
Pricing Barrier Option

Using

Finite Difference Method

and MonteCarlo Simulation

Yoon W. Kwon

CIMS1, Math. Finance

Suzanne A. Lewis

CIMS, Math. Finance

May 9, 2000

1Courant Institue of Mathematical Science, New York University



Contents

1 Introduction 1

2 Analytical Solution 1

3 Finite Difference Method 3

3.1 Explicit finite difference method . . . . . . . . . . . . . . . . 3
3.2 Putting the barrier on the mesh node . . . . . . . . . . . . . 4
3.3 Keeping zero boundary value . . . . . . . . . . . . . . . . . . 5

4 Monte Carlo Simulation 5

4.1 Generating standard normal random numbers . . . . . . . . . 6
4.2 Antithetic Variates for the reduction of variance . . . . . . . 6

5 Results 7

5.1 Results of Finite Difference Method . . . . . . . . . . . . . . 7
5.2 Results of Monte Carlo Simulation . . . . . . . . . . . . . . . 9

Reference 11

i



1 Introduction

A barrier option is the most important exotic option for structured products.
Barrier options have special characteristics which distinguish them from
vanilla options. The most popular standard barrier options are ‘knock-out’
and ‘knock-in’ options. These options are expired or exercisable automat-
ically when the stock price hits the specified barrier level. Both out- and
in-options are divided into down and up options by the level of current stock
price compared to the barrier level, so there are eight kinds of basic standard
barrier options. Sometimes a ‘knock-out’ option is called a ‘live-out’ option
if it is significantly in-the-money when it knocks out. It is also possible that
it has some payoff (called a ‘rebate’) when the barrier level is hit; capped
call. For our project, we considered a basic standard knock out option that
pays no rebate.

The closed form solution of the barrier option price can be obtained by solv-
ing the ‘heat equation’ (diffusion equation) with a boundary condition. It
can also be obtained by numerical schemes. Here we calculated the down-

and-out call option price using two different numerical schemes, a finite
difference method and a Monte Carlo simulation. We then compared those
solutions with prices calculated by the closed form solution.

2 Analytical Solution

To get the closed form solution, we have to solve heat equation reduced
from Black Scholes partial differential equation. The only thing different
for the barrier option is, as mentioned above, that the heat equation has a
boundary (barrier level) condition at which the value of solution function
is usually equal to zero. For some specific case, it can be solved using the
solution without t he boundary condition. We have already seen the case of
‘knock-out’ option with barrier level below the strike price1.

V (S, t, B) = C(S, t)−
[

(

S
B

)

−(k−1)
· C(B2

S
, t)

]

where B < K, k = 2r/σ2
(1)

1Paul Wilmott, The Mathematics of Financial Derivatives, 1997, Chap 12.
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In formula (1), C(S, t) represents the value function of vanilla call option
whose strike price is K. But this closed form solution require that the
barrier level is below the strike price K. The very complicated looking
formula following is the closed form solution for more general cases2.

V (S, t, B)B<K

= Se−q(T−t)(N(d1)− b(1−N(d8)))

−Ke−r(T−t)(N(d2)− b(1−N(d7)))

(2)

V (S, t, B)B>K

= Se−q(T−t)(N(d3)− b(1−N(d6)))

−Ke−r(T−t)(N(d4)− b(1−N(d5)))

(3)

d1 =
ln

(

S
K

)

+ (r − q + σ2

2 )(T − t)

σ
√

T − t

d2 =
ln

(

S
K

)

+ (r − q − σ2

2 )(T − t)

σ
√

T − t

d3 =
ln

(

S
B

)

+ (r − q − σ2

2 )(T − t)

σ
√

T − t

d4 =
ln

(

S
B

)

+ (r − q + σ2

2 )(T − t)

σ
√

T − t

d5 =
ln

(

S
B

)

− (r − q + σ2

2 )(T − t)

σ
√

T − t

d6 =
ln

(

S
B

)

− (r − q − σ2

2 )(T − t)

σ
√

T − t

d7 =
ln

(

SK
B2

)

− (r − q − σ2

2 )(T − t)

σ
√

T − t

d8 =
ln

(

SK
B2

)

− (r − q + σ2

2 )(T − t)

σ
√

T − t

S stock price B barrier r risk-free rate
K strike price T maturity q dividend yield

2Paul wilmott, Derivatives, 1999, Chap 14.
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For the analytical solution, we used formula (2) and (3). Especially, the
formula (2) is identical with (1) (when B < K).

3 Finite Difference Method

Finite difference methods are a means of obtaining numerical solutions of
partial differential equations. They can be a very effective way, especially
for diffusion equation (also heat equation), to find the solution. Formula (4)
is diffusion equation for ‘down-and-out’ call option (S > B).

∂u(x, τ)

∂τ
=

∂2u(x, τ)

∂x2
(4)

u(b, τ) = 0
u(x, 0) = u0(x)

= max(e
(k+1)x

2 − e
(k−1)x

2 , 0)

where b = ln
(

B
K

)

Basically, there are two kinds of finite difference methods, explicit and im-
plicit. We used an explicit finite difference method to find the solution of the
diffusion equation with boundary condition. In this section, we will discuss
some basic common technical points in the method and some specific points
for the case of barrier option.

3.1 Explicit finite difference method

In the explicit finite difference method, forward difference approximation
(5) is used for first derivative with respect to time variable and symmetric
central finite difference approximation (6) is used for second derivative with
respect to spatial variable.

∂u(x, τ)

∂τ
=

u(x, τ + δτ)− u(x, τ)

δτ
+ O(δτ) (5)

∂2u(x, τ)

∂x2
=

u(x + δx, τ) − 2u(x, τ) + u(x− δx, τ)

(δx)2
+ O((δx)2) (6)
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Based on the finite difference approximations (5) and (6), diffusion equation
(4) becomes equation (7)

u(x, τ + δτ)− u(x, τ)

δτ
+ O(δτ) =

u(x + δx, τ) − 2u(x, τ) + u(x− δx, τ)

(δx)2
+ O((δx)2) (7)

Now, we can determine the value of solution function at τ + δτ , using three
points of solution functions at time τ ,

u(x, τ + δτ) ≈ λu(x + δx, τ) − (2λ− 1)u(x, τ) + λu(x− δx, τ)
where λ = δτ/(δx)2

(8)

Since we have a fixed time horizon τ , the mesh size δτ is usually determined
by λ and δτ by the equation (9) 3.

λ =

√

δτ

λ
= σ

√

T

2M · λ (9)

Here M and T represent the number of iterations and the maturity of the
option respectively. However, in the barrier option case, we have to consider
another constraint that the barrier point should be always on the mesh node
through the whole time horizon.

3.2 Putting the barrier on the mesh node

Unlike the usual case, we calculate spatial step δx first to put the barrier
level on the mesh node (see (10)).

δx =
ln

(

S
K

)

− ln
(

B
K

)

(int)[
√

dummy · (S −B)]
(10)

3This is the case only for the plain vanilla option. We used a difference method to

determine the mesh size.
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After getting spatial time step, the number of iterations can be calculated
by the formula (11) using the values of λ and δτ .

M = (int)

[

σ2 · T
2λ · (δx)2

]

(11)

In formula (10), we used dummy variable to control the number of iterations.
Function (int) in (10) and (11) represents the function that trasforms real
number into integer.

3.3 Keeping zero boundary value

One more thing to consider in pricing barrier option is keeping the boundary
value as zero always. Hence through given time horizon, we kept checking
spatial variable. When spatial variable is less than the barrier level, zero
was assigend for the value of solution function.

4 Monte Carlo Simulation

Monte Carlo Simulation provides a simple and flexible method for valuing
financial instruments whose analytical solutions are impossible to get. It
is especailly useful because it can deal with one or more random factors
such as random process of underlying asset price, stochastic volatiltiy or
random process of interest rate. Also, with Monte Carlo simulation one can
consider realisitc and complicated market conditions in relatively easy way
(e.g. Asian option, look-back option, digital option etc.). However, Monte
Carlo simulation has a critical flaw. It is computationally much inefficient
in its basic form. So, most of the techniques in Monte Carlo simulation are
developed to improve this inefficiency. Here we priced ‘down-and-out call’
option using Monte Carlo simulation with the antithetic variates method.
And for stock price movemnet, we used one factor diffusion process (A.K.A
Brownian Motion, (12) or (13)).

dS

S
= µ · dt + σ · dW (12)

dS = S · (µ · dt + σ · dW ) (13)
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4.1 Generating standard normal random numbers

A critical part of Monte Carlo simulation is the generation of the standard
normal random variables. We programmed in C, which provides a uniform
pseudo-random number generator. This generates random real numbers
between zero and one from a uniform distribution. There are a couple of
numerical methods to transform this uniformly distributed random numbers
to standard normal random numbers. We used a simple method called the
Box-Muller transformation (14) and (15). This is an exact transformation
of a pair of standard uniform random numbers to a pair of standard normal
random variables.

Z1 = cos(2πx1)
√

−2 · ln(x2) (14)

Z2 = sin(2πx1)
√

−2 · ln(x2) (15)

Here x1 and x2 represent standard uniform random numbers and we used
‘drand48’ library function in C to generate standard uniform random num-
bers.

4.2 Antithetic Variates for the reduction of variance

Suppose one have written an option on asset S1 and at the same time, one is
able to write an option on asset S2, which is perfectly negatively correlated
with S1 and currently has the precisely same price as S1. Then S1 and S2

satisfy the stochastic differential equations.

dS1,t = S1,t · (r · dt + σ · dW ) (16)

dS2,t = S2,t · (r · dt− σ · dW ) (17)

The values of these two options should be identical since the price and
volatility of two assets are identical. However, the variance of the payoff
of a portfolio consisting of the two options is much less than that of the
payoff of each individual option. This technique of creating a hypothetical
asset that is perfectly negatively correlated with the original asset is called
antithetic variance reduction and the created asset is called an antithetic
variate.To implement this technique, we created another sample path of
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asset process that is moving exactly opposite way to the first path. In fact,
since we have generated a pair of standard normal random numbers, four
paths are moving along at the same time (see (18) - (21) ).

dS1,t ≈ S1,t · (r · dt + σ
√

dt · z1) (18)

dS2,t ≈ S2,t · (r · dt− σ
√

dt · z1) (19)

dS3,t ≈ S3,t · (r · dt + σ
√

dt · z2) (20)

dS4,t ≈ S4,t · (r · dt− σ
√

dt · z2) (21)

5 Results

We chose three cases by the money-ness of current stock prices (80, 100,
120 with strike 100). For each case, we calculated prices with three di erent
levels of barrier. Also in order to see the convergence, we calculated with
three di erent numbers of iterations. Table 1 is the list of parameters we
used. λ has been chosen as 1/6 to remove second order error term with
respect to spatial variable.

Table 1: Parameters

lambda(λ) 0.167 risk-free rate(r) 0.05
strike(K) 100.0 dividend yld. (q) 0.01

maturity(T ) 1.00 volatility(σ) 0.25

5.1 Results of Finite Difference Method

As expected, we had relatively bigger errors for the in-the-money case (Ta-
ble 4).The reason for bigger error is discontinuity of at value function at
initial time. When the barrier is above the strike price initial value function
at the barrier is not equal to zero but should be zero at the same time by
boundary condition (i.e. u0(b) 6= 0 = u(b, τ)). However, In the case that
the barrier level is below the strike price, we don’t have any discontinuity
(i.e. u0(b) = 0 = u(b, τ)). Also, in any case, we can see the convergence of
approximation solution to analytical solution as iteration number increases.
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The following three tables are the price and error results of finite difference
method.

Table 2: Out-of-the-money case with stock price 80 and strike 100

Barrier Iteration Number Ana. price FDM price Error (in %)

50

764
1570
2296

2.91988

2.92058
2.92192
2.92168

0.024
0.070
0.062

60

907
1906
2776

2.91484

2.91925
2.91669
2.91571

0.152
0.064
0.030

70

1052
2367
3408

2.66087

2.66255
2.66191
2.91571

0.063
0.039
0.027

Table 3: At-the-money case with stock price 100 and strike 100

Barrier Iteration Number Ana. price FDM price Error (in %)

70

1327
2726
3986

11.70273

11.70378
11.70404
11.70336

0.009
0.011
0.005

80

1507
3167
4613

11.32229

11.32411
11.32196
11.32208

0.014
0.003
0.001

90

1690
3801
5473

8.61503

8.61625
8.61532
8.61514

0.014
0.003
0.001

Table4: In-the-money case with stock price 80 and strike 120

Barrier Iteration Number Ana. price FDM price Error (in %)

90

2040
4190
6127

25.73921

25.74163
25.74064
25.73998

0.009
0.006
0.003

100

2257
4744
6910

22.60767

22.67813
22.67728
22.67723

0.312
0.308
0.308

110
2477
5573
8025

14.39291
14.51313
14.51325
14.51328

0.835
0.836
0.836

Ana. Price : Analytical Solution
FDM Price : Finite Difference Method Approximation
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5.2 Results of Monte Carlo Simulation

The following tables are the price and error results of Monte Carlo Simula-
tion.

Table 5. Out-of-the-money case with stock price 80 and strike 100

Barrier Iteration Number Ana. price MCS price Error (in %)

50
10,000
20,000
40,000

2.91988
2.89206
2.96751
2.95696

0.953
1.631
1.270

60

10,000
20,000
40,000

2.91484

2.88766
2.88803
2.91986

1.619
0.920
0.172

70

10,000
20,000
40,000

2.66087

2.71119
2.67315
2.69583

1.891
0.461
1.314

Table 6. At-the-money case with stock price 100 and strike 100

Barrier Iteration Number Ana. price MCS price Error (in %)

70

10,000
20,000
40,000

11.70273

11.77419
11.64066
11.74976

0.617
0.530
0.401

80

10,000
20,000
40,000

11.32229

11.28537
11.33218
11.40166

0.327
0.087
0.701

90

10,000
20,000
40,000

8.61503

9.04559
9.09942
9.16626

3.457
2.330
2.419

Table 7. In-the-money case with stock price 80 and strike 120

Barrier Iteration Number Ana. price MCS price Error (in %)

90

10,000
20,000
40,000

25.73921

25.79725
25.73844
25.80913

0.225
0.003
1.373

100

10,000
20,000
40,000

22.60767

23.10899
22.91807
22.93958

2.218
1.373
1.468

110
10,000
20,000
40,000

14.39291
14.93807
14.96592
15.06374

3.788
3.981
4.661

Ana. Price : Analytical Solution
MCS Price : Monte Carlo Simulation Approximation
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As shown in the above tables, for most of the cases we had larger errors than
the comparable finite difference method cases. This is especially true when
the barrier level is close to the current stock price. Also, in some cases, even
if we increase the number of sample paths, we could not get convergence of
the errors. We used 10,000 time steps for each path of the simulation.
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