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Abstract

We discuss parameter estimation for discretely observed, ergodic
diffusion processes where the diffusion coefficient does not depend on
the parameter. We propose using an approximation of the continuous-
time score function as an estimating function. The estimating func-
tion can be expressed in simple terms through the drift and the diffu-
sion coefficient and is thus easy to calculate. Simulation studies show
that the method performs well.
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1 Introduction

This paper is about parameter estimation for discretely observed diffusion
models with known diffusion function. The idea is to use an approximation
of the continuous-time score function as estimating function.

This idea is very much in the spirit of the early work by Le Breton (1976)
and Florens-Zmirou (1989). They both studied the usual Riemann-It6
discretization of the continuous-time log-likelihood function, and Florens-
Zmirou (1989) showed that the corresponding estimator is inconsistent
when the length of the time interval between observations is constant.

More recently, various methods providing consistent estimators have
been developed, e.g. methods based on approximations of the true, discrete-
time likelihood function (Pedersen, 1995; Ait-Sahalia, 1998); methods based



2 Approzimation of the score function

on auxillary models (Gallant and Tauchen, 1996; Gourieroux, Monfort and
Renault, 1993); and methods based on estimating functions (Bibby and
Sgrensen, 1995; Hansen and Scheinkman, 1995; Kessler, 1996; Jacobsen,
1998).

The estimating function discussed in this paper is of the simple, explicit
type discussed by Hansen and Scheinkman (1995) and Kessler (1996), that
is, on the form "7 ;| Aph(Xy, ,,0) where Ay is the generator of the diffu-
sion. Hansen and Scheinkman (1995) focus on identifiability and asymp-
totic behaviour of the estimating function whereas Kessler (1996) focus on
asymptotic behaviour and efficiency of the estimator.

The main contribution of this paper is to recognize that, with a special
choice of h, the estimating function can be interpreted as an approxima-
tion to the continuous-time score function. The approximating estimating
function is unbiased, it is invariant to data transformations, it provides
consistent and asymptotically normal estimators, and it can be explicitly
expressed in terms of the drift and diffusion coefficient. The estimating
function is also — at least in some cases — available for multi-dimensional
processes.

The main objection against the method is the need for a completely
known diffusion function. In case of a parameter dependent diffusion func-
tion the suggested estimating function is still unbiased and can thus in
principle be used but there is no longer justification for using it since the
continuous-time likelihood function does not exist.

We present the model and the basic assumptions in Section 2, and the
estimating function is derived in Section 3. We give the asymptotic results
in Section 4, and examples and simulation studies in Section 5. Sections 2—5
discuss one-dimensional diffusion processes exclusively; we study the multi-
dimensional case in Section 6.

2 Model and notation

In this section we present the diffusion model, state the assumptions and
introduce some notation.

We consider a one-dimensional, time-homogeneous stochastic differen-
tial equation

dXt = b(Xt,H) dt + O'(Xt) th, Xo = X0 (1)

where 6 is an unknown p-dimensional parameter from the parameter space
© C RP and W is a one-dimensional Brownian motion. The functions
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b:Rx© — Rand 0 : R —]0,00[ are known, and the derivatives do/0z
and 0%b/ 00;0z are assumed to exist for all j = 1,... ,p. Note that o does
not depend on 6.

We assume that, for any 6, (1) has a unique strong solution X, and
that the range of X does not depend on 6. Assume furthermore that there
exists a unique invariant distribution pg = p(z,0)dz such that a solution
to (1) with Xy ~ pg (instead of Xy = x¢) is strictly stationary. Sufficient
conditions for these assumptions to hold can be found in Karatzas and
Shreve (1991).

The invariant density is given by

u(z,0) = (C(8)s(z,0)0%(x)) " 2)

where C(0) is a normalizing constant and s(-,#) is the density of the scale
measure, i.e. logs(z,0) = —2 [ b(y,0)/0?(y) dy.

For all 6 € ©, the distribution of X is denoted Py if Xy = z¢ (as in (1))
and P}’ if Xo ~ pg. Under P), all X; ~ py. Ej is the expectation wrt. P}

The objective is to estimate € from observations of X at discrete time-
points t; < --- < t,. Define tg = 0 and A; = ¢; — t;_1 and let 6y be the
true parameter.

Finally, we need some matrix notation: Vectors in RP are considered
as p X 1 matrices, and A’ is the transpose of A. For a function f =
(fi, - f)T i Rx O = R? we let f'(z,6) be the ¢ x 1 matrix of partial
derivatives with respect to z and f(z,0) = Dyf(z,6) be the ¢ x p matrix
of partial derivatives with respect to 0, i.e. fjk(:v, 0) = %fj(a:, ).

3 The estimating function

In this section we derive a simple, unbiased estimating function as an ap-
proximation of the continuous-time score function.

First a comment on the model: It is important that ¢ does not depend
on §. Otherwise the distributions of (X s) o<s<t corresponding to two differ-
ent parameter values are typically singular for all ¢ > 0. If Y is the solution
to dY; = b(Y;, 0)dt + &(Y:, 0)dWy, then the process (fYt 1/6(y,6)dy)t>0 is
the solution to (1) with ¢ = 1, but this is of no help for estimation purposes
since the transformation depends on the (unknown) parameter.

When ¢ is completely known as we have assumed, it follows from Lipster
and Shiryayev (1977) that the likelihood function for a continuous observa-

tion (X 5)0 <5<y €xists and that the corresponding score process S is given
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Sf(@):/ bx dX / XS’Q) ds.

Using (1) we find that

b(Xtaa)
o(Xy)

This shows that S¢(6) is a local martingale and a genuine martingale if
Bl [1(6;(Xs,0)/0(Xs))* ds < oo forall ¢ > 0 and all j = 1,... ,p, i.e. if

(457 - weoes

for all j = 1,... ,p. In particular, Eff Sf = 0 for all ¢ > 0 if (4) holds.

If X was observed continuously on the interval [0, ¢,,] we would estimate
6 by solving the equation Sf (#) = 0. For discrete observations at time-
points t1,... ,t,, the idea is to use an approximation of Sf as estimating
function.

The most obvious approximation is obtained by simply replacing the
integrals in (3) with the corresponding Riemann and It6 sums,

= i)(Xti—me) Zn:A th 10 b(th 139)
02 th 1) .

dsS;(0) = dWi. (3)

Note that this would be the score function if the conditional distributions of
the increments X;, — X;, |, given the past, were Gaussian with expectation
Aib(Xy, ,,0) and variance A;o%(Xy, ,). However, usually Ej R,(0) # 0,
and R, provides inconsistent estimators unless sup;_; _, A; — 0 (Florens-
Zmirou, 1989).

We now propose an unbiased approximation of S . Let Ay denote the
differential operator associated with the infinitesimal generator for X, that
is

Aof (2,6) = b(z,0)1'(2,6) + 50°(@) ", 0)

for functions f : Rx ® — RP that are twice continuously differentiable wrt.
x.
Recall that p is the invariant density and assume that the derivatives

h* = Dglogpu : Rx © — RP
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wrt. the coordinates of 6 exist and are twice continuously differentiable
wrt. z, such that Agh* is well-defined. The connection between h* and S¢
is given in the following proposition:

Proposition 3.1 With respect to Py and Peu, it holds for all t > 0 that
t
2.85(0) = h*(X1,0) — B*(Xo,0) — / Agh*(X,,0) ds. (5)
0

Proof We show that
dh*(Xy,0) = Agh* (X, 0) dt + 2dS5(0). (6)

Then (5) follows immediately since S§ = 0. Using (2) we easily find the
first derivative of h* = Dylog s in terms of b and o;

[w Ny

(,0)
2@ 7

h*'(x,0) = DyDglog p(x,0) = —DyDy log s(z,0) = 2

Now simply apply It6’s formula on h*. O

The proposition suggests that we use

1 n
FX(0) = 5 > AAgh*(Xy,_,,0),

i=1

as an approximation to —Sf (since the term h*(Xy,,0) — h*(Xo, 0) is neg-
ligible when n is large) and hence solve the equation FX(f) = 0 in order to
find an estimator for 6.

The right hand side of (5) with h* substituted with an arbitrary function
h € C%(I), is a martingale if Ejj(h'0)? < co. Hence,

El Agh(Xo,0) = 0 (8)

if furthermore h and Agh are in L' (uy). In particular F), is unbiased, i.e.
Ef Fx(0) = 0, if (4) holds and if h* and Agh* are in L' (ug).

The moment condition (8) was used by Hansen and Scheinkman (1995)
to construct General Method of Moments estimators (their condition C1)
and by Kessler (1996) and Jacobsen (1998) to construct unbiased esti-
mating functions. Kessler particularly suggests choosing polynomials h
of low degree — regardless of the model. Instead, we suggest the model-
dependent choice h = h*. Intuitively, this should be good for small A;’s
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since F, = —Sf . Indeed, for A; = A, F,, is small A-optimal in the sense
of Jacobsen (1998).

It should be clear, though, that moment conditions like (8) cannot
achieve asymptotically efficient estimators for a given A > 0 since each
term in the discrete-time score function involves pairs of observations. Note
that if the observations were iid. pg-distributed, the score function would
equal 7 ; h*(Xy,,0), which is thus optimal for A — co. Kessler (1996)
discussed this estimating function.

When A; = A, F, is a simple estimating function, 4.e. a function of the
form Y1 | f(Xy_,,0) where Ej f(X(,0) = 0 (Kessler, 1996). In general,
the A;’s can be interpreted as weights compensating for the dependence
between observations that are close in time: an observation is given much
weight if it is far in time from the previous one, and little weight if it is
close in time to the previous one.

Note that (8) holds so that F, is unbiased even if o depends on 6. How-
ever, the interpretation of F;, as an approximation of minus the continuous-
time score function is of course no longer valid and the method will be
non-optimal even for small A;’s (Jacobsen, 1998).

A nice property of F; is that it is invariant to transformations of data;
the estimator does not change if we observe (X3, ),... ,o(X},) instead of
X4,,..., X, . This is not the case for the polynomial martingale estimating
functions discussed by Bibby and Sgrensen (1995).

To prove the invariance, we need some further notation: For a diffusion
process Y satisfying a stochastic differential equation similar to (1), we
write py and Ay for the corresponding invariant density and the differential
operator, and define hy, = Dy log vy .

Proposition 3.2 Let ¢ : I — J C R be a bijection from C?(I) with inverse
0!, and let Y = o(X). Then

Ay b (y,0) = Axh’ (7' (1), 6). 9)
Proof By It6’s formula, Y is the solution to
dY; = by (Y3, 0) dt + oy (Yy) dW;

where, with obvious notation,

b (3,6) = bx (67 ), 0)¢/ (67 ) + 5 (0% (0" W),

oy (y) = (ox¢') (¢ ().
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One can now either check directly from (10) that (9) holds or argue as
follows. The density for the invariant distribution of Y = ¢(X) is given by

v (y,0) = ux (071 (%),0)| (¢™!)" ()| and thus
Ky (y,0) = Dglog py (y,0) = Dglogux (v ' (y),0) = hx (¢ '(y),0).

Finally, Ay (foe™)(y) = Ax f (¢ (y)) for all f € C*(I), which concludes
the proof. O

In the following we write f* for (Agh*)/2 = (AgDglogp)/2. It is im-
portant to note that we have an explicit expression for f* — and thus for
Fo =01 Aif*(Xy,_,,-) — in terms of b and o, even if we have no explicit
expression for the normalizing constant C'(): from (7) we get

b 1., bo'
Ebl - ) (10)

f*=Agh*/2 = (§+

4 Asymptotic properties

In this section we state the asymptotic results for F;,. We consider equidis-
tant observations, t; = 1A where A does not depend on n, and let n — oo.
Under suitable regularity conditions, a solution 6, to F,(6) = 0 exists
with a Py, -probability tending to 1, and 6, is a consistent, asymptotically
normal estimator for §. The asymptotic distribution of 6, is given by

Vi (B —00) 3 N (0, A(60) 1V (680) (4(00) ™))

wrt. Pp, as n — oo, where A(6)) = Ef f*(Xo,60) and

V(60) = Ejj f*(Xo0,00)*(X0,00)" +2 ) Bl *(Xo0,00)f*(Xsa,00)"-
k=1

Conditions that ensure convergence of the sum in are given by Kessler
(1996). If (8) holds for each hj}, then

A(6o) = 2B} (”ﬁffﬁ(ff )>T(6S§%O)>

and A(6p) is symmetric and positive semidefinite. It must be positive defi-
nite. We will not go through the additional regularity conditions here but
refer to Kessler (1996) and particularly to Sgrensen (1998).
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5 Examples

As already mentioned Fj,, can always be expressed explicitly in terms of
b and 0. When b is linear wrt. the parameter we even get explicit esti-
mators. Assume that b(x,0) = bo(z) + Z?Zl b;j(z)8; for known functions
bo,b1,... ,bp : R = R such that the assumptions of Sections 2 and 3 hold.
From (10) we easily deduce that the k’th coordinate of f* is given by

br(z)b;(x bo(z)bk(z) 1 br(z)o' (z
F5(2,0) = jz_jl kfﬁ)(;)( )Hj n 0(02)(;:)( ) 4 () w(@)o'(z)
It follows that F), is linear in @ and it is easy to show that the estimating
equation has a unique, explicit solution if and only if by, ... ,b, are linearly
independent.

The Ornstein-Uhlenbeck model and the Cox-Ingersoll-Ross model are
special cases of this setup. Several authors have studied inference for
these models, see e.g. Bibby and Sgrensen (1995), Gourieroux et al. (1993),
Kessler (1996), Jacobsen (1998), Overbeck and Rydén (1997), and Pedersen
(1995). From now on, we consider equidistant observations, A; = A.

Example (The Ornstein-Uhlenbeck process) Let X be the solution to
dXt = OXt dt + th, X() = Xy,

where 6 < 0. The estimator is given by 6, = —n/(2 >y X(2i—1)A)' h* is
a eigenfunction for Ay so the simple estimating functions corresponding to
f =h*and f = f* are proportional (and hence provide the same estimator).
Kessler (1996) showed that, for all A, 6,, has the least asymptotic variance
among estimators obtained from simple estimating equations. This also
follows from results in Jacobsen (1998). O

Example (The Coz-Ingersoll-Ross process) Consider the solution X to
dXt = (Oé + ﬁXt) dt + vV Xt th, XO = Xy-
where 8 < 0 and a > 1/2. The estimating function F,, is given by

(a_%)Z?—lm"'"ﬁ).

F, 3 =
(o, B) ( BY", Xg-1a + na
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To see how the estimator performs we have compared it to three other
estimators in a simulation study. We have simulated 500 processes on
the interval [0,500] by the Euler scheme with time-step 1/1000. The
number of observations is n = 500 and A = 1. For each simulation
we have calculated four estimators, namely those obtained from F,,, R,,
Hy, =>7",h*(Xy ,,-), and the martingale estimating function suggested
by Bibby and Sgrensen (1995).
The estimating function H,, is given by

Yiz log X(i_1)a — n¥(2a) + nlog(—23)
doim1 X(i—na + ng

where U is the Digamma function, ¥(z) = %log ['(z). Note that the

second coordinates of F;, and Hy, are equivalent and that H,(#) = 0 cannot

be solved explicitly.
The empirical means and standard errors of the four estimators are

H,(0) =2

listed in Table 1. The true parameter values are oy = 10 and Gy = —1.
Estimating function on Bn
mean s.e. mean s.e.
F, 10.1271 0.7218 | -1.0126 0.0737
H, 10.1543 0.7151 | -1.0154 0.0729
R, 6.3691 0.4279 | -0.6368 0.0430
Martingale 10.2000 1.1900 | -1.0200 0.1200

Table 1: Empirical means and standard errors for 500 realizations
of various estimators for («, 3) in the Cox-Ingersoll-Ross model. The
number of observations is n = 500 and A = 1. The true value is

(@0, 5) = (10,-1).

The estimator from R, is biased (as we knew). F, and H, seem to be
almost equally good and are both better than the martingale estimating
function. O

Finally, we consider an example where the parameter of interest enters
as an exponent in the drift function.

Example (A generalized Coz-Ingersoll-Ross model) Let X be the solution
to

dX, = (a n ﬁXf) dt + /X, dW,
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where o > % and 8 < 0 are known, and 6 > 0 is the unknown parameter.
X is a Cox-Ingersoll-Ross process if 8 = 1; for # # 1 the mean reverting
force is stronger or weaker.

From (10) it follows that f* = (Ayh*)/2 is given by

0 1 1
*(z,0) = B! logac(a + Bz + 7 5) + §ﬂm0_1.
The estimating equation must be solved numerically. For comparison we

have also considered the simple estimating function corresponding to

f a 1/6

As above, we have simulated 500 processes by means of the Euler
scheme; n = 500 and A = 1. The true value of 6 is 8y = 1.5 and o = 2,
B = —1. The means (standard errors) of the estimators are 1.5028 (0.0508)
when using F,, and 1.5001 (0.0590) when using 3" f(X(i_1)a,")-

Both estimators are very precise. The estimator obtained from (11) is
closer to the true value but has larger standard error than the estimator
obtained from F;,. O

(11)

6 Multi-dimensional processes

So far, we have only studied one-dimensional diffusion processes. In this sec-
tion we discuss to what extend the ideas carry over to the multi-dimensional
case.

We consider a d-dimensional stochastic differential equation

dXt = b(Xt, 9) dt + O(Xt) th, X() = Zy- (12)

The parameter @ is still p-dimensional, # € © C RP, but X and W are now
d-dimensional. The functions b : R* x @ — R?% and o : R¢ — R¥*¢ are
known, o(z) is regular for all z € R?, and zy € RY.

Let b be the d x p matrix of derivatives; b,j = 0b;/00;, and let D;g =
0g/0x; and ijg = 0g%/0x;0x; for functions g : R x © — R with g(-,0)

in C?(R%). With this notation the analogue of Ay is given by

d d
Aag(a,0) = 3" bi(z,6) Dig(e,0) + 5 3 (o@)o” (@), Djg(a,0)

i=1 i,j=1
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and the score process is given by
t . t .
= [ B 0mea) ax, - [0S0, 0 ds
0 0

where %(z) = (o(z)o” (:1;))71, see Lipster and Shiryayev (1977). Using (12)
we find dS¢(0) = b7 (X;,0) (01T (X;) dW;.

Now, similarly to (6) we look for functions hf,... ,hy : R x © = R
such that for each k, dhj(X,0) = Aghj(X:,0) dt +2dS (). Arguing as
above this leads to the equations

Dl (z,6) = 2|87 (z,0)5( ] _2Zb,,kx9 w(@), i=1,....d
(13)

and thus

ob o3,
Aghty =2 Z by Zirbi +Z o S Z o), brk aw’; (14)

i,r=1 1,7,r=1

The equations (13) may, however, not have solutions; differentiation
wrt. z; yields

ab 0%;
D}ihy =2 -

but the right hand side is not necessarily symmetric wrt. ¢ and j, see the
example below.

If there are solutions, then (14) has expectation zero and the simple
estimating function with f = (Agh’l‘, ... ,Agh;)T may be used. Otherwise,
the right hand side of (14) is typically biased.

Example (Homogeneous Gaussian diffusions) Let B be a 2 X 2-matrix
with eigenvalues with strictly negative parts, and let A be an arbitrary
2 x 1 matrix. Consider the stochastic differential equation

dXt = (A‘l— BXt) dt + O'th, X() =Ty

where 0 > 0 is known, W is a two-dimensional Brownian motion, and
xo € R2.
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Solutions to all the equations (13) exist if and only if B is symmet-
ric. Let a1, a9, B11, 22,812 denote the entries of A and B and let S; =
2 X1 i—nas S2 = 2 Xoa-nas Su = ZX%,(iq)A’ Soy = ZXQZ,(,-,I)A,
and S12 = > X i_1)aX2,i-1)a; all sums are from 1 to n. Then the esti-

mating equation is given by

n 0 Sl 0 Sz (e 5] 0
1 0 n 0 SQ Sl a9 0
2 Si1 0 Su 0 S12 Bu | =] —n/2
0 Sy 0 S S12 Ba2 —n/2
Sy 51 S12 S12 S11+ S22 P12 0

We have simulated 500 processes (by exact simulation), each of a length

of 500 with A = 1 and & = v/2. The true matrices are

Aoz(fll) and BOZ(_T _;)

The means and the standard errors (to the right) are

A (40349 0.2904
™\ 1.0035 0.2891
and
B = —2.0155 1.0078 0.1248 0.1177
n 1.0078 —3.0247 0.1177 0.1978

The estimators are good.

O
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