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Stock Return Predictability and Model Uncertainty

Abstract

We use Bayesian model averaging to analyze stock return predictability from a

perspective of an investor who faces model uncertainty, or uncertainty about which

economic variables should appear in the return forecasting model. Model uncertainty

could be more important than the within-model parameter uncertainty, especially when

economic variables are at their recently observed levels. The Bayesian approach to model

uncertainty is consistent with the existence of out-of-sample predictability in contrast to

the classic based analysis, which detects no such predictability. Moreover, the odds in

favor of predictability are substantially higher for small-versus-large and high-versus-low

book-to-market stocks.



Introduction

Financial economists have identified economic variables that predict aggregate stock returns

through time. Such variables include the dividend-price ratio, expected and unexpected in-

flation, lagged returns, and the differences between yields on long-term and short-term

government bonds and between low grade and high grade corporate bonds (e.g., Campbell

(2000)). For several reasons, the “correct” specification of the regression of stock returns

on predictive variables has remained uncertain. First, asset pricing theories are not ex-

plicit about the true predictors, raising doubts about the external validity of the empirical

evidence. In particular, several recent studies (e.g., Bossaerts and Hillion (1999)) confirm

in-sample predictability but fail to detect out-of-sample predictability. Second, the multi-

plicity of potential predictors raises difficulties in interpreting the empirical evidence. For

example, one may find that an economic variable is significant based on a particular collec-

tion of regressors, but becomes insignificant when an alternative specification is examined.

Whether such a variable is a robust predictor or not is ambiguous.

The uncertainty about the true set of predictive variables, commonly termed “model

uncertainty,” is a small sample phenomenon. In sufficiently large samples all potential

predictors can be included in an all-inclusive specification. In this regression, irrelevant

variables will have slope-coefficient estimates converging to zero, their true value. However,

in practice there are many possible predictive variables, but only a limited number of

observations. The classical regression paradigm thus offers little help.

The paper undertakes a Bayesian model averaging perspective to analyze the sample

evidence about return predictability when the true forecasting model is unknown a priori.

The Bayesian procedure computes posterior probabilities for a set of competing return-

generating models and uses the probabilities as weights on the individual models to obtain
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one overall weighted model. The weighted model summarizes the dynamics of future stock

returns in the presence of model uncertainty.

Bayesian model averaging contrasts markedly with the traditional approach of model

selection, i.e., using a specific criterion to select a single model and then operating as if

the model is correct. By implicitly assuming that all models are equally likely a priori,

model selection criteria are biased in favor of return predictability. To illustrate, when M

economic variables are suspected relevant in predictability there are 2M competing linear

models, all but one retain predictive variables. Therefore, the implied prior-odds ratio

against predictability is 1
2M−1 , approaching zero asM gets large. In our proposed paradigm,

the decision-maker has the discretion to elicit prior odds. Moreover, implementing model

selection criteria, the econometrician views the selected model as being the ‘true’ one and

discards the other models as worthless, thereby ignoring model uncertainty.1

The analysis shows that incorporating model uncertainty into stock return predictability

undermines the apparent predictive power of several explanatory variables. Such variables

are significant based on the individual forecasting models, but not based on the weighted

model, which accounts for model uncertainty. However, the overall in-sample evidence based

on posterior-odds ratios and other measures confirms the presence of return predictability.

Moreover, in contrast to the evidence based on model selection criteria, which confirms in-

sample but not out-of-sample predictability (e.g., Bossaerts and Hillion (1999)), the evidence

based on Bayesian model averaging is consistent with out-of-sample predictability.

Our posterior analysis points to several economic variables as useful predictors of monthly

and quarterly returns on equity portfolios sorted on size and book-to-market. Such variables

1Following this logic, the Bayesian procedure of computing posterior probabilities for all competing

models but at the same time conditioning the inference on the single highest-posterior-probability model

(e.g., Cremers (2000)) essentially ignores model uncertainty.
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include the aggregate measure of earnings yield and the difference between lagged returns

on long-term and short-term government bonds. Several other variables possess substan-

tially smaller probabilities of being correlated with future returns. Those variables include

the aggregate measures of book-to-market and dividend yield, lagged returns, inflation, and

the trend-deviation-in-wealth.

The posterior analysis also detects prominent dispersion in predictability across the size

book-to-market portfolios. Holding book-to-market fixed, posterior odds in favor of pre-

dictability are substantially higher for small-versus-large capitalization stocks. Controlling

for size, the posterior odds are higher for high-versus-low book-to-market stocks. Thus, the

most predictable returns are on the smallest size highest book-to-market portfolio. Those

results are robust to various prior specifications.

Model uncertainty carries implications for a portfolio-optimizing investor. In particular,

the investment environment is represented by a predictive distribution that averages out

the uncertainty about the forecasting model and integrates out the uncertainty about the

within-model parameters. The predictive analysis shows that the variance of future stock

returns attributed to model uncertainty is, on average, more important than its parameter

uncertainty counterpart based on monthly observations, but the reverse is true for quarterly

observations.

The predictive analysis also shows that the investment opportunity set in the presence

of model uncertainty is consistent with the existence of stock return predictability. For

example, the asset allocation across a riskfree cash account and six size book-to-market

portfolios displays high sensitivity to the values of the predictive variables observed at the

time the investment decision is made, even when the investor’s prior beliefs are weighted

against return predictability.
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The remainder of the paper proceeds as follows. Section I derives an analytical result

for the posterior probabilities of all the forecasting models. It also derives three measures

for investigating the robustness of predictive variables in the presence of model uncertainty.

Section II develops an econometric framework to study asset allocation under model un-

certainty. Section III describes the sample data, and Section IV contains empirical results.

Conclusions and ideas for future research are presented in Section V. All the mathematical

derivations are presented in the appendix.

I Predictability in the Presence of Model Uncertainty

When M economic variables belong to the a priori set of stock return predictors there are

2M competing return-generating specifications. Each of these obeys the form

r0t = x
0
j,t−1Bj + ²

0
j,t, (1)

where rt is an N × 1 vector of continuously compounded returns on N common stocks in

excess of the continuously compounded T-bill rate, j is a model-specific indicator, x0j,t−1 =

(1, z0j,t−1), zj,t−1 is a model-unique subset, which contains m variables observed at the end

of t−1, Bj is an (m+1)×N matrix of the regression coefficients. The parameter m ranges

between zero and M . The former corresponds to the iid model, which discards all variables

as worthless predictors. The latter corresponds to the all-inclusive specification. We assume

that ²j,t, the forecast error, is normally distributed with conditional mean zero and variance-

covariance matrix Σj . The conditional homoskedasticity assumption is for tractability of

analysis. This assumption is made in several other studies, including Barberis (2000) and

Pastor and Stambaugh (2000).

The study adopts Bayesian model averaging to account for the uncertainty about the
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true forecasting model. The Bayesian procedure computes posterior probabilities for the

collection of all models and uses the probabilities as weights on the individual models to

obtain one overall weighted forecasting model, which summarizes the dynamics of future

stock returns in the presence of model uncertainty. The posterior probability computation

necessitates eliciting prior distributions of all the relevant parameters conditional on each

possible model (e.g., Kass and Raftery (1995) and Poirier (1995)).

Our informative prior distribution for each of the model-specific parameters (Bj ,Σj) is

based on an hypothetical prior sample weighted against predictability, as suggested by Kan-

del and Stambaugh (1996). In that sample, the slope coefficients in the regression of excess

stock returns on a set of information variables are equal to zero, and the means and vari-

ances of stock returns and predictive variables are equal to the actual sample counterparts,

which are given by:

r̄ =
1

T

TX
t=1

rt, (2)

V̂r =
1

T

TX
t=1

(rt − r̄)(rt − r̄)0, (3)

z̄j =
1

T

T−1X
t=0

zj,t, (4)

V̂j,z =
1

T

T−1X
t=0

(zj,t − z̄j)(zj,t − z̄j)0, (5)

where T is the actual sample size.

Using statistics from the actual sample to elicit some of the parameters of the prior

distribution is commonly termed “empirical Bayes” (e.g., Maritz and Lwin (1989)). The

empirical Bayes procedure is also undertaken by Pastor (2000) and others who implement

Bayesian methods to study various applications in financial economics. Based on the hypo-

thetical prior sample, the prior for the regression coefficient Bj conditional on Σj is given
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by the multivariate Normal distribution:

vec(Bj)|Σj ∼ N

vec(Bj,0), 1T0Σj ⊗
 1+ z̄0jV̂ −1j,z z̄j −z̄0jV̂ −1j,z

−V̂ −1j,z z̄j V̂ −1j,z


 , (6)

where Bj,0 = [r̄,0j ]
0, 0j is an N ×m matrix of zeros reflecting the ‘no predictability’ prior

sample, T0 is the size of the hypothetical sample, and vec(•) denotes the vector formed

by stacking the successive transformed rows of the matrix. The marginal prior for Σj is

inverted Wishart (e.g., Zellner (1971))

Σj ∼ IW (T0V̂r, T0 −N − 1). (7)

Of course, the posterior analysis depends upon T0, which determines the strength of the

informative prior. As an extreme, if T0 approaches infinity the investor displays dogmatic

beliefs about no predictability. Any finite sample size cannot reverse such tight beliefs.

Our task is, therfore, to pick a reasonable value for the prior sample size. Kandel and

Stambaugh (1996) motivate such a value. Using Monte Carlo simulations, they show that

the implied priors of R-squared in the regression of excess stock returns on lagged predictive

variables are invariant to the number of predictors if the number of hypothetical data entries

per parameter is held fixed (50 observations per parameter) as the number of parameters

changes. Our analysis relies primarily on this. Essentially, the hypothetical prior size

increases as the model contains more explanatory variables. Therefore, we will denote the

prior sample size with the model-specific indicator.

Proposition 1 establishes an analytical result for the marginal likelihood, an input in

computing the posterior probability. The marginal likelihood for model j is denoted by

P (D|Mj), where D stands for the sample data, described in Section III. For the marginal

likelihood computation, D is restricted to include only stock returns, but not predictive vari-

ables. This assumption, which will be relaxed as the work proceeds, is consistent with other
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studies computing marginal likelihood (e.g., Kass and Raftery (1995)) and the traditional

model selection criteria (e.g., Bossaerts and Hillion (1999)).

Proposition 1 The log marginal likelihood of any entertained model, excluding the iid

model, is given by:

ln [P (D|Mj)] = −TN
2
ln(π) +

Tj,0 −N − 1
2

ln |Tj,0V̂r|−
T ∗j −N − 1

2
ln |S̃j |

−
NX
i=1

ln

½
Γ

µ
Tj,0 −N − i

2

¶¾
+

NX
i=1

ln

½
Γ

µ
T ∗j −N − i

2

¶¾
,

where

S̃j = T ∗j
³
V̂r + r̄r̄

0
´
− T

T ∗j

¡
Tj,0[r̄, r̄z̄

0
j ] +R

0Xj
¢
(X 0

jXj)
−1 ¡Tj,0[r̄, r̄z̄0j ]0 +X 0

jR
¢
,

Xj = [xj,0, xj,1, . . . , xj,T−1]0,

R = [r1, r2, . . . , rT ]
0,

T ∗j = T+Tj,0, Γ(y) stands for the Gamma function evaluated at y, and |x| is the determinant

of x. For the iid model S̃iid = T
∗
iidV̂r.

Multiplying the marginal likelihood by the prior probability P (Mj), which is at the dis-

cretion of the decision-maker, and normalizing the resulting quantity produce the posterior

probability in favor of the model

P (Mj |D) = P (D|Mj)P (Mj)P2M

i=1 P (D|Mi)P (Mi)
. (8)

Having posterior probabilities at hands, the study examines three measures to investigate

the statistical robustness of explanatory variables in predictive regressions.

The first is cumulative posterior probabilities of the predictive variables. It is computed

as A0P, where A is a 2M ×M matrix representing all forecasting models by zeros and ones,

designating exclusions and inclusions of predictors, respectively, and P is a 2M × 1 vector
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containing model posterior probabilities. The resulting quantity indicates the probabilities

that each of the predictive variables appears in the weighted forecasting model. To illustrate,

in one polar scenario in which the iid model receives a posterior probability equal to unity

the cumulative posterior probabilities are represented by an M × 1 vector of zeros. In the

opposite extreme in which the all-inclusive model receives the entire posterior mass the

posterior probabilities are represented by an M × 1 vector of ones.

The second measure is a posterior t ratio obtained by dividing the posterior mean of

each of the slope coefficients in the weighted model by its corresponding posterior standard

error. Focusing on a multiple regression run separately for any risky asset, the posterior

mean and variance are given by:2

E(B|D) =
2MX
j=1

P (Mj |D) B̃j , (9)

Var(B|D) =
2MX
j=1

P (Mj |D)
(
TS̃j(X

0
jXj)

−1

T ∗j (T
∗
j − 4)

+
h
B̃j − E(B|D)

i h
B̃j − E(B|D)

i0)
,(10)

where

B̃j =
T

T ∗j
(X 0

jXj)
−1(Tj,0[r̄, r̄z̄0j ]

0 +X 0
jR), for j = 1 . . . 2

M and j 6= iid,

B̃iid = r̄.

The mean (9) follows by iterated expectations, conditioning first on the model space.

The variance (10) follows by using properties of the inverted Wishart distribution and

variance decomposition. The posterior mean is merely a weighted average of slope estimates.

The posterior variance incorporates both the estimated variances in every entertained model

and the model-uncertainty component attributed to the dispersion in the posterior mean of

2It should be noted that B̃j and S̃ are of equal dimension for any entertained model since slope coefficients

of excluded variables and their variances and covariances with other slope coefficients are zero. To illustrate,

we rewrite B̃iid as [r̄
0, 0]0, where 0 is a 1×M vector of zeros.
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the slope coefficients across the models. Of course, the larger the dispersion, or the greater

the ex post uncertainty about the true predictors, the smaller the posterior t-ratio.

It should be noted that in the traditional regression paradigm, one may find that an

economic variable is significant based on a particular collection of regressors, but becomes

insignificant when an alternative specification is examined. Whether such a variable is a

robust predictor or not is ambiguous. The Bayesian approach to model uncertainty implies

that such a dispersion in the slope coefficients is reflected through a higher standard error

of the coefficient in the weighted model. The robustness of the predictor can be examined

based on both the posterior t-ratio and cumulative posterior probability.

The third measure is a posterior-odds ratio obtained by dividing the sum of posterior

probabilities assigned to 2M − 1 models that retain at least one predictor by the posterior

probability of the iid model. Computing posterior odds in financial economics goes back to

Shanken (1987) who implements a Bayesian approach to testing portfolio efficiency. Shanken

(1987) shows that using posterior odds leads to a particular inference about mean variance

efficiency that could differ from the one obtained by the classical p value.

II Model Uncertainty and the Investment Environment

Kandel and Stambaugh (1996), Stambaugh (1999), and Barberis (2000) have shown that

predictive regressions are useful in making asset allocation decisions when investment op-

portunities are time varying. Those studies incorporate estimation risk, but not model risk.

This section develops a framework for analyzing investment decisions under model uncer-

tainty. Asset allocations are derived to deliver an economic based metric for gauging the

evidence on stock return predictability under model uncertainty. The perceived investment

opportunities based on the weighted forecasting model are reflected through the Bayesian
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weighted predictive distribution.

A The Bayesian Weighted Predictive Distribution

Let y0j,t = (r0t, z0j,t) be the data-generating process corresponding to model j. We assume

that the evolution of yj,t is governed by the stochastic process

y0j,t = x
0
j,t−1Φj + u

0
j,t, (11)

where Φj is an (m+1)× (N+m) matrix of regression coefficients and uj,t is an (N+m)×1

vector of forecast errors.3 We assume that uj,t ∼ iid N (0,Ψj). Implied in the data-

generating process (11) is a first order VAR for the dynamics of the predictive variables

z0j,t = a
0
j + z

0
j,t−1Aj + η

0
j,t. (12)

The matrix A0j is known as the companion matrix of the VAR. The assumption that the

VAR is first order is not restrictive since higher-order VAR can always be rewritten in first

order form, as discussed by Campbell and Shiller (1988a).

The Bayesian weighted predictive distribution of cumulative excess continously com-

pounded returns averages over the model space and integrates over the posterior distribution

that summarizes the within-model uncertainty about Φj and Ψj . It is given by

P (RT+K |D) =
2MX
j=1

P (Mj |D)
Z
Ψj

Z
Φj

P (Φj ,Ψj |Mj ,D)P (RT+K |Mj ,Φj ,Ψj ,D) dΦjdΨj ,

(13)

3Equation (11) provides some reasoning for why the marginal likelihood is computed assuming that the

data include stock returns only. The marginal likelihood P (D|Mj) indicates the probability that the data,

D, are generated by model j. Obviously, the left-hand-side data in (11) differ across models. Therefore,

to compute the marginal likelihood, or any model selection criteria, one would rely on the data generating

process in (1) in which the left-hand-side is not model specific.
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where K is the investment horizon and RT+K =
PK
k=1 rT+k. To the best of our knowledge,

an analytical solution for the integral in (13) when K > 1 is not feasible. Instead, Monte

Carlo integration is used. Specifically, sampling from the Bayesian weighted predictive

distribution is obtained by first drawing from the distribution of models. Then, the model-

specific parameters Φj and Ψj are drawn from their joint posterior distribution, solved in the

appendix. Last, given Φj and Ψj , an N ×1 random vector of cumulative excess continously

compounded returns is drawn from the conditional density of future stock returns described

in Proposition 2.

Proposition 2 The distribution of future stock returns conditioned upon the model, its

specific parameters Φj and Ψj, and the sample data is given by:

RT+K |Mj ,Φj ,Ψj , D ∼ N (λj ,Υj) ,

where

λj = Kbj +Cj
£
((A0j)

K − Im)(A0j − Im)−1
¤
zj,T ,

+ Cj
£
A0j
¡
(A0j)

K−1 − Im
¢
(A0j − Im)−1 − (K − 1)Im

¤
(A0j − Im)−1aj ,

Υj = KΣj +
KX
k=1

δj(k)Θjδj(k)
0 +

KX
k=1

Λjδj(k)
0 +

KX
k=1

δj(k)Λ
0
j ,

δj(k) = b0j
h³
(A0j)

k−1 − Im
´
(A0j − Im)−1

i
,

bj and Cj are partitions of Bj corresponding to the intercept and slope coefficients in the

regression of excess returns on lagged predictive variables, Bj = [bj , Cj ]
0, and Λj and Θj are

partitions of the variance-covariance matrix Ψj:

Ψj =

 Σj Λj

Λ0j Θj

 .
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Note that when investors do know the model and its specific parameters the only infor-

mation from the sample relevant to drawing from the distribution of future stock returns

would be the most recent observation of the predictive variables. Also note that no pre-

dictability corresponds to Ciid = 0, which yields λiid = Kbiid and Υiid = KΣiid. Obviously,

without accounting for estimation risk, the conditional mean and variance in an iid world in-

crease linearly with the investment horizon. The classical approach employs the conditional

distribution of returns to derive asset allocations, thereby assuming normally distributed

future stock returns. Accounting for both estimation and model risks, the perceived dis-

tribution of future returns departs from normality and may have higher moment features,

such as skewness and fat tails.

Of course, in the presence of model uncertainty investment in stocks appears riskier.

In particular, based on the weighted predictive distribution the variance of future returns

over the investment horizon can be decomposed with respect to both the model space and

parameter space. Conducting such a variance decomposition, we show that the variance

is attributed to three sources: i) model uncertainty; ii) a mixture of the within-model

parameter uncertainty; and iii) a mixture of the within-model forecast error:

var{RT+K |D} =
2MX
j=1

P (Mj |D)
∙
E{Υj}+ var{λj}+

³
λ̃− E{λj}

´³
λ̃− E{λj}

´0¸
, (14)

where
P2M

j=1 P (Mj |D)
³
λ̃− E{λj}

´³
λ̃− E{λj}

´0
is the model uncertainty component, var{λj}

is the parameter uncertainty corresponding to model j, and λ̃ is the predicted mean of cu-

mulative stock returns that takes account of model uncertainty. The predicted mean is

given by

λ̃ =
2MX
j=1

P (Mj |D)E{λj}. (15)
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B Portfolio Choice in the Presence of Model Uncertainty

What are the implications of model uncertainty for investment decisions? The optimization

problem of a buy-and-hold investor with iso-elastic preferences who allocates funds across

N risky assets and the risk-free Treasury bill and who does not know the a priori true set

of predictors is given by:

ω∗ = argmax
ω

Z
RT+K

[(1− ω0ιN ) exp(rfK) + ω0 exp(rfKιN +RT+K)]1−γ
1− γ P (RT+K |D) dRT+K ,(16)

where the integral is taken over the Bayesian weighted predictive distribution, γ is the

relative risk aversion parameter, ω is an N×1 vector denoting portfolio weights chosen for N

risky assets at time T , ιN is an N×1 vector of ones, and rf is the continuously compounded

risk-free rate of return, assumed constant over the investment horizon. Portfolio weights

are restricted to the unit interval, meaning that short selling and buying on margin are

precluded; otherwise, the expected utility would be equal to −∞, as explained by Barberis

(2000), among others.

The expected utility maximization displayed in (16) is a version of the general Bayesian

control problem developed by Zellner and Chetty (1965). Bawa, Brown, and Klein (1979),

Jobson and Korkie (1980), Frost and Savarino (1986), Pastor (2000), and Pastor and Stam-

baugh (2000) compute optimal portfolios in a one-period framework in which returns are

assumed iid. Kandel and Stambaugh (1996), Barberis (2000), and Tamayo (2000) analyze

a portfolio decision when the investor instead uses a model in which returns can possess

predictability. In these studies the conditional distribution of stock returns is integrated

over the parameter space to account for estimation risk. Integrating over both the model

space and the within-model parameter space is novel in the context of asset allocation.

The integral in equation (16) is approximated by generating independent draws for
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n
R
(g)
T+K

oG
g=1

from the weighted predictive distribution using the algorithm described above.

A constrained optimization code is then used to maximize the quantity

E [U(WT+K(ω))] =
1

G

GX
g=1

n
(1− ω0ιN ) exp(rfK) + ω0 exp(rfKιN +R(g)T+K)

o1−γ
1− γ (17)

subject to ω being non negative, where G denotes the number of draws.

III Data

The empirical examination uses monthly observations on stock returns and information

variables spanning 549 months from April 1953 to December 1998. Also examined is a

quarterly sample spanning the same time period. The investment universe consists of the

six portfolios formed originally by Fama and French (1993) as the intersections of two size

(S,B) and three book-to-market (L,M,H) groups.

We consider the following M = 14 information variables: dividend yield on the value

weighted NYSE index (Div); book-to-market (BM) on the Standard & Poor’s Industrials;

earnings yield on the Standard & Poor’s Composite index (EY); the winners-minus-losers

(WML) one-year momentum in stock returns; default risk spread, formed as the difference

in annualized yields of Moody’s Baa and Aaa rated bonds (Def); the monthly rate of a

three-month Treasury bill (Tbill); excess return on the CRSP value weighted index with

dividends (Ret); default risk premium, formed as the difference between the return on long-

term corporate bonds and the return on long-term government bond (DEF); term structure

premium, formed as the difference between the monthly return on long-term government

bond and the one month Treasury bill rate (TERM); January Dummy (Jan); inflation rate

(Inf); size premium (SMB); value premium (HML); and term structure slope, formed as

the difference in annualized yield of ten-year and one-year Treasury bills (Term). None of
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the predictors listed above uses information that would not have been available at the time

future excess stock returns were predicted.

Data used to compute Div, Tbill, and Ret are from the Center for Research in Security

Prices (CRSP) at the University of Chicago. Inputs for calculating book-to-market are

obtained from the Standard & Poor’s publication: “Security Price Index Record - Statistical

Service.” Inputs for computing Def are obtained form Citibase. Data on TERM and PREM

are from Ibbotson and associates.4

In deciding which predictors to include, attention was given to those variables found

important in previous studies as well as those popular business cycle variables for which

there exist some theoretical “stories.” Studies using subsets of the above-listed predictors

include Bossaerts and Green (1989), Brandt (1999), Brandt and Ait-Sahalia (2000), Camp-

bell (1987), Campbell and Shiller (1988a, 1988b), Carhart (1997), Chen, Roll, and Ross

(1986), Fama and French (1988, 1989, 1993), Fama and Schwert (1977), Ferson and Harvey

(1991, 1999), French, Schwert, and Stambaugh (1987), Keim and Stambaugh (1986), Kirby

(1997, 1998), Kothari and Shanken (1997), Hodrick (1992), Lo and MacKinlay (1997), Pe-

saran and Timmermann (1995), Pontiff and Schall (1998), Schwert (1990), and Shanken

(1990).

The reasoning for including the variables PREM, TERM, HML, and SMB, mostly no-

table as economy-wide factors in asset pricing models, follows from Merton (1973) whose

4I am grateful to Kenneth French for generously providing returns on size book-to-market portfolios, size

premium, and value premium. The winners minus losers portfolio is courtesy of Mark Carhart. Earnings and

inflation data were downloaded from Robert Shiller’s web-site (http://www.econ.yale.edu/ shiller/data.htm).

Earnings yield is formed by dividing the most recent twelve-month earnings by the contemporaneous value

of the S&P 500 index. Treasury-bill yields for various maturities are available at the Federal Reserve Board’s

web-site ((http://www.federalreserve.gov/releases/H15/data.htm).
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intertemporal CAPM does not distinguish between variables that predict the market returns

and variables that explain the cross-section variation in expected return. Moreover, Liew

and Vassalou (2000) show that SMB and HML are useful in predicting economic growth

even in the presence of the traditional business cycle variables, making the inclusion of these

variables of interest while examining predictability in stock returns.

Table 1 presents summary statistics for the predictive variables (excluding January

Dummy) and monthly returns on the six size book-to-market portfolios. We show that

dividend yield, book-to-market, earnings yield, default spread, Treasury-bill rate, and term-

structure slope display persistence, whereas WML, excess return, default risk premium,

term-structure premium, inflation, size premium, and value premium possess lower or no

autocorrelation. Also reported (Table 2) are slope coefficients and their corresponding t-

ratios obtained by regressing excess returns on each of the size book-to-market portfolios

on an intercept and lagged predictive variables described above. A closer look at Table 2

reveals ample evidence for in-sample predictability, as many of the t-ratios exceed two.

IV Results

A The Robustness of Predictive Variables in the Weighted Model

1 The Case of Monthly Observations

Consideration of all linear data-generating processes in the presence of fourteen predictive

variables necessitates the comparison of 214 = 16, 384 models. Proposition 1 computes the

marginal likelihood for every model, and equation (8) weights the marginal likelihood by the

model prior probability and normalizes the result to obtain the model posterior probability.

It is assumed throughout that the prior odds of predictability versus no predictability is
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unity. It is further assumed that the prior probabilities of all the models that include

predictors are equal, i.e., such a prior probability is equal to 0.5
214−1 .

Table 3 reports results. The top figures denote the highest-posterior-probability compo-

sitions represented by combinations of zeros and ones designating exclusions and inclusions

of predictive variables, respectively. The bottom figures display cumulative posterior prob-

abilities A0P for the fourteen predictors, as noted earlier. Several features of the results

merit closer attention. The highest-cumulative-probability predictors are the term-structure

premium, January Dummy, Treasury bill rate, earnings yield, and inflation. Interestingly,

January Dummy appears in all highest-posterior-probability models corresponding to small

stocks. This is consistent with Blume and Stambaugh (1983) and Keim (1983), who trace

much of the evidence on the size effect to the month of January. Among the traditional mar-

ket multipliers, i.e., dividend yield, book-to-market, and earnings yield, the latter appears

in all the highest-posterior-probability compositions and receives the highest cumulative

probabilities. Interestingly, although SMB and HML are reported robust in predicting con-

temporaneous stock returns (Fama and French (1993)) and future economic growth (Liew

and Vassalou (2000)), both are correlated only marginally with future monthly stock re-

turns.

Table 4 exhibits the posterior means of slope coefficients in the weighted model (top fig-

ures), as computed in (9), and two t-ratios. The first (middle figures) is obtained by dividing

the posterior mean by the posterior standard error corresponding to the first component

in (10), thereby ignoring model uncertainty. The second, the posterior t-ratio, (bottom

figures) divides the posterior mean by the two sources of uncertainty, including model un-

certainty that summarizes the dispersion in the posterior means of slope coefficients across

the models.
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The extra variance of the slope coefficients in predictive regressions attributed to model

uncertainty calls into question the apparent predictive power of several economic variables.

Focusing on t-ratios greater in absolute value than two, it appears that the predictive

variables Treasury bill rate and term-structure premium are significant based on t-ratios

that ignore model uncertainty, but not based upon the posterior t-ratio. In contrast, January

Dummy remains significant under both specifications.

Intuitively, the cumulative posterior probabilities should be related somewhat to the

posterior t-ratios, and they are. For example, high cumulative posterior probabilities for

Treasury bill, earnings yield, and term-structure premium (Table 3) are followed by higher

values of posterior t-ratios (Table 4). However, in some cases the absolute values of these

measures seem incongruous. As an extreme example, the t-statistic of the dividend yield

for the SL portfolio is 0.12, meaning that based on a traditional hypothesis testing dividend

yield does not predict (statistically) future returns at any reasonable significance level.

However, the cumulative posterior probability of dividend yield is 45%, suggesting some

predictive power. Such an apparent contradiction is also documented by Shanken (1987).

He shows that based on p-values one fails to reject portfolio efficiency, whereas the odds

analysis provides evidence to the contrary.

The third measure undertaken to assess the sample evidence on predictability is the

posterior-odds ratio. Based on a prior sample equivalent to 50 observations (or 4 years

and two months of hypothetical data) per parameter, we obtain extremely large posterior

odds in favor of predictability for every equity portfolio. To examine how strong the prior

beliefs against predictability should be to offset the actual sample evidence, we compute

odds under various prior specifications. In particular, the prior sample size ranges between

20 and 1,280 years of hypothetical observations per parameter.

18



Table 5 exhibits results. The analysis shows that also a prior sample size equivalent

to 1,280 years of hypothetical observations per parameter is not sufficient to reverse the

evidence in favor of predictability. That is, investors must form prior beliefs based on a

particularly large hypothetical sample weighted against predictability to offset the evidence

in favor of predictability, as appears in the actual sample.

Cross-sectional dispersion in predictability is apparent for the various prior specifica-

tions. In particular, holding book-to-market fixed, posterior odds in favor of predictability

are substantially higher for small-versus-large capitalization stocks. Similarly, controlling

for size the posterior odds are higher for high-versus-low book-to-market stocks. In turn,

the evidence in favor of predictability is the strongest for the smallest size, highest book-

to-market portfolio (SH).

2 The Case of Quarterly Observations

In a recent study, Lettau and Ludvigson (2000) (henceforth LL) introduce the trend-

deviation-in-wealth (henceforth TDW) as a powerful predictor of equity markets at short

and intermediate horizons. Drawing on the forward-looking model of Campbell and Shiller

(1988a), LL argue that TDW summarizes expectations about future stock returns. Trend-

deviation-in-wealth is computed as ct − wat − (1 − w)yt, where ct, at, and yt denote log

consumption, non-human wealth, and labor income, respectively and w equals the average

share of non-human wealth in total wealth. Consumption, wealth, and income data are re-

leased by the Federal Reserve Board within two months of the end of a quarter, suggesting

that the TDW realization at quarter t is made known to capital market participants at the

subsequent quarter and hence must be used to predict returns realized at or after quarter

t+ 2.

19



To examine the predictive power of TDW and the overall evidence about predictability

using quarterly observations, an additional set of information variables is constructed with

TDW replacing January Dummy.5 Using quarterly observations and at the same time

leaving the prior sample size, T0, unchanged amount to weighting the prior sample against

predictability to a stronger degree as the ratio T0
T increases three times. To maintain the

ratio T0
T fixed across the monthly and quarterly experiments, posterior probabilities for the

new model space are computed with T0 taking values equivalent to 17 prior observations

per parameter.

Table 6 exhibits cumulative posterior probabilities for the new set of predictors. We

show that TDW indeed dominates dividend yield, lagged excess return, default-risk spread,

and term-structure spread, predictive variables used by LL. (Two predictors examined by

LL, dividend-payout ratio and relative bill rate, are not presented in Table 6, but were

examined along with the other variables and found not particularly robust in a posterior

probability analysis.) TDW outperforms book-to-market, WML, HML, and inflation as

well. However, several other variables not accounted for by LL, including term-structure

premium, default-risk premium, the three-month Treasury-bill rate, size premium, and

earnings yield, possess stronger power in forecasting quarterly returns on all equity portfolios

for every entertained prior sample size. Interestingly, SMB appears robust in forecasting

quarterly returns on large capitalization stocks, whereas HML is not identified with the

highest-posterior-probability models for quarterly observations as well.

Table 7 exhibits t-ratios unadjusted (top figures) and adjusted (bottom figures) to ac-

5I thank Martin Lettau for providing data on TDW. It should be emphasized that w, the share of non-

human wealth in total wealth, is computed based on all the sample containing data realized after the time

future returns were predicted. LL recompute TDW using out-of-sample estimation, which, in turn, produces

a fairly small sample, not sufficient to be included here.
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count for model uncertainty. Model uncertainty questions the relevance of several explana-

tory variables. The variables Treasury bill rate and SMB are, in some cases, significant

in forecasting quarterly returns based on t-ratios that ignore model uncertainty, but not

when such uncertainty is accounted for. In most cases, the t-ratio corresponding to the

TDW is smaller (in absolute value) than those corresponding to the variables earnings

yield, term-structure premium, Treasury bill rate, and SMB.

3 Bayesian Model Averaging: External Validation

The analysis provides strong evidence that monthly and quarterly returns on portfolios

sorted on size and book-to-market are predictable, even when prior beliefs are weighted

against predictability. In a related study, Bossaerts and Hillion (1999) confirm the presence

of predictability using several model selection criteria. However, they discover that those

criteria perform poorly out of sample. This section compares the out-of-sample performance

of the weighted forecasting model with that of six other models. The first is an all-inclusive

model. The second is the iid model, which rules out return predictability. The other four

models are selected using the criteria AIC, SIC, FIC, and PIC, all of which are discussed

by Bossaerts and Hillion (1999). Due to the high dimensionality of the model space, the

out-of-sample examination focuses on a single risky asset, the value weighted CRSP index

encompassing securities traded in NYSE, AMEX, and NASDAQ.

Out-of-sample forecast errors are computed using the following algorithm. Based upon

the initial t = T
3 sample observations, we compute posterior probabilities for all 2

M compo-

sitions and select four models based on the aforementioned criteria. Next, we project the

time t + 1 excess return for each of the seven specifications and retain the corresponding

forecast errors. The excess return and predictive variables realized at time t + 1 are then
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added to the data set to revise both the model selection and posterior probability compu-

tation and to project the time t+ 2 excess return. Following these steps, we obtain 2× T
3

out-of-sample forecast errors for each specification. Table 8 reports the sum of squared fore-

cast errors (SSE), the sum of forecast errors (SFE), and the standard deviation of forecast

errors (SDE).

Focusing on the out-of-sample performance of the iid model and the four models se-

lected by AIC, SIC, FIC, and PIC, the evidence shows no out-of-sample predictability. In

particular, the SSE’s for the iid model are 0.7886 and 0.9492 based on the monthly and

quarterly samples, respectively. A similar quantity for the optimally selected models ranges

between 0.8010 and 0.8270 based on the monthly sample, and between 0.9966 and 1.1073

based on the quarterly counterpart. Moreover, the absolute value of the sum of forecast

errors corresponding to the iid model is 0.3488, whereas the counterpart quantity for the

optimally selected models is bounded below by 0.4572. The poor out-of-sample performance

of model selection criteria is consistent with Bossaerts and Hillion (1999).

Focusing on all seven specifications, we find that Bayesian model averaging has a su-

perior out-of-sample performance. For example, its SSE and SFE are 0.7793 and -0.0224,

respectively, based on the monthly sample. The corresponding quantities based on the

quarterly counterpart are 0.9314 and 0.1760. Moreover, the weighted model possesses the

smallest dispersion in forecast errors. The overall evidence is thus consistent with out-of-

sample predictability.

In a related study, Cremers (2000) conditions his analysis on the highest-posterior-

probability model and reports no in-sample and out-of-sample predictability. Our analysis

is not conditioned on a single selected model, but rather on the weighted model, which

averages over all models under consideration. Conditioning results on a single selected
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model amounts to ignoring model uncertainty. In particular, when the model space contains

as many as 16,384 compositions of predictive variables, the highest posterior probability

composition accounts, at least in our analysis, for less than a single percent from the total

posterior probability. Focusing on that particular model, one ignores the other 16, 383

competing models that account altogether for around 99% of the posterior mass.

B Model Uncertainty: Implications for the Investment Opportunity Set

We first perform the variance decomposition of future stock returns into the three compo-

nents, i.e., model risk, estimation risk, and uncertainty attributed to forecast errors. The

decomposition is based on the actual end-of-sample realizations. We find that for a single-

period investor, the average (across portfolios) contributions of the three components to

the overall uncertainty about predicted stock returns are 93%, 3%, and 4%, respectively,

based on monthly observations. However, such contributions based on quarterly observa-

tions are 79%, 17%, and 4%, respectively. That is, model uncertainty dominates parameter

uncertainty based on monthly but not quarterly observations.

Interestingly, focusing on monthly observations Pastor and Stambaugh (1999) show that

uncertainty about which pricing model to use is less important, on average, than within-

model parameter uncertainty. One of the major differences between the studies is that our

setting accommodates information variables. In particular, it is apparent from equation (15)

that model uncertainty becomes more prominent with a greater dispersion of the forecasted

conditional expected returns across the models. Such a dispersion positively depends upon

the deviation of the most recent values of the predictive variables from their historical

means. As an extreme example, if such recent values are equal to their historical means,

the conditional expected returns are identical across models.

23



At the end-of-sample period the current values of variables that are perceived to have

been indicators of fundamental values, such as book-to-market, dividend yield, and earnings

yield, deviate substantially from their sample means, giving rise to the greater impact of

model uncertainty. Some figures are presented below:

Predictive Level as of Sample Moments

Variable December 31, 1998 Mean StDev

BM 0.1178 0.5078 0.1790

Div 0.0155 0.0363 0.0094

EY 0.3907 0.8531 0.2936

What are the implications of the sample size and investment horizon for model-versus-

parameter risks?

Higher frequency data provides substantially more information about the variance, but

only little additional information about expected returns. Therefore, parameter uncertainty

is more prominent based on the quarterly sample. In contrast, with a smaller sample size,

model uncertainty, which is merely the dispersion in expected returns across all forecasting

models, is affected only marginally.

Parameter uncertainty increases with the investment horizon, as shown by Barberis

(2000). However, in longer horizons, predictive variables revert to their long-run means

(see autocorrelation coefficients for various lags in Table 1), making conditional expected

stock returns look similar across the various forecasting models. We, therefore, expect

that the total predictive variance attributed to model uncertainty will converge to a fixed

quantity and, consequently, the annualized predictive variance, obtained by dividing the

fixed quantity by the horizon length, will diminish with an increasing horizon. The one-

period investment horizon thus gives a lower bound on the ratio obtained by dividing
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parameter uncertainty by model uncertainty.

We next turn to a portfolio selection analysis. Table 9 exhibits asset allocation under

model uncertainty across the six size book-to-market portfolios for both monthly (Panel A)

and quarterly (Panel B) observations. Asset allocations are derived based on two scenarios,

in which the recent values of predictive variables are equal to the actual end-of-sample

realizations and to the sample means. The investment horizon ranges between one and

ten years. The relative risk-aversion coefficient takes the values three, six, and nine. Also

reported are total allocations to equities and a certainty equivalent rate, CE. A certainty

equivalent rate is the annual riskless rate that would provide the maximized expected utility

E [U (WT+K(ω
∗))]. It is given by:

CE = {(1− γ)E [U (WT+K(ω
∗))]} 1

H(1−γ) − 1, (18)

whereH is the length of horizon in years, i.e., H = K
12 andH = K

4 for monthly and quarterly

observations, respectively. The lower bound on CE is the annual risk free rate of return

prevailing over the investment horizon.

The overall pattern of asset allocations, as displayed in Table 9, is consistent with return

predictability. The optimal portfolio choices exhibit high sensitivity to the current values of

predictive variables. In particular, centering those values around the sample means rather

than the actual end-of-sample realizations modifies the compositions of risky assets in the

optimal portfolio. For example, focusing on γ = 3 and a one-year investment horizon, the

invested wealth in the small size, high book-to-market portfolio increases from 16.84% to

44.48%, whereas the wealth invested in the big size, high book-to-market portfolio decreases

from 82.16% to 54.54%. The investment in the other equity portfolios remain zero.

Focusing on the actual end-of-sample realizations to explore the attractiveness of invest-

ment opportunities, we show that investors tend to allocate more to equities the longer their
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horizon. For example, with γ = 6 the total allocation to equities is 52.23% and 54.38% for

horizons of one and ten years, respectively. In the same vein, investment opportunities, as

summarized by the certainty equivalent measure, are perceived more attractive with longer

horizons. For example, annual certainty equivalent rates corresponding to horizons of one

and ten years are 7.22% and 7.69%, respectively.

It should be noted that the horizon effect found here is not as robust as the one docu-

mented by Barberis (2000). Focusing on the dividend yield as a single predictor, Barberis

(2000) shows that investors allocate substantially more to stocks the longer their horizon.

In our analysis, which explicitly accounts for model uncertainty, the increase in allocation

to equities for longer horizons is fairly modest and completely disappears when the current

values of the predictive variables are equal to their sample means. The disappearance of the

horizon effect is consistent with Heaton and Lucas (2000) and Ameriks and Zeldes (2000)

who show that older people (probably shorter horizon investors) could hold more in stocks

than younger cohorts. Interestingly, Ameriks and Zeldes (2000) also show that almost half

of their sample members made no active changes to their portfolio allocation, i.e., those are

buy-and-hold investors similar to the one examined in our study.

V Conclusion

We use Bayesian model averaging to investigate the sample evidence about return pre-

dictability in the presence of model uncertainty. The analysis shows that such uncertainly is

more important than the within-model parameter uncertainly for monthly observations, but

the reverse is true for quarterly observations. Incorporating model uncertainty undermines

the apparent predictive power of several economic variables. However, both in-sample and

out-of-sample evidence based on posterior and predictive analysis support predictability.
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We also show that the out-of-sample performance of Bayesian model averaging is superior

to that of the traditional model selection criteria studied by Bossaerts and Hillion (1999).

Several economic variables are found useful predictors of future returns on portfolios

sorted on size and book-to-market. Such variables include the difference between lagged

returns on long-term and short-term government bonds, earnings yield, and Treasury-bill

rate. Interestingly, the trend-deviation-in-wealth appears strong in forecasting future re-

turns when the set of predictive variables is restricted to that studied by Lettau and Ludvig-

son (2000). However, its predictive power is somewhat undermined when the information

set is expanded to include several other variables. Last, we show that small high book-to-

market stocks are more predictable than big low-book-to-market stocks.

Directions for future research include the implementation of our methodology to examine

predictability of returns on fixed income securities, of forward premiums, and of economic

growth. Our approach gives interesting directions for examining non-nested models as well.

For example, one can compute posterior probabilities for GARCH and stochastic volatility

models in order to select the optimal model or, instead, to average across these models.

The uncertainty about the true volatility model is especially relevant in pricing derivative

securities, but it also can provide powerful insight for short-term asset allocation decisions.

The study derives portfolio choice in a simplified environment, focusing on descriptive

implications. The normative implications of model uncertainty for asset allocation decisions

merit further research. In particular, can model uncertainty induce hedging demands for

risky assets? Finally, in a general equilibrium setting, investors who face model uncertainty

will require an extra premium for holding equities. Estimating the equity premium in the

presence of model uncertainty is of great interest, especially when the current estimates

appear too large to be reconciled with the perceived uncertainty about stock returns.
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A Proof of Proposition 1

First note that all the various quantities based on the hypothetical sample, denoted by the

subscript 0, must be expressed in terms of quantities observed from the actual sample. In

particular (the model-specific-subscript is suppressed for notational clarity):

1

T0
(X 0

0X0) =
1

T
(X 0X) =

 1 z̄0

z̄ z̄z̄0 + V̂z

 , (A.1)

X 0
0R0 = (X 0

0X0)B0, (A.2)

=
T0
T
(X 0X)

 r̄0
0

 ,

= T0

 r̄0

z̄r̄0

 .
The joint posterior distribution of B and Σ based on the hypothetical sample is the

prior distribution for those parameters based on the actual sample

P (B,Σ) ∝ |Σ|−T0
2 exp

µ
−1
2
tr
£
S0 + (B −B0)0X 0

0X0(B −B0)
¤
Σ−1

¶
, (A.3)

where

S0 = (R0 −X0B0)0(R0 −X0B0), (A.4)

= (R0 − ιT0 r̄)
0(R0 − ιT0 r̄),

= T0V̂r,

and ιT0 is a T0×1 vector of ones. Standard results (e.g., Zellner (1971)) imply that Σ obeys

the inverted Wishart distribution with a parameter matrix S0 and T0 − N − 1 degrees of

freedom. Conditional on Σ, the vector b = vec(B) is multivariate normally distributed with
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mean b0 = vec(B0) and variance Σ⊗ (X 0X)−1. The informative priors for B and Σ can be

expresses as

P
¡
b|Σ¢ = (2π)−

N(m+1)
2 |Σ|− 1

2 exp

µ
−1
2

¡
b− b0

¢0£
Σ−1 ⊗X 0

0X0
¤
(b− b0

¢¶
, (A.5)

P
¡
Σ
¢
= ψ0|S0|

T0−N−1
2 |Σ|−T0

2 exp

µ
−1
2
tr
£
S0Σ

−1¤¶ ,
where

ψ0 =

Ã
2

(T0−N−1)N
2 π

N(N−1)
4

NY
i=1

Γ

∙
T0 −N − i

2

¸!−1
. (A.6)

The normalization constants must be included while computing the marginal likelihood and

are therefore displayed above.

The likelihood function (the one that integrates to unity) of normally distributed data

constituting the actual sample obeys the form:

P (D|B,Σ) = (2π)−TN
2 |Σ|−T

2 exp

µ
−1
2
tr
h
S + (B − B̂)0X 0X(B − B̂)

i
Σ−1

¶
, (A.7)

where

S = (R−XB̂)0(R−XB̂), (A.8)

B̂ =
¡
X 0X

¢−1
X 0R. (A.9)

Combining the likelihood (A.7) and the prior (A.3) and completing the square on b yield

P
¡
b|Σ, D¢ = (2π)−

N(m+1)
2 |Σ|− 1

2 exp

µ
−1
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¡
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,
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where

b̃ = vec(B̃),

B̃ = (X 0
0X0 +X

0X)−1(X 0
0R0 +X

0R),

S̃ = R0R+ S0 +R00X0(X
0
0X0)

−1X 0
0R0 − B̃0(X 0

0X0 +X
0X)B̃,

ψ =

Ã
2
νN

2 π
N(N−1)

4

NY
i=1

Γ

∙
ν + 1− i

2

¸!−1
,

ν = T0 + T −N − 1.

The marginal likelihood is the product of the prior and likelihood divided by the pos-

terior, all of which are evaluated at an arbitrary point in the parameter space B∗ and

Σ∗

P (D|Mj) =
P (D|Σ∗, B∗,Mj)P (Σ

∗, B∗|Mj)

P (Σ∗, B∗|D,Mj)
. (A.11)

Computing the log marginal likelihood is straightforward: take logs from both sides of

(A.11) and replace the prior, likelihood, and posterior densities in (A.5), (A.7), and (A.10),

respectively, by their corresponding normalization constants.

B The Joint Posterior Distribution of Φ and Ψ

To solve for the posterior distribution of Φ and Ψ, we follow Kandel and Stambaugh (1996)

and make the additional assumption that the prior sample produces the same values as the

actual counterpart for the statistics corresponding to ρ and z̃, where

ρ =
1

T

T−1X
t=0

(zt − z̄)(zt+1 − z̃)0 (B.1)
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is the matrix of autocorrelation and cross autocorrelation of m predetermined variables and

z̃ = 1
T

PT
t=1 zt, results in an informative joint posterior distribution of Φ and Ψ:

vec(Φ)|Ψ ∼ N ¡vec(Φ0),Ψ⊗ (X 0
0X0)

−1¢ , (B.2)

Ψ ∼ IW (Ψ0, T0 − (N +m)− 1) ,

where

Φ0 = (X 0
0X0)

−1(X 0
0Y0),

=
£
B0, (X

0
0X0)

−1(X 0
0Z0)

¤
,

X 0
0Z0 = T0
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Ψ0 ≈ T0
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Z 00X0(X 0

0X0)
−1X 0

0Z0

 .
The approximation becomes equality if the first and last observations of the predictive

variables are equal. The off-diagonal matrix V is assumed zero, an innocuous assumption.

Combining the joint prior distribution in (B.2) with normally distributed data constituting

the primary sample, the posterior distributions for φ = vec(Φ) and Ψ are obtained as

φ|Ψ, D ∼ N
³
φ̃,Ψ⊗ (X 0

0X0 +X
0X)−1

´
, (B.3)

Ψ|D ∼ IW
³
Ψ̃, T + T0 − (N +m)− 1

´
,

where

φ̃ = vec(Φ̃),

Φ̃ = (X 0
0X0 +X

0X)−1(X 0
0Y0 +X

0Y ),

Ψ̃ = Y 0Y +Ψ0 + Y 00X0(X
0
0X0)

−1X 0
0Y0 − Φ̃0(X 0

0X0 +X
0X)Φ̃.
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C Proof of Proposition 2

Partitioning equation (11) yields

(r0t, z
0
t) = (1, z

0
t−1)
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, (C.1)

where  ²t

et
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 Σ Λ

Λ0 Φ
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It follows from equation (C.1) that:

rT+1 = b+ CzT + ²T+1, (C.3)

zT+1 = a+A0zT + eT+1. (C.4)

The cumulative excess return over the investment horizon is computed as

RT+K =
KX
k=1

rt+k, (C.5)

= Kb+ C

 KX
j=1

zT+j−1

+ KX
j=1

²T+j ,

where zT+j is obtained by iterating over equation (C.4). In particular,

zT+J = [(A
0)J − Im](A0 − Im)−1a+ (A0)JzT +

JX
j=1

(A0)J−jeT+j . (C.6)

Substituting equation (C.6) into equation (C.5) for J = 1, . . . ,K − 1 yields:

RT+K = Kb+ C
£
A0
¡
(A0)K−1 − Im

¢
(A0 − Im)−1 − (K − 1)Im

¤
(A0 − Im)−1a

+ C
¡
(A0)K − Im

¢
(A0 − Im)−1zT +

KX
j=2

j−1X
i=1

C(A0)j−i−1eT+i +
KX
j=1

²T+j ,

for K ≥ 2. The results follow immediately.
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Table 1
Descriptive Statistics of Predictive Variables and Monthly Stock Returns

The table shows descriptive statistics based on the actual sample spanning 549 months from April 1953
to December 1998 for monthly continously compounded returns on six equity portfolios and 13 predictors.
The portfolios are identified by a combination of two letters designating increasing values of size (S,B) and
book-to-market (L,M,H). The 13 predictors are: dividend yield on the value weighted NYSE index (Div);
book-to-market (BM) on the Standard & Poor’s Industrials; earnings yield on the Standard & Poor’s Com-
posite index (EY); the one-year momentum portfolio (WML); the difference in annualized yields of Moody’s
Baa and Aaa rated bonds (Def); the monthly rate of a three-month Treasury bill (Tbill); excess return on
the value weighted index (Ret); the difference between the return on long-term corporate bonds and the
return on long-term government bond (DEF); the difference between the monthly return on long-term gov-
ernment bond and the one month Treasury bill rate (TERM); the inflation rate (Inf); size premium (SMB);
value premium (HML); and the difference in annualized yield of ten-year and one-year Treasury bills (Term).
Std.Dev. denotes the standard deviation. The parameter ρt is the sample autocorrelation at lag t months.

Statistic: Mean Std.Dev. ρ1 ρ3 ρ6 ρ12 ρ60

Predictive Variables:

Div 0.0362 0.0091 0.9828 0.9478 0.8847 0.7620 0.3276

BM 0.5048 0.1735 0.9889 0.9674 0.9304 0.8572 0.4912

EY 0.8531 0.2936 0.9929 0.9679 0.9162 0.7981 0.3638

WML 0.0097 0.0357 -0.0377 -0.1016 0.0706 0.2347 0.2293

Def 0.9476 0.4385 0.9738 0.9106 0.8360 0.6941 0.3859

Tbill 0.0044 0.0024 0.9565 0.9113 0.8638 0.7818 0.4258

Ret 0.0063 0.0423 0.0655 0.0041 -0.0650 0.0312 -0.0504

DEF 0.0003 0.0115 -0.1881 -0.0493 -0.0434 0.0054 0.0088

TERM 0.0011 0.0263 0.0662 -0.1037 0.0452 -0.0107 -0.0242

Inf 0.3330 0.3334 0.5541 0.4755 0.4416 0.5152 0.2929

SMB 0.0009 0.0262 0.1659 -0.0134 0.0708 0.1871 0.0305

HML 0.0039 0.0244 0.1483 -0.0077 0.0430 0.1013 0.0063

Term 0.7195 0.9908 0.9589 0.8368 0.7033 0.5071 0.0217

Equity Portfolios:

SL 0.0098 0.0614 0.1722 -0.0242 -0.0237 0.0085 -0.0401

SM 0.0130 0.0501 0.1854 -0.0122 -0.0010 0.0694 0.0034

SH 0.0149 0.0509 0.1795 -0.0275 -0.0132 0.1272 0.0482

BL 0.0108 0.0451 0.0571 0.0013 -0.0665 0.0535 -0.0770

BM 0.0110 0.0399 0.0129 0.0127 -0.0660 0.0057 -0.0262

BH 0.0132 0.0434 0.0443 0.0244 -0.0214 0.0544 0.0026
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Table 2
Multiple Regressions of Monthly Excess Continously Compounded Returns on

Predictive Variables

The table displays OLS estimates based on six multiple regressions of excess continously compounded re-
turns on a constant intercept and 14 predictive variables. Reported are slope coefficients (top figures) and
ratios obtained by dividing the slopes by their corresponding standard deviations (bottom figures). Excess
returns are on six portfolios formed as the intersection of two size (S,B) and three book-to-market (L,M,H)
groups. The set of predictors includes: dividend yield (Div); book-to-market (BM); earnings yield (EY);
the one-year momentum portfolio (WML); default risk spread (Def); the monthly rate of a three-month
Treasury bill (Tbill); excess return on the value weighted index (Ret); default risk premium (DEF); term-
structure premium (TERM); the inflation rate (Inf); size premium (SMB); value premium (HML); and the
term-structure spread (Term).

Portfolio: SL SM SH BL BM BH
Div -0.0129 -0.0105 -0.0076 0.0018 -0.0007 -0.0027

-0.9936 -1.0145 -0.7334 0.1903 -0.0880 -0.2999

BM -0.0018 -0.1591 -0.4942 0.3266 0.0759 -0.1280
-0.0019 -0.2096 -0.6525 0.4655 0.1234 -0.1935

EY -0.0655 -0.0347 -0.0134 -0.0651 -0.0466 -0.0114
-1.6370 -1.0873 -0.4214 -2.2042 -1.8025 -0.4085

WML 0.0782 0.0568 0.0541 0.0441 0.0450 0.0300
2.5494 2.3216 2.2125 1.9495 2.2683 1.4055

Def -0.0217 -0.0228 -0.0529 -0.0093 0.0311 -0.0272
-0.2689 -0.3541 -0.8242 -0.1562 0.5970 -0.4852

Tbill 0.0160 0.0096 0.0061 0.0124 0.0113 0.0076
1.4745 1.1137 0.7062 1.5503 1.6157 1.0097

Ret -6.7958 -3.9722 -3.1236 -4.0756 -4.6298 -2.7374
-3.1139 -2.2808 -1.7974 -2.5313 -3.2827 -1.8032

DEF 0.0191 0.0443 0.0751 -0.0795 -0.1034 -0.0566
0.2460 0.7173 1.2177 -1.3906 -2.0659 -1.0504

TERM 0.4310 0.3254 0.2454 0.4139 0.3534 0.2117
1.6003 1.5140 1.1442 2.0831 2.0304 1.1300

Jan 0.3160 0.3421 0.2948 0.2619 0.2973 0.2170
2.5537 3.4649 2.9923 2.8686 3.7177 2.5207

Inf 0.0238 0.0289 0.0430 -0.0044 0.0079 0.0268
2.4281 3.6917 5.5041 -0.6045 1.2495 3.9225

SMB -0.0138 -0.0124 -0.0121 -0.0182 -0.0090 -0.0124
-1.3518 -1.5155 -1.4885 -2.4023 -1.3552 -1.7372

HML 0.1932 0.1285 0.1109 0.0720 0.0770 0.0264
1.7380 1.4489 1.2525 0.8776 1.0713 0.3409

Term -0.1125 -0.0014 0.0860 -0.0790 0.0119 0.0249
-0.9558 -0.0151 0.9177 -0.9097 0.1559 0.3037
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Table 3

Posterior Probabilities of Forecasting Models Based on a Prior Sample Weighted
against Predictability

The top figures denote the highest-posterior probability compositions represented by a combination of
zeros and ones designating exclusions and inclusions of predictive variables, respectively. The bottom figures
display cumulative posterior probabilities computed as A0P, where A is a 214 × 14 matrix representing all
forecasting models by their unique combinations of zeros and ones and P is a 214×1 vector including posterior
probabilities for all models. The stock universe comprises six portfolios identified by two letters designating
increasing values of size (S, B) and book-to-market (L, M, H). Following are the predictors spanning the
information set: dividend yield (Div); book-to-market (BM); earnings yield (EY); the momentum portfolio
(WML); the difference in annualized yields of Moody’s Baa and Aaa rated bonds (Def); the monthly rate of
a three-month Treasury bill (Tbill); excess return on the value weighted index (Ret); the difference between
the return on long-term corporate bonds and the return on long-term government bond (DEF); the difference
between the monthly return on long-term government bond and the one month Treasury bill rate (TERM);
the inflation rate (Inf); size premium (SMB); value premium (HML); and the difference in annualized yield of
ten-year and one-year Treasury bills (Term). Figures displayed below are computed when investors perceive
the events of predictability versus no predictability as equally likely prior to encountering a hypothetical
sample weighted against predictability.

Predictive Variables
Div BM EY WML Def Tbill Ret DEF TERM Jan Inf SMB HML Term

Portfolio:

SL 0 1 1 0 1 1 0 1 1 1 0 1 0 0
0.45 0.53 0.80 0.38 0.58 0.86 0.52 0.51 0.72 0.76 0.57 0.62 0.45 0.44

SM 0 0 1 0 0 1 0 1 1 1 0 1 0 1
0.43 0.41 0.69 0.36 0.48 0.67 0.54 0.50 0.91 0.95 0.54 0.54 0.33 0.57

SH 0 0 1 0 0 0 1 0 1 1 1 0 0 1
0.40 0.37 0.60 0.39 0.40 0.55 0.61 0.40 0.81 1.00 0.49 0.48 0.34 0.62

BL 0 1 1 0 1 1 0 1 1 0 1 0 0 0
0.53 0.61 0.65 0.43 0.58 0.71 0.45 0.64 0.78 0.44 0.81 0.47 0.47 0.49

BM 0 1 1 0 1 1 1 1 1 0 1 0 0 0
0.50 0.54 0.69 0.41 0.61 0.87 0.53 0.62 0.92 0.54 0.57 0.45 0.41 0.52

BH 0 0 1 0 0 0 0 0 1 1 1 0 0 1
0.46 0.44 0.51 0.40 0.51 0.61 0.39 0.45 0.73 0.98 0.64 0.39 0.40 0.66
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Table 4

Slope Coefficients in the Weighted Model and their t-Ratios

The top figures denote posterior means of slope coefficients obtained by averaging slope estimates across
models:

E(B|D) =
2MX
j=1

P (Mj |D) B̃j .

The middle and bottom figures denote t-ratios unadjusted and adjusted to account for model uncertainty,
respectively. In particular, the former is obtained by dividing the posterior mean of each of the slope
coefficients by its posterior standard error corresponding to the first variance component in the following
equation:

Var(B|D) =
2MX
j=1

P (Mj |D)
(
T S̃j(X

0
jXj)

−1

T ∗j (T
∗
j − 4)

+
h
B̃j − E(B|D)

i h
B̃j − E(B|D)

i0)
.

The latter divides the posterior mean by the posterior standard error corresponding to the overall variance,
including model uncertainty that summarizes the dispersion in slopes across models. The statistics are
computed separately for each of six equity portfolios formed as the intersection of two size (S, B) and three
book-to-market (L, M, H) groups. Following are the predictors spanning the information set: dividend
yield (Div); book-to-market (BM); earnings yield (EY); the momentum portfolio (WML); the difference in
annualized yields of Moody’s Baa and Aaa rated bonds (Def); the monthly rate of a three-month Treasury
bill (Tbill); excess return on the value weighted index (Ret); the difference between the return on long-term
corporate bonds and the return on long-term government bond (DEF); the difference between the monthly
return on long-term government bond and the one month Treasury bill rate (TERM); the inflation rate
(Inf); size premium (SMB); value premium (HML); and the difference in annualized yield of ten-year and
one-year Treasury bills (Term). Figures displayed below are computed when investors perceive the events of
predictability versus no predictability as equally likely prior to encountering a hypothetical sample weighted
against predictability.

Predictive Variables
Div BM EY WML Def Tbill Ret DEF TERM Jan Inf SMB HML Term

Portfolio:

SL 0.06 -0.01 0.03 -0.01 0.01 -2.57 0.03 0.11 0.10 0.01 -0.01 0.07 -0.03 0.00
0.15 -0.76 1.76 -0.17 0.98 -2.19 0.84 0.79 1.50 1.61 -1.00 1.15 -0.56 0.41
0.12 -0.56 1.22 -0.16 0.69 -1.48 0.61 0.59 1.05 1.18 -0.72 0.84 -0.47 0.34

SM 0.06 0.00 0.01 -0.01 0.00 -1.25 0.03 0.09 0.15 0.02 0.00 0.05 0.00 0.00
0.21 -0.28 1.38 -0.30 0.80 -1.54 1.03 0.85 2.44 2.67 -1.03 1.00 -0.09 1.11
0.16 -0.22 0.94 -0.27 0.54 -0.96 0.71 0.62 1.80 2.23 -0.72 0.72 -0.09 0.75

SH 0.03 0.00 0.01 -0.02 0.00 -0.86 0.04 0.06 0.12 0.02 0.00 0.04 0.01 0.00
0.10 0.13 1.15 -0.57 0.60 -1.20 1.37 0.60 2.07 3.99 -0.94 0.89 0.36 1.36
0.08 0.10 0.78 -0.46 0.41 -0.75 0.88 0.45 1.40 3.74 -0.65 0.63 0.31 0.89

BL 0.15 -0.01 0.01 0.00 0.00 -1.10 -0.01 0.12 0.09 0.00 -0.01 0.02 -0.02 0.00
0.54 -0.96 1.07 -0.18 0.85 -1.40 -0.21 1.08 1.62 -0.23 -1.79 0.43 -0.43 0.45
0.42 -0.70 0.77 -0.17 0.63 -0.94 -0.19 0.80 1.18 -0.22 -1.30 0.39 -0.38 0.38

BM 0.10 -0.01 0.01 0.00 0.00 -1.64 -0.02 0.10 0.12 0.00 0.00 0.01 0.00 0.00
0.42 -0.71 1.23 0.20 1.01 -2.16 -0.73 1.07 2.36 0.77 -0.90 0.42 0.12 0.68
0.33 -0.53 0.89 0.20 0.72 -1.50 -0.58 0.80 1.84 0.62 -0.68 0.37 0.11 0.52

BH 0.08 0.00 0.00 -0.01 0.00 -0.77 0.00 0.04 0.07 0.01 0.00 0.01 0.01 0.00
0.34 0.14 0.58 -0.29 0.74 -1.16 -0.16 0.45 1.48 2.87 -1.22 0.18 0.24 1.29
0.30 0.12 0.48 -0.27 0.53 -0.78 -0.15 0.38 1.08 2.54 -0.87 0.17 0.23 0.90
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Table 5

Posterior Odds in Favor of Predictability Based on Various Hypothetical Prior
Samples

The table exhibits posterior odds in favor of predictability, or against the iid model, for various values of
the hypothetical sample size, ranging from 20 to 1280 years per parameter. The prior-odds ratio in favor of
predictability is set equal to unity. The posterior-odds ratio is computed by dividing the sum of posterior
probabilities assigned to models that retain predictors by the posterior probability of the iid model. The
stock universe comprises six portfolios identified by two letters designating increasing values of size (S,
B) and book-to-market (L, M, H). Following are the predictors constituting the information set: dividend
yield (Div); book-to-market (BM); earnings yield (EY); the momentum portfolio (WML); the difference in
annualized yields of Moody’s Baa and Aaa rated bonds (Def); the monthly rate of a three-month Treasury
bill (Tbill); excess return on the value weighted index (Ret); the difference between the return on long-term
corporate bonds and the return on long-term government bond (DEF); the difference between the monthly
return on long-term government bond and the one month Treasury bill rate (TERM); the inflation rate
(Inf); size premium (SMB); value premium (HML); and the difference in annualized yield of ten-year and
one-year Treasury bills (Term).

Number of years
per parameter 20 40 80 160 320 640 1280

Portfolio:
Posterior-Odds Ratios

SL 39.07 7.37 2.84 1.71 1.31 1.15 1.07

SM 113.72 12.82 3.76 1.96 1.40 1.19 1.09

SH 295.49 19.83 4.54 2.13 1.46 1.21 1.10

BL 8.85 3.24 1.84 1.37 1.17 1.08 1.04

BM 14.22 4.14 2.09 1.45 1.21 1.10 1.05

BH 23.47 5.35 2.37 1.55 1.24 1.12 1.06
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Table 6

Posterior Probabilities of Forecasting Models Using Quarterly Observations

The table exhibits cumulative posterior probabilities for fourteen predictive variables computed as A0P,
where A is a 214 × 14 matrix representing all forecasting models by their unique combinations of zeros and
ones designating exclusions and inclusions of predictors, respectively, and P is a 214 × 1 vector including
posterior probabilities for all models. Figures displayed below are computed when investors perceive the
events of predictability versus no predictability as equally likely prior to encountering a hypothetical no-
predictability informative sample taking values equivalent to 17 observations per parameter. The asset
universe comprises six equity portfolios identified by two letters designating increasing values of size (S, B)
and book-to-market (L, M, H). Following are the predictors constituting the information set: dividend yield
(Div); book-to-market (BM); earnings yield (EY); momentum (WML); default risk spread (Def); the three-
month rate of a three-month Treasury bill (Tbill); a quarterly excess return on the value weighted index
(Ret); default risk premium (DEF); term structure premium (TERM); trend deviation in wealth (TDW);
the three-month inflation rate (Inf); size premium (SMB); value premium (HML); and the term spread
(Term).

Predictive Variables
Div BM EY WML Def Tbill Ret DEF TERM TDW Inf SMB HML Term

Portfolio:

Prior Sample Size Equivalent to 17 Observations per Parameter

SL 0.49 0.53 0.75 0.49 0.49 0.85 0.43 0.72 0.81 0.63 0.43 0.62 0.42 0.43

SM 0.49 0.48 0.67 0.48 0.51 0.73 0.45 0.69 0.76 0.65 0.45 0.70 0.42 0.47

SH 0.49 0.47 0.65 0.53 0.51 0.70 0.53 0.65 0.73 0.54 0.46 0.69 0.43 0.51

BL 0.55 0.60 0.63 0.50 0.52 0.77 0.45 0.66 0.73 0.54 0.49 0.83 0.43 0.46

BM 0.52 0.55 0.70 0.44 0.60 0.87 0.45 0.51 0.61 0.58 0.47 0.80 0.42 0.48

BH 0.51 0.47 0.57 0.44 0.54 0.68 0.62 0.55 0.59 0.53 0.55 0.85 0.43 0.51
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Table 7

Slope Coefficients in the Weighted Model and their t-Ratios: The case of Quarterly
Observations

The top and bottom figures denote t-ratios unadjusted and adjusted to account for model uncertainty,
respectively. In particular, the former is obtained by dividing the posterior mean of each of the slope coef-
ficients obtained by averaging slope estimates across models by the posterior standard error corresponding
to the first variance component in the following equation:

Var(B|D) =
2MX
j=1

P (Mj |D)
(
T S̃j(X

0
jXj)

−1

T ∗j (T
∗
j − 4)

+
h
B̃j − E(B|D)

i h
B̃j − E(B|D)

i0)
.

The latter divides the posterior mean by the posterior standard error corresponding to the overall variance,
including model uncertainty that summarizes the dispersion in slopes across models. The hypothetical no-
predictability informative sample takes values equivalent to 17 observations per parameter. The statistics are
computed separately for each of six equity portfolios formed as the intersection of two size (S, B) and three
book-to-market (L, M, H) groups. Following are the predictors constituting the information set: dividend
yield (Div); book-to-market (BM); earnings yield (EY); momentum (WML); default risk spread (Def); the
three-month rate of a three-month Treasury bill (Tbill); a quarterly excess return on the value weighted index
(Ret); default risk premium (DEF); term structure premium (TERM); trend deviation in wealth (TDW);
the three-month inflation rate (Inf); size premium (SMB); value premium (HML); and the term spread
(Term). Figures displayed below are computed when investors perceive the events of predictability versus no
predictability as equally likely prior to encountering a hypothetical sample weighted against predictability.

Predictive Variables
Div BM EY WML Def Tbill Ret DEF TERM TDW Inf SMB HML Term

Portfolio:

Prior Sample Size Equivalent to 17 Observations per Parameter

SL 0.30 -0.62 1.44 0.57 0.45 -1.96 -0.11 1.41 1.80 1.09 -0.08 -1.02 -0.17 -0.06
0.25 -0.47 1.03 0.47 0.35 -1.41 -0.10 1.02 1.30 0.83 -0.07 -0.78 -0.16 -0.05

SM 0.30 -0.33 1.15 0.52 0.58 -1.48 0.30 1.32 1.61 1.16 -0.31 -1.30 -0.25 0.39
0.25 -0.27 0.84 0.44 0.43 -1.02 0.25 0.95 1.13 0.87 -0.27 -0.97 -0.23 0.32

SH 0.19 -0.08 1.04 0.69 0.55 -1.34 0.71 1.15 1.47 0.75 -0.32 -1.26 -0.13 0.57
0.16 -0.07 0.79 0.55 0.41 -0.94 0.54 0.84 1.03 0.60 -0.28 -0.93 -0.13 0.46

BL 0.63 -0.89 0.98 -0.48 0.51 -1.59 0.08 1.13 1.42 0.70 -0.47 -1.74 -0.08 0.09
0.49 -0.65 0.72 -0.41 0.40 -1.11 0.07 0.84 1.03 0.58 -0.39 -1.34 -0.08 0.08

BM 0.46 -0.71 1.24 -0.22 0.91 -2.10 0.28 0.65 1.01 0.88 -0.45 -1.65 -0.18 0.40
0.36 -0.53 0.90 -0.20 0.66 -1.47 0.24 0.52 0.75 0.69 -0.38 -1.25 -0.17 0.33

BH 0.35 -0.01 0.71 -0.12 0.71 -1.26 1.03 0.77 0.92 0.70 -0.74 -1.89 0.16 0.56
0.31 -0.01 0.57 -0.11 0.52 -0.88 0.76 0.60 0.69 0.57 -0.58 -1.44 0.15 0.46
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Table 8

Bayesian Model Averaging: Out-of-Sample Performance

The table reports the sum of squared forecast errors (SSE), the sum of forecast errors (SFE), and the
standard deviation of forecast errors (SDE) for seven specifications. These are the weighted forecasting
model (WFM), the all-inclusive model (ALL), the iid model (IID), and the models selected by the criteria
AIC, SIC, FIC, and PIC. Out-of-sample forecast errors are computed using the following algorithm. Based
upon the initial t = T

3
sample observations, we compute posterior probabilities for all 2M compositions

and select four models based on the aforementioned criteria. Next, we project the time t+ 1 excess return
for each of the seven specifications and retain the corresponding forecast errors. The excess return and
predictive variables realized at time t+ 1 are then added to the data set to revise both the model selection
and posterior probability computation and to project the time t + 2 excess return. Following these steps,
we obtain 2× T

3
out-of-sample forecast errors for each specification.

WFM ALL IID AIC SIC FIC PIC

Statistic:

Monthly Observations

SSE 0.7793 0.8165 0.7886 0.8010 0.8270 0.8187 0.8195

SFE -0.0224 0.1671 -0.3488 0.4572 0.4641 1.0360 0.7383

SDE 0.0462 0.0473 0.0465 0.0468 0.0476 0.0473 0.0473

Quarterly Observations

SSE 0.9314 1.0076 0.9492 0.9966 1.1073 1.0155 1.0173

SFE 0.1760 0.8858 -0.3785 1.1395 1.3814 0.8844 0.8258

SDE 0.0877 0.0910 0.0885 0.0903 0.0950 0.0913 0.0914

45



Table 9

Asset Allocations Based on the Weighted Model

The table exhibits allocations to six size book-to-market portfolios as percentages of the total invested wealth
for both monthly (Panel A) and quarterly (Panel B) observations when the recent values of the predictive
variables (zT ) are equal to the actual realizations, as documented at the end-of-sample period, and to the
sample means. Asset allocations are derived for investment horizons ranging from one to ten years and
relative risk-aversion coefficient (γ) equal to three, six, and nine. Also reported are total allocations to
equities (Total) and a certainty equivalent measure (CE) defined as the annual riskless rate that would
provide expected utility equal to the one obtained based on the optimal allocations displayed below.

Panel A: The Case of Monthly Observations

Horizon SL SM SH BL BM BH Total CE SL SM SH BL BM BH Total CE

zT=End-of-Sample Realizations zT=Sample Means

γ=3

1 0.00 0.00 53.67 0.00 0.00 45.33 99.00 11.69 0.00 0.00 77.29 0.00 0.00 21.71 99.00 13.18
2 0.00 0.00 55.89 0.00 0.00 43.11 99.00 11.73 0.00 0.00 75.62 0.00 0.00 23.38 99.00 13.02
3 0.00 0.00 58.04 0.00 0.00 40.96 99.00 11.86 0.00 0.00 76.23 0.00 0.00 22.77 99.00 12.96
4 0.00 0.00 59.73 0.00 0.00 39.27 99.00 12.04 0.00 0.00 75.57 0.00 0.00 23.43 99.00 13.08
5 0.00 0.00 64.35 0.00 0.00 34.65 99.00 12.18 0.00 0.00 75.61 0.00 0.00 23.39 99.00 12.98
6 0.00 0.00 63.41 0.00 0.00 35.59 99.00 12.34 0.00 0.00 76.47 0.00 0.00 22.53 99.00 13.04
7 0.00 0.00 63.39 0.00 0.00 35.61 99.00 12.35 0.00 0.00 74.61 0.00 0.00 24.39 99.00 12.94
8 0.00 0.00 67.51 0.00 0.00 31.49 99.00 12.44 0.00 0.00 74.05 0.00 0.00 24.95 99.00 12.96
9 0.00 0.00 68.37 0.00 0.00 30.63 99.00 12.48 0.00 0.00 73.59 0.00 0.00 25.41 99.00 12.92
10 0.00 0.00 67.29 0.00 0.00 31.71 99.00 12.51 0.00 0.00 73.28 0.00 0.00 25.72 99.00 12.97

γ=6

1 0.00 0.00 24.74 0.00 0.00 43.64 68.38 8.38 0.00 0.00 35.62 0.00 0.00 39.79 75.41 9.34
2 0.00 0.00 26.02 0.00 0.00 43.30 69.31 8.41 0.00 0.00 34.49 0.00 0.00 40.41 74.89 9.23
3 0.00 0.00 26.57 0.00 0.00 42.13 68.69 8.46 0.00 0.00 35.65 0.00 0.00 37.97 73.62 9.16
4 0.00 0.00 27.13 0.00 0.00 42.10 69.23 8.55 0.00 0.00 34.83 0.00 0.00 41.46 76.29 9.27
5 0.00 0.00 29.49 0.00 0.00 39.98 69.47 8.62 0.00 0.00 34.52 0.00 0.00 40.10 74.62 9.16
6 0.00 0.00 28.85 0.00 0.00 43.89 72.75 8.77 0.00 0.00 35.63 0.00 0.00 40.00 75.63 9.21
7 0.00 0.00 28.65 0.00 0.00 41.74 70.38 8.71 0.00 0.00 33.85 0.00 0.00 40.19 74.04 9.12
8 0.00 0.00 31.12 0.00 0.00 39.73 70.84 8.77 0.00 0.00 34.10 0.00 0.00 39.99 74.09 9.13
9 0.00 0.00 31.51 0.00 0.00 41.36 72.87 8.82 0.00 0.00 32.99 0.00 0.00 39.64 72.63 9.07
10 0.00 0.00 30.67 0.00 0.00 40.85 71.52 8.81 0.00 0.00 32.84 0.00 0.00 40.56 73.40 9.11

γ=9

1 0.00 0.00 16.38 0.00 0.00 29.12 45.51 7.12 0.00 0.00 23.63 0.00 0.00 26.62 50.24 7.75
2 0.00 0.00 17.14 0.00 0.00 28.89 46.03 7.13 0.00 0.00 22.78 0.00 0.00 27.09 49.87 7.67
3 0.00 0.00 17.48 0.00 0.00 28.19 45.66 7.16 0.00 0.00 23.38 0.00 0.00 25.64 49.03 7.62
4 0.00 0.00 17.74 0.00 0.00 28.17 45.91 7.22 0.00 0.00 22.78 0.00 0.00 27.78 50.56 7.68
5 0.00 0.00 19.27 0.00 0.00 26.61 45.88 7.26 0.00 0.00 22.55 0.00 0.00 26.84 49.39 7.61
6 0.00 0.00 18.71 0.00 0.00 29.26 47.97 7.35 0.00 0.00 23.16 0.00 0.00 26.69 49.84 7.63
7 0.00 0.00 18.43 0.00 0.00 27.89 46.32 7.31 0.00 0.00 22.02 0.00 0.00 26.94 48.96 7.57
8 0.00 0.00 20.07 0.00 0.00 26.57 46.64 7.34 0.00 0.00 22.02 0.00 0.00 26.80 48.82 7.57
9 0.00 0.00 20.23 0.00 0.00 27.54 47.76 7.36 0.00 0.00 21.35 0.00 0.00 26.64 47.99 7.53
10 0.00 0.00 19.65 0.00 0.00 27.43 47.08 7.36 0.00 0.00 21.11 0.00 0.00 27.29 48.39 7.55
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Table 9 - Continued

Panel B: The Case of Quarterly Observations

Horizon SL SM SH BL BM BH Total CE SL SM SH BL BM BH Total CE

zT=End-of-Sample Realizations zT=Sample Means

γ=3

1 0.00 0.00 16.84 0.00 0.00 82.16 99.00 9.86 0.00 0.00 44.48 0.00 0.00 54.52 99.00 12.02
2 0.00 0.00 20.51 0.00 0.00 78.49 99.00 10.09 0.00 0.00 46.97 0.00 0.00 52.03 99.00 12.07
3 0.00 0.00 25.98 0.00 0.00 73.02 99.00 10.29 0.00 0.00 44.91 0.00 0.00 54.09 99.00 12.08
4 0.00 0.00 28.23 0.00 0.00 70.77 99.00 10.45 0.00 0.00 45.65 0.00 0.00 53.35 99.00 12.06
5 0.00 0.00 29.27 0.00 0.00 69.73 99.00 10.50 0.00 0.00 45.09 0.00 0.00 53.91 99.00 11.99
6 0.00 0.00 29.12 0.00 0.00 69.88 99.00 10.64 0.00 0.00 44.25 0.00 0.00 54.75 99.00 11.91
7 0.00 0.00 32.84 0.00 0.00 66.16 99.00 10.82 0.00 0.00 41.91 0.00 0.00 57.09 99.00 11.80
8 0.00 0.00 33.07 0.00 0.00 65.93 99.00 10.85 0.00 0.00 43.00 0.00 0.00 56.00 99.00 11.82
9 0.00 0.00 33.44 0.00 0.00 65.56 99.00 10.95 0.00 0.00 42.99 0.00 0.00 56.01 99.00 11.78
10 0.00 0.00 33.79 0.00 0.00 65.21 99.00 10.93 0.00 0.00 42.15 0.00 0.00 56.85 99.00 11.78

γ=6

1 0.00 0.00 7.07 0.00 0.00 45.16 52.23 7.22 0.00 0.00 16.60 0.00 0.00 46.13 62.73 8.41
2 0.00 0.00 8.34 0.00 0.00 44.72 53.06 7.33 0.00 0.00 17.97 0.00 0.00 43.80 61.77 8.41
3 0.00 0.00 10.67 0.00 0.00 42.67 53.35 7.42 0.00 0.00 16.55 0.00 0.00 45.45 62.00 8.40
4 0.00 0.00 11.66 0.00 0.00 41.89 53.55 7.49 0.00 0.00 16.92 0.00 0.00 45.39 62.31 8.40
5 0.00 0.00 11.66 0.00 0.00 42.29 53.95 7.51 0.00 0.00 16.50 0.00 0.00 45.39 61.89 8.34
6 0.00 0.00 11.32 0.00 0.00 42.92 54.24 7.57 0.00 0.00 16.08 0.00 0.00 44.96 61.04 8.28
7 0.00 0.00 12.61 0.00 0.00 42.82 55.44 7.66 0.00 0.00 15.11 0.00 0.00 44.78 59.89 8.20
8 0.00 0.00 12.50 0.00 0.00 42.86 55.36 7.66 0.00 0.00 15.53 0.00 0.00 44.47 60.00 8.20
9 0.00 0.00 12.48 0.00 0.00 42.99 55.47 7.71 0.00 0.00 15.68 0.00 0.00 43.69 59.36 8.17
10 0.00 0.00 12.94 0.00 0.00 41.44 54.38 7.69 0.00 0.00 15.13 0.00 0.00 44.91 60.04 8.17

γ=9

1 0.00 0.00 4.65 0.00 0.00 30.07 34.72 6.36 0.00 0.00 10.92 0.00 0.00 30.81 41.73 7.14
2 0.00 0.00 5.41 0.00 0.00 29.78 35.19 6.42 0.00 0.00 11.73 0.00 0.00 29.28 41.01 7.13
3 0.00 0.00 6.87 0.00 0.00 28.42 35.29 6.48 0.00 0.00 10.72 0.00 0.00 30.34 41.06 7.12
4 0.00 0.00 7.49 0.00 0.00 27.88 35.37 6.52 0.00 0.00 10.90 0.00 0.00 30.33 41.23 7.11
5 0.00 0.00 7.42 0.00 0.00 28.13 35.55 6.53 0.00 0.00 10.51 0.00 0.00 30.33 40.84 7.07
6 0.00 0.00 7.18 0.00 0.00 28.51 35.69 6.57 0.00 0.00 10.18 0.00 0.00 30.03 40.21 7.02
7 0.00 0.00 7.96 0.00 0.00 28.43 36.39 6.62 0.00 0.00 9.54 0.00 0.00 29.83 39.37 6.97
8 0.00 0.00 7.86 0.00 0.00 28.40 36.26 6.62 0.00 0.00 9.78 0.00 0.00 29.62 39.40 6.96
9 0.00 0.00 7.79 0.00 0.00 28.50 36.28 6.64 0.00 0.00 9.84 0.00 0.00 29.13 38.97 6.94
10 0.00 0.00 8.11 0.00 0.00 27.49 35.61 6.63 0.00 0.00 9.45 0.00 0.00 29.85 39.30 6.94
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