)
only just marginally better. The residual autocorrela-
tions and related Q-statistics indicate no further au-
tocorrelation left to the series.

Correlogram of Residuals

Date: 04/01/01   Time: 15:27
Sample: 2276 5080
Included observations: 2805
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.000 0.000 2.E-05
2 0.001 0.001 0.0009 0.976
3 0.009 0.009 0.2428 0.886
4 -0.010 -0.010 0.4990 0.919
5 -0.007 -0.007 0.6319 0.959
6 -0.009 -0.009 0.8445 0.974
7 -0.023 -0.023 2.3176 0.888
8 0.003 0.003 2.3375 0.939
9 -0.008 -0.008 2.5307 0.960

10 0.019 0.020 3.5945 0.936
11 -0.011 -0.012 3.9433 0.950
12 0.044 0.044 9.5255 0.574
13 0.054 0.053 17.620 0.128
14 0.001 0.001 17.624 0.172
15 0.020 0.020 18.779 0.174
16 -0.031 -0.031 21.455 0.123
17 0.008 0.010 21.634 0.155
18 0.031 0.032 24.341 0.110
19 0.038 0.042 28.389 0.056
20 -0.009 -0.008 28.622 0.072
21 -0.014 -0.013 29.145 0.085
22 -0.045 -0.046 34.754 0.030
23 -0.004 -0.005 34.794 0.041
24 0.029 0.030 37.100 0.032
25 -0.007 -0.010 37.220 0.042
26 0.011 0.010 37.533 0.051
27 0.031 0.027 40.340 0.036
28 -0.003 -0.004 40.373 0.047
29 0.019 0.019 41.442 0.049
30 0.011 0.008 41.793 0.059
31 0.004 0.000 41.831 0.074
32 0.000 -0.004 41.831 0.093
33 0.041 0.043 46.528 0.047
34 -0.033 -0.027 49.557 0.032
35 -0.034 -0.025 52.794 0.021
36 0.003 -0.001 52.814 0.027

Figure. Autocorrelations of the squared MA(1) residuals

Correlogram of Residuals Squared

Sample: 2276 5080
Included observations: 2805
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.278 0.278 216.92
2 0.272 0.211 425.28 0.000
3 0.192 0.084 529.00 0.000
4 0.193 0.089 633.28 0.000
5 0.217 0.118 765.20 0.000
6 0.154 0.026 832.06 0.000
7 0.141 0.022 888.03 0.000
8 0.145 0.047 947.14 0.000
9 0.074 -0.039 962.58 0.000

10 0.106 0.023 994.10 0.000
11 0.107 0.040 1026.5 0.000
12 0.127 0.051 1072.0 0.000
13 0.115 0.028 1109.1 0.000
14 0.124 0.047 1152.2 0.000
15 0.120 0.032 1192.7 0.000
16 0.137 0.045 1245.3 0.000
17 0.133 0.037 1295.1 0.000
18 0.091 -0.022 1318.5 0.000
19 0.148 0.063 1380.4 0.000
20 0.076 -0.031 1396.7 0.000
21 0.126 0.040 1441.8 0.000
22 0.144 0.065 1500.7 0.000
23 0.105 0.001 1531.8 0.000
24 0.188 0.100 1632.3 0.000
25 0.088 -0.029 1654.0 0.000
26 0.120 0.013 1694.7 0.000
27 0.142 0.046 1751.8 0.000
28 0.142 0.042 1808.9 0.000
29 0.120 -0.014 1849.5 0.000
30 0.117 0.018 1888.4 0.000
31 0.119 0.023 1928.4 0.000
32 0.106 -0.007 1960.4 0.000
33 0.081 -0.013 1978.9 0.000
34 0.076 -0.015 1995.3 0.000
35 0.087 0.007 2016.9 0.000
36 0.073 -0.013 2031.9 0.000

Figure. Autocorrelations of the squared MA(1) residuals

The autocorrelations of the squared residuals strongly

suggest that there is still left time dependency into

the series. The dependency, however, is nonlinear by

nature.
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Because squared observations are the build-

ing blocks of the variance of the series, the

results suggest that the variation (volatility)

of the series is time dependent. This leads

to the so called ARCH-family of models.‡

1.2 ARCH-models

The general setup for ARCH models is

yt = xItβ+ ut

with xt = (x1t, x2t, . . . , xpt)
I, β = (β1,β2, . . . ,βp)

I,
t = 1, . . . , T , and

ut|Ft−1 ∼ N(0, ht),
where Ft is the information available at time
t (usually the past values of ut; u1, . . . , ut−1),
and

ht = var(ut|Ft−1) = ω+ α1u
2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q.

‡The inventor of this modeling approach is Robert
F. Engle (1982). Autoregressive conditional het-
eroscedasticity with estimates of the variance of
United Kingdom in°ation. Econometrica, 50, 987{
1008.
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Furthermore, it is assumed that ω > 0, αi ≥ 0
for all i and α1 + · · ·+ αq < 1.

For short it is denoted ut ∼ ARCH(q).

This reminds essentially an AR(q) process for

the squared residuals, because de¯ning νt =

u2t − ht, we can write
u2t = ω+ α1u

2
t−1 + α2u

2
t−2 + · · ·+ αqu

2
t−q+ νt.

Nevertheless, var(νt) is time dependent (Ex-

ercise: Prove it!), implying that this is not a

stationary process in the sense de¯ned above.

This implies that the conventional estimation

procedure in AR-estimation does not produce

optimal results here.
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Properties of ARCH-processes

Consider (for the sake of simplicity) ARCH(1)

process

ht = ω+ αu2t−1
with ω > 0 and 0 ≤ α < 1 and ut|ut−1 ∼
N(0, ht).

(a) ut is white noise

(i) Constant mean (zero):

E[ut] = E[Et−1[ut]� ,� 1
=0

] = E[0] = 0.

Note Et−1[ut] = E[ut|Ft−1], the conditional
expectation given information up to time t−
1.§

§The law of iterated expectations: Consider time points t1 < t2
such that Ft1 ⊂ Ft2, then for any t > t2

Et1 [Et2[ut]] = E [E[ut|Ft2]|Ft1] = E[ut|Ft1] = Et1[ut].
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(ii) Constant variance: Using again the law

of iterated expectations, we get

var[ut] = E[u2t ] = E
�
Et−1[u2t ]

=
= E[ht] = E[ω+ αu2t−1]
= ω+ αE[u2t−1]
...

= ω(1 + α+ α2 + · · ·+ αn)

+αn+1E[u2t−n−1]� ,� 1
→0, as n→∞

= ω
p
limn→∞

�n
i=0α

i
Q

= ω
1−α.

(iii) Autocovariances: Exercise, show that

autocovariances are zero, i.e., E[utut+k] = 0

for all k W= 0. (Hint: use the law of iterated

expectations.)
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(b) The unconditional distribution of ut is

symmetric, but nonnormal.

(i) Skewness: Exercise, show that E[u3t ] = 0.

(ii) Kurtosis: Exercise, show that under the

assumption ut|ut−1 ∼ N(0, ht), and that α <�
1/3, the kurtosis

E[u4t ] = 3
ω2

(1− α)2 ·
1− α2
1− 3α2.

Hint: If X ∼ N(0,σ2) then E[(X − µ)4] =
3(σ2)2 = 3σ4.

Because (1−α2)/(1−3α2) > 1 we have that

E[u4t ] > 3
ω2

(1− α)2 = 3[var(ut)]
2,

we ¯nd that the kurtosis of the unconditional

distribution exceed that what it would be,

if ut were normally distributed. Thus the

unconditional distribution of ut is nonnormal

and has fatter tails than a normal distribution

with variance equal to var[ut] = ω/(1− α).
9



(c) Standardized variables

Write

zt =
ut√
ht

then zt ∼ NID(0,1), i.e., normally and inde-

pendently distributed. Thus we can always

write

ut = zt
0
ht,

where zt independent standard normal ran-

dom variables (strict white noise). This gives

us a useful device to check after ¯tting an

ARCH model the adequacy of the speci¯-

cation: Check the autocorrelations of the

squared standardized series.

10



Estimation of ARCH models

Given the model

yt = xItβ+ ut

with ut|Ft−1 ∼ N(0, ht), we have yt|{xt,Ft−1} ∼
N(xItβ, ht), t = 1, . . . , T . Then the log-likelihood

function becomes

f(θ) =
T3
t=1

ft(θ)

with

ft(θ) = −1
2
log(2π)− 1

2
loght − 1

2
(yt − xItβ)2/ht,

where θ = (βI,ω,α)I.

The maximum likelihood (ML) estimate θ̂ is

the value maximizing the likelihood function,

i.e.,

f(θ̂) = max
θ

f(θ).

The maximization is accomplished by numer-

ical methods.
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Note: OLS estimates of the regression para-

meters are ine±cient (unreliable) compared

to the ML estimates.

Generalized ARCH models

In practice the ARCH needs fairly many lags.

Usually far less lags are needed by modifying

the model to

ht = ω+ αu2t−1 + δht−1,

with ω > 0, α > 0, δ ≥ 0, and α + δ < 1.

The model is called the Generalized ARCH

(GARCH) model. Usually the above GARCH(1,1)

is adequate in practice.

Econometric packages call α (coe±cient of

u2t−1) the ARCH parameter and δ (coe±cient

of ht−1) the GARCH parameter.
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Note again that de¯ning νt = u2t −ht, we can
write

u2t = ω+ (α+ δ)u2t−1 + νt − δνt−1
a heteroscedastic ARMA(1,1) process.

Applying backward substitution, one easily

gets

ht =
ω

1− δ + α
∞3
j=1

δj−1u2t−j

an ARCH(∞) process. Thus the GARCH

term captures all the history from t−2 back-
wards of the shocks ut.

Imposing additional lag terms, the model can

be extended to GARCH(r, q) model

ht = ω+
r3

j=1

δjht−j +
q3
i=1

αu2t−i

[c.f. ARMA(p, q)]. Nevertheless, as noted

above, in practice GARCH(1,1) is adequate.
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Example. MA(1)-GARCH(1,1) model of Nasdaq re-
turns. The model is

rt = µ+ ut+ θut−1

ht = ω+ αu2t−1 + δht−1.

Estimation results (EViews 4.0)

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 21 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coe±cient Std. Error z-Statistic Prob.
C 0.084907 0.017700 4.797124 0.0000
MA(1) 0.171620 0.020952 8.190983 0.0000

Variance Equation

C 0.027892 0.009213 3.027258 0.0000
ARCH(1) 0.121770 0.020448 5.955103 0.0000
GARCH(1) 0.857095 0.021526 39.81666 0.0000

R-squared 0.007104 Mean dependent var 0.086119
Adjusted R-squared 0.005685 S.D. dependent var 1.097336
S.E. of regression 1.094213 Akaike info criterion 2.695856
Sum squared resid 3352.444 Schwarz criterion 2.706443
Log likelihood -3775.938 F-statistic 5.008069
Durbin-Watson stat 2.129878 Prob(F-statistic) 0.000507
Inverted MA Roots -.17
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Correlogram of Standardized Residuals Squared

Sample: 2276 5080
Included observations: 2805
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.004 0.004 0.0519
2 0.035 0.035 3.5358 0.060
3 -0.007 -0.007 3.6727 0.159
4 -0.007 -0.008 3.8082 0.283
5 -0.009 -0.008 4.0159 0.404
6 0.001 0.001 4.0179 0.547
7 -0.021 -0.020 5.2184 0.516
8 -0.023 -0.023 6.7031 0.460
9 -0.019 -0.017 7.7149 0.462

10 -0.016 -0.014 8.4002 0.494
11 -0.024 -0.023 9.9573 0.444
12 -0.008 -0.008 10.148 0.517
13 -0.007 -0.006 10.278 0.592
14 -0.004 -0.005 10.324 0.667
15 0.005 0.004 10.405 0.732
16 -0.004 -0.005 10.448 0.791
17 -0.008 -0.010 10.639 0.831
18 -0.025 -0.027 12.405 0.775
19 0.002 0.001 12.421 0.825
20 -0.030 -0.030 14.903 0.729
21 0.000 -0.002 14.903 0.782
22 -0.016 -0.016 15.671 0.788
23 -0.004 -0.005 15.710 0.830
24 0.030 0.030 18.231 0.745
25 -0.012 -0.014 18.627 0.772
26 -0.012 -0.016 19.046 0.795
27 0.011 0.010 19.387 0.820
28 -0.015 -0.017 20.051 0.829
29 0.021 0.018 21.360 0.810
30 -0.002 -0.004 21.372 0.845
31 -0.001 -0.004 21.377 0.876
32 -0.008 -0.008 21.542 0.897
33 0.037 0.036 25.370 0.791
34 -0.016 -0.017 26.108 0.797
35 0.009 0.007 26.352 0.823
36 -0.013 -0.013 26.810 0.838
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The autocorrelations of the squared standardized resid-

uals pass the white noise test. Nevertheless, the nor-

mality of the standardized residuals is strongly re-

jected. This is why robust standard errors are used in

the estimation of the standard errors.

The variance function can be extended by

including regressors (exogenous or predeter-

mined variables), xt, in it

ht = ω+ αu2t−1 + δht−1 + πxt.

Note that if xt can assume negative values,

it may be desirable to introduce absolute val-

ues |xt| in place of xt in the conditional vari-
ance function. For example with daily data

a Monday dummy could be introduced in the

model to capture the weekend non-trading in

the volatility.
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ARCH-M Model

The regression equation may be extended

by introducing the variance function into the

equation

yt = xItβ+ γg(ht) + ut,

where ut ∼ GARCH, and g is a suitable func-

tion (usually square root or logarithm).

This is called the ARCH in Mean (ARCH-M)

model (Engle, Lilien and Robbins (1987)¶).
The ARCH-M model is often used in ¯nance

where the expected return on an asset is re-

lated to the expected asset risk. The coe±-

cient γ re°ects the risk-return tradeo®.

¶Econometrica, 55, 391{407.
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Example. Does the daily mean return of Nasdaq de-
pend on the volatility level?

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 22 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coe±cient Std. Error z-Statistic Prob.
SQR(GARCH) 0.198064 0.074141 2.671456 0.0076
C -0.069416 0.061432 -1.129969 0.2585
MA(1) 0.174785 0.020644 8.466806 0.0000

Variance Equation

C 0.031799 0.009301 3.419007 0.0006
ARCH(1) 0.134070 0.020974 6.392287 0.0000
GARCH(1) 0.842134 0.021350 39.44407 0.0000

R-squared 0.011379 Mean dependent var 0.086119
Adjusted R-squared 0.009613 S.D. dependent var 1.097336
S.E. of regression 1.092049 Akaike info criterion 2.694709
Sum squared resid 3338.007 Schwarz criterion 2.707413
Log likelihood -3773.330 F-statistic 6.443432
Durbin-Watson stat 2.127550 Prob(F-statistic) 0.000006
Inverted MA Roots -.17

The volatility term in the mean equation is statistically

signi¯cant indicating that rather than being constant

the mean return is dependent on the level of volatility.
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Consequently the data suggests that the best ¯tting
model so far is of the form

rt = γ
√
ht+ ut−1 + θut−1

ht = ω+ αu2t−1 + δht−1.

Below are the estimation results for the above model

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 16 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON

Coe±cient Std. Error z-Statistic Prob.
SQR(GARCH) 0.119204 0.022944 5.195479 0.0000
MA(1) 0.174104 0.020771 8.382098 0.0000

Variance Equation
C 0.031291 0.009545 3.278211 0.0010
ARCH(1) 0.133713 0.021011 6.363810 0.0000
GARCH(1) 0.843131 0.021785 38.70279 0.0000

R-squared 0.010861 Mean dependent var 0.086119
Adjusted R-squared 0.009448 S.D. dependent var 1.097336
S.E. of regression 1.092141 Akaike info criterion 2.694578
Sum squared resid 3339.759 Schwarz criterion 2.705165
Log likelihood -3774.146 Durbin-Watson stat 2.132844
Inverted MA Roots -.17
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Correlogram of Standardized Residuals Squared

Sample: 2276 5080
Included observations: 2805
Q-statistic probabilities adjusted for 1 ARMA term(s)

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 -0.003 -0.003 0.0213
2 0.034 0.034 3.2371 0.072
3 -0.008 -0.008 3.4198 0.181
4 -0.009 -0.010 3.6300 0.304
5 -0.009 -0.009 3.8611 0.425
6 0.001 0.001 3.8636 0.569
7 -0.022 -0.021 5.1942 0.519
8 -0.023 -0.023 6.6228 0.469
9 -0.018 -0.017 7.5391 0.480

10 -0.015 -0.014 8.1998 0.514
11 -0.023 -0.023 9.7327 0.464
12 -0.007 -0.007 9.8585 0.543
13 -0.006 -0.005 9.9568 0.620
14 -0.001 -0.002 9.9594 0.697
15 0.005 0.003 10.023 0.761
16 -0.003 -0.005 10.055 0.816
17 -0.006 -0.008 10.163 0.858
18 -0.025 -0.027 11.907 0.806
19 0.006 0.004 11.994 0.848
20 -0.030 -0.030 14.490 0.754
21 0.003 0.000 14.511 0.804
22 -0.016 -0.015 15.193 0.813
23 -0.002 -0.004 15.207 0.853
24 0.031 0.031 17.937 0.761
25 -0.011 -0.013 18.265 0.790
26 -0.011 -0.015 18.602 0.816
27 0.013 0.011 19.073 0.833
28 -0.015 -0.016 19.737 0.842
29 0.022 0.019 21.147 0.819
30 -0.003 -0.004 21.173 0.853
31 0.000 -0.002 21.173 0.882
32 -0.006 -0.006 21.293 0.904
33 0.041 0.040 26.022 0.763
34 -0.016 -0.016 26.794 0.769
35 0.009 0.006 27.013 0.797
36 -0.013 -0.012 27.472 0.814
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Series: Standardized Residuals

Sample 2276 5080

Observations 2805

Mean      -0.056142

Median   0.018376

Maximum  3.239140

Minimum -6.557423

Std. Dev.   0.998195

Skewness  -0.726040

Kurtosis   5.409519

Jarque-Bera  924.9855

Probability  0.000000
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Looking at the standardized residuals, the distribution

and the sample statistics of the distribution, we ob-

serve that the residual distribution is obviously skewed

in addition to the leptokurtosis. The skewness may

be due to some asymmetry in the conditional volatil-

ity which we have not yet modeled. In ¯nancial data

the asymmetry is usually, such that downward shocks

cause higher volatility in the near future than the pos-

itive shocks. In ¯nance this is called the leverage ef-

fect.

An obvious and simple ¯rst hand check for the asym-

metry is to investigate the cross autocorrelations be-

tween standardized and squared standardized GARCH

residuals.

Below are the cross autocorrelations between the stan-

dardized and squared standardized residuals of the ¯t-

ted MA(1)-GARCH(1,1) model.
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============================================================
Z,Z2(-i) Z,Z2(+i) i lag lead

============================================================
****| | ****| | 0 -0.3916 -0.3916

| | *| | 1 0.0342 -0.0782
| | *| | 2 -0.0055 -0.0842
| | | | 3 0.0093 -0.0373
| | | | 4 0.0066 0.0315
| | | | 5 0.0134 -0.0046
| | | | 6 -0.0134 -0.0019
| | | | 7 0.0113 -0.0004
| | | | 8 -0.0019 0.0045
| | | | 9 -0.0034 0.0272
| | | | 10 -0.0205 0.0128

============================================================

The cross autocorrelations correlations are not large,

but may indicate some asymmetry present.

Asymmetric ARCH: TARCH and EGARCH

A kind of stylized fact in stock markets is that

downward movements are followed by higher

volatility. EViews includes two models that

allow for asymmetric shocks to volatility.
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The TARCH model

Threshold ARCH, TARCH (Zakoian 1994,

Journal of Economic Dynamics and Control,

931{955 , Glosten, Jagannathan and Run-

kle 1993, Journal of Finance, 1779-1801) is

given by [TARCH(1,1)]

ht = ω+ αu2t−1 + φu2t−1dt−1 + δht−1,

where dt = 1, if ut < 0 (bad news) and zero

otherwise. Thus the impact of good news

is α while for the bad news (a+ φ). Hence,

φ W= 0 implies asymmetry. The leverage exists

if φ > 0.
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Example. Estimation results for the MA(1)-TARCH-
M model.

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 26 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON
=============================================================

Coefficient Std. Error z-Statistic Prob.
=============================================================
SQR(GARCH) 0.091184 0.023097 3.947880 0.0001
MA(1) 0.184263 0.020899 8.816678 0.0000
=============================================================

Variance Equation
=============================================================
C 0.037068 0.009513 3.896566 0.0001
ARCH(1) 0.084275 0.025080 3.360240 0.0008
(RESID<0)*ARCH(1) 0.099893 0.040881 2.443502 0.0145
GARCH(1) 0.833239 0.019001 43.85202 0.0000
=============================================================
R-squared 0.009604 Mean dependent var 0.086119
Adjusted R-squared 0.007835 S.D. dependent var 1.097336
S.E. of regression 1.093029 Akaike info criterion 2.686832
Sum squared resid 3344.000 Schwarz criterion 2.699536
Log likelihood -3762.281 Durbin-Watson stat 2.149776
=============================================================
Inverted MA Roots -.18
=============================================================

The goodness of ¯t improve, and the statistically sig-

ni¯cant positive asymmetry parameter indicates pres-

ence of leverage.
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Furthermore, as seen below, the ¯rst few cross auto-
correlations reduce to about one half of the original
ones. They are still statistically signi¯cant, slightly
exceeding the approximate 95% boundaries ±2/√T =
±2/√2805 ≈ ±0.038.
Cross autocorrelations of the standardized and squared
standardized MA(1)-TARCH(1,1)-M model.

=============================================================
Z,Z2(-i) Z,Z2(+i) i lag lead

-------------------------------------------------------------
****| | ****| | 0 -0.3543 -0.3543

| | *| | 1 0.0304 -0.0488
| | *| | 2 -0.0071 -0.0537
| | | | 3 0.0112 -0.0156
| | |* | 4 0.0069 0.0545
| | | | 5 0.0113 0.0080

=============================================================

The EGARCH model

Nelson (1991) (Econometrica, 347{370) pro-

posed the Exponential GARCH (EGARCH)

model for the variance function of the form

(EGARCH(1,1))

loght = ω+ δ loght−1 + α |zt−1|+ φzt−1,

where zt = ut/
√
ht is the standardized shock.

Again the impact is asymmetric if φ W= 0, and

leverage is present if φ < 0.
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Example MA(1)-EGARCH(1,1)-M estimation results.

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 28 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON
=========================================================

Coefficient Std. Error z-Stat Prob.
=========================================================
SQR(GARCH) 0.084631 0.022593 3.745866 0.0002
MA(1) 0.171543 0.020387 8.414399 0.0000
=========================================================

Variance Equation
=========================================================
C -0.197193 0.023051 -8.554804 0.0000
|RES|/SQR[GARCH](1) 0.251752 0.030816 8.169621 0.0000
RES/SQR[GARCH](1) -0.071425 0.024034 -2.971755 0.0030
EGARCH(1) 0.958125 0.010941 87.57385 0.0000
=========================================================
R-squared 0.010762 Mean dependent var 0.086119
Adjusted R-squared 0.008995 S.D. dependent var 1.097336
S.E. of regression 1.092390 Akaike info criter 2.682518
Sum squared resid 3340.093 Schwarz criterion 2.695222
Log likelihood -3756.232 Durbin-Watson stat 2.124928
=========================================================
Inverted MA Roots -.17
=========================================================

Cross autocorrelations (not shown here) are about

the same as with the TARCH model (i.e., disappear).

Thus TARCH and EGARCH capture most part of the

leverage e®ect.
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News Impact Curve

The asymmetry of the conditional volatility

function can be conveniently illustrated by

the news impact curve (NIC). The curve is

simply the graph of ht(z), where z indicates

the shocks (news).

Below is a graph for the NIC of the above estimate

EGARCH variance function, where ht−1 is replaced by

the median of the estimated EGARCH series.

News Impact Curve: EGARCH
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The Component ARCH Model

We can write the GARCH(1,1) model as

ht = ¹ω+ α(u2t−1 − ¹ω) + δ(ht−1 − ¹ω),
where

¹ω =
ω

1− α− δ
is the unconditional variance of the series.

Thus the usual GARCH has a mean rever-

sion tendency towards ¹ω A further extension

is to allow this unconditional or long term

volatility to vary over time. This lead to so

called component ARCH that allows mean

reversion to a varying level qt instead of ¹ω.

The model is

ht − qt = α(u2t−1 − qt−1) + δ(ht−1 − qt−1)
qt = ω+ ρ(qt−1 − ω) + θ(u2t−1 − ht−1).

An asymmetric version for the model is

ht − qt = α(u2t−1 − qt−1)
+α(u2t−1 − qt−1)dt−1 + δ(ht−1 − qt−1)

qt = ω+ ρ(qt−1 − ω) + θ(u2t−1 − ht−1).
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Example Asymmetric Component ARCH of the Nas-
daq composite returns.

Dependent Variable: DNSDQ
Method: ML - ARCH (Marquardt)
Sample: 2276 5080
Included observations: 2805
Convergence achieved after 4 iterations
Bollerslev-Wooldrige robust standard errors & covariance
MA backcast: 2275, Variance backcast: ON
=================================================================

Coefficient Std. Error z-Statistic Prob.
=================================================================
SQR(GARCH) 0.097235 0.023997 4.052002 0.0001
MA(1) 0.182908 0.027822 6.574119 0.0000
=================================================================

Variance Equation
================================================================
Perm: C 0.926329 0.080794 11.46533 0.0000
Perm: [Q-C] 0.734067 0.077885 9.425047 0.0000
Perm: [ARCH-GARCH] 0.228360 0.048519 4.706581 0.0000
Tran: [ARCH-Q] 0.037121 0.039565 0.938228 0.3481
Tran: (RES<0)*[ARCH-Q] -0.077747 0.076100 -1.021635 0.3070
Tran: [GARCH-Q] -0.688202 0.353158 -1.948710 0.0513
=================================================================
R-squared 0.008632 Mean dependent var 0.086119
Adjusted R-squared 0.006151 S.D. dependent var 1.097336
S.E. of regression 1.093956 Akaike info criterion 2.771137
Sum squared resid 3347.282 Schwarz criterion 2.788076
Log likelihood -3878.519 Durbin-Watson stat 2.152828
=================================================================
Inverted MA Roots -.18
=================================================================

This model, however, does not ¯t well into the data.

Thus it seems that the best ¯tting models so far are

either the TARCH or EGARCH.
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1.3 Regime switching models

A potentially useful approach to model non-

linearities in time series is to assume di®er-

ent behavior (structural break) in one sub-

sample (or regime) to another. If the dates,

the regimes switches have taken place are

know, modeling can be worked out simply

with dummy variables.
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Consider the following regression model

yt = xt
IβSt+ ut, t = 1, . . . , T ,

where

ut ∼ NID(0,σ2St),

βSt = β0(1− St) + β1St,

σ2St = σ20(1− St) + σ21St,

and

St = 0 or 1, (Regime 0 or 1).

Thus under regime 1, the coe±cient para-

meter vector is β1 and error variance σ
2
1.

For the sake of simplicity consider an AR(1)

model. That is xt = (1, yt−1)I. Usually it is
assumed that the possible di®erence between

the regimes is a mean and volatility shift, but

not autoregressive change. That is

yt = µSt+ φ1(yt−1 − µst−1) + ut, ut ∼ NID(0,σ2St),
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where µSt = µ0(1 − St) + µ1St, and σ2St as

de¯ned above. If St, t = 1, . . . , T is known a

priori, then the problem is just a usual dummy

variable autoregression problem.

In practice, however, the prevailing regime is

not usually directly observable. Denote then

P (St = j|St−1 = i) = pij, (i, j = 0,1),

called transition probabilities, with pi0+pi1 =

1, i = 0,1. This kind of process, where the

next state depend only on the previous state,

is called the Markov process, and the model

a Markov switching model in the mean and

variance.

Thus in this model additional parameters to

be estimated are the transition pij. Usually

the parameters are estimated (numerically)

by the ML method.∗∗
∗∗For a detailed discussion, see Kim Chang-Jin and
Charles A. Nelson (1999). State Space Models
with Regime Switching. Classical and Gibbs-Sampling Ap-
proaches with Applications. MIT-Press.
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The joint probability density function for
yt, St, St−1 given past information
Ft−1 = {yt−1, yt−2, . . .} is
f(yt, St, St−1|Ft−1) = f(yt|St, St−1,Ft−1)P(St, St−1|Ft−1),

with

f(yt|St, St−1,Ft−1) =
1�
2πσ2St

exp

l
−[yt−µSt−φ1(yt−1−µSt−1)]

2

2σ2St

M
.

Then the log-likelihood function to be maxi-

mized with respect to the unknown parame-

ters is

f(θ) =
T3
t=1

ft(θ),

where

ft(θ) = log

 13
St=0

13
St−1=0

f(yt|St, St−1,Ft−1)P [St, St−1|Ft−1]
,

θ = (p, q,φ0,φ1,σ
2
0,σ

2
1), and P [St = 0|St−1 =

0] = p, P [St = 1|St−1 = 1] = q, the transition

probabilities.
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To evaluate the log-likelihood function we

need to de¯ne the joint probabilities

P [St, St−1|Ft−1]. Because of the Markov prop-
erty P [St|St−1,Ft−1] = P [St|St−1]. Thus we

can write

P [St, St−1|Ft−1] = P [St|St−1]P [St−1|Ft−1],
and the problem reduces to calculating (es-

timating) the time dependent state proba-

bilities P [St−1|Ft−1], and weight them with

the transition probabilities to obtain the joint

probability.

This can be achieved as follows:

First, let P [S0 = 1|F0] = P [S0 = 1] = π

be given (then P [S0 = 0] = 1 − π). Then

the probabilities P [St−1|Ft−1] and the joint

probabilities are obtained using the following

two steps algorithm
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10 Given P [St−1 = i|Ft−1], i = 0,1, at the
beginning of time t (tth iteration),

P [St = j, St−1 = i|Ft−1] = P [St = j|St−1]P [St−1|Ft−1],

20 Once yt is observed, we update the infor-
mation set Ft = {Ft−1, yt} and the prob-
abilities

P [St = j, St−1 = i|Ft] = P [St = j, St−1 = i|Ft−1, yt]
=

f(St=i,St−1=j,yt|Ft−1)
f(yt|Ft−1)

=
f(yt|St=j,St−1=i,Ft−1)P [St=j,St−1=i|Ft−1]�1

st,st−1=0
f(yt|st,st−1,Ft−1)P [St=st,St−1=st−1|Ft−1]

with

P [St = st|Ft] =
13

st−1=0

P [St = st, St−1 = st−1|Ft].

Once we have the joint probability for the

time point t, we can calculate the likelihood

ft(θ). The maximum likelihood estimates for

θ is then obtained iteratively maximizing the

likelihood function by updating the likelihood

function at each iteration with the above al-

gorithm.
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Steady state probabilities

The probabilities π = P [S0 = 1|F0] is called
the steady state probability, and, given the

transition probabilities p and q, is obtained

as

π = P [S0 = 1|F0] =
1− p

2− p− q.

Note that in the two state Markov chain

P [S0 = 0|F0] = 1− P [S0 = 1|F0] =
1− q

2− p− q.

Smoothed probabilities

Recall that the state St is unobserved. How-

ever, once we have estimated the model, we

can make inferences on St using all the infor-

mation from the sample. This gives us

P [St = j|FT ], j = 0,1,

which are called the smoothed probabilities.

Note. In the estimation procedure we de-

rived P [St = j|Ft] that are usually called the
¯ltered probabilities.
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Expected duration

The expected length the system is going to

stay in state j can be calculated from the

transition probabilities. Let D denote the

number of periods the system is in state j.

The probabilities are easily found to be equal

to P [D = k] = pk−1jj (1− pjj), so that

E[D] =
∞3
k=1

kP [D = k] =
1

1− pjj
.

Note that in our case p00 = p and p11 = q.

Example. Are there long swings in the dollar/sterling
exchange rate?

If the exchange rate xt is RW with long swings, it can
be modeled as

¢xt = α0 + α1St+ 6t,

so that ¢x1 ∼ N(µ0,σ20) when St = 0 and ¢xt ∼
N(µ1,σ21), when St = 1, where µ0 = α0 and µ1 =

α0+α1. Parameters µ0 and µ1 constitute two di®erent

drifts (if α1 W= 0) in the random walk model.
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Estimating the model from quarterly with sample pe-
riod 1972I to 1996IV gives

Parameter Estimate Std err
µ0 2.605 0.964
µ1 -3.277 1.582
σ20 13.56 3.34
σ21 20.82 4.79
p (regime 1) 0.857 0.084
q (regime 0) 0.866 0.097

The expected length of stay in regime 0 is given by

1/(1− p) = 7.0 quarters, and in regime 1 1/(1− q) =
7.5 quarters.
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Example. Suppose we are interested whether the mar-

ket risk of a share is dependent on the level of volatility

on the market. In the CAPM world the market risk of

a stock is measured by β.

World and Finnish Returns
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Consider for the sake of simplicity only the cases of

high and low volatility.
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The market model is

yt = αSt + βStxt+ 6t,

where αSt = α0(1− St) + α1St, βSt = β0(1− St) + β1St

and 6t ∼ N(0,σ2St) with σ2t = σ20(1− St) + σ21St.

Estimating the model yields

Parameter Estimate Std Err t-value p-value
α0 -0.0075 0.0186 -0.40 0.685
α0 0.0849 0.0499 1.70 0.089
β0 0.9724 0.0224 43.47 0.000
β1 1.8112 0.0666 27.19 0.000
σ20 0.7183 0.0150 48.01 0.000
σ21 1.3072 0.0267 48.89 0.000

State Prob

P(High|High) 0.96340
P(Low|High) 0.03660
P(High|Low) 0.01692
P(Low|Low) 0.98308
P(High) 0.68393
P(Low) 0.31607

Log-likelihood -3186.064

The empirical results give evidence that the stock's

market risk depends on the level of stock volatility.

The expected duration of high volatility is 1/(1 −
.9634) ≈ 27 days, and for low volatility 59 days.
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Market returns with high-low volatility probabilities

World Index
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